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Nowadays, it is known that through the use of energy dissipation devices, the seismic performance of buildings
can be improved. However, for efficiency and structural safety, the locations and sizes of these devices need to be
properly defined. In this work, a procedure to optimally define the damping coefficients of added linear viscous
dampers tomeet an expected level of performance on buildings under seismic excitation is proposed. The perfor-
mance criterion is expressed in terms of a maximum interstory drift, which is one of the most important limita-
tions provided by the seismic design codes. For a given level of performance, the effectiveness of the damper
distribution obtained bymeans of different objective functions is also assessed. Knowing that the main contribu-
tion to the total uncertainty is due to the excitation andwith the aim of achieving robust results, themost appro-
priate approach to model the excitation is through a stationary stochastic process characterized by a power
spectral density compatible with the response spectrum defined by the seismic design code. Accordingly, the
structural response is obtained in the frequency domain. Through numerical examples, on planar and three-
dimensional steel buildings with coupled lateral and torsional vibrations, the proposed procedure is verified.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that, in order to reduce the structural response, ex-
ternal energy dissipation devices may be advantageously used. The
effectiveness of these systems depends on, the damping capacity, as
well as the placement of dampers into the structure. In view of these
considerations, optimum design studies on energy dissipation systems
have been of great interest, principally in earthquake engineering over
the last two decades. In scientific literature, there are numerous studies
related to optimal placement of dampers, mainly with viscous and vis-
coelastic devices, installed in shear type buildings.

Gluck et al. [1] suggested a method for the design of supplemental
dampers and stiffness, based on optimal control theory, whichminimizes
a performance cost function, under the assumption of white-noise input.
Takewaki [2] proposed a systematic algorithm for finding the optimal
damper placement that minimizes the sum of amplitudes of the transfer
functions of each interstory drift, evaluated at the undamped fundamen-
tal natural frequency of the structure subject to a constraint on the total
added damping. Since the methodology was based on the amplitude of
a transfer function, the characteristics of input motions were not consid-
ered. Wu et al. [3] investigated the optimal damper placement for
three-dimensional structures taking into account translational and tor-
sional responses. The authors demonstrated that the placement of a
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limited number of devicesmay have a significant effect on the level of re-
sponse reduction. Through the Kanai–Tajimi filtered white-noise, the ef-
fect of ground motion characteristics was also examined. The results
showed that the optimal placement is relatively dependent on the excita-
tion. Takewaki and Yoshitomi [4] studied the effects of support stiffness
on the optimal placement of viscous dampers and concluded that the
support-member stiffness affects greatly the optimal damper positioning
and the level of response reduction. Takewaki [5] described an original
steepest direction search algorithm applied to the problem of optimal
damper placement in structures subjected to critical excitation. With an
algorithm similar to that introduced by Takewaki [5], Takewaki [6]
presented an optimal damper placement approach to minimize the dy-
namic compliance transfer function of a planar building frame. Similar ap-
proach but using the transfer function amplitude of the base shear force
evaluated at the undamped fundamental natural frequency of the struc-
ture was proposed by Aydin et al. [7]. Takewaki [8] developed a method
for stiffness–damping simultaneous optimization of a structural system.
A study on the optimal distribution of stiffness and damping using a gen-
eralized objective function was presented by Cimellaro [9]. In this work,
the transfer function norms of the interstory relative displacement, abso-
lute acceleration and base shear were evaluated at the fundamental nat-
ural frequency, and their amplitudes were minimized subject to a total
stiffness and damping constraints. To demonstrate the validity of the
methodology, dynamic response analysis was performed in time domain
using an ensemble of 25 ground motion records.

To solve the optimal damper distribution problem, Singh and
Moreschi [10] used a gradient-based optimization. Later, Singh
and Moreschi [11] presented a study using genetic algorithm for
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finding the optimal size and placement of viscous and viscoelastic dissi-
pation devices required to achieve a required level of performance in dif-
ferent types of structures. A spectral density function of the type of
Kanai–Tajimiwas used tomodel the earthquake groundmotion. An inte-
grated optimum design of a viscoelastically damped structural system
was described by Park et al. [12] in which, the optimization criterion
was defined through a life-cycle cost function that takes into account
the initial construction cost, and a probabilistic damage cost estimated
over its lifetime. To find the optimum parameters, a genetic algorithm
was implemented as a numerical searching technique. They conclude
that increasing the amount of viscoelastic dampers is more efficient
than increasing structural stiffness, especially with stiff soil conditions.
Levy and Lavan [13] presented a method for optimal viscous damper
design applied to linear and non-linear frame structures subjected to
an ensemble of realistic ground motion records. Optimality criteria are
formulated based on fully stressed characteristics of the optimal solution,
and a simple analysis/redesign procedure is proposed for attaining opti-
mal designs. García et al. [14] presented a theoretical and experimental
investigation that deals with the torsional balance of elastic asymmetric
structures through viscoelastic dampers. Results demonstrate that VE
dampers are very effective in controlling lateral–torsional coupling of
torsionally flexible as well as stiff structures. The devices are placed in
such a way that, the empirical center of balance (point belongs to build-
ing plan where translations and rotations are statistically uncorrelated
[15]) coincides with the geometrical center of the building plan.

Aydin and Boduroglu [16] presented a study comparing two rehabil-
itation techniques, energy dissipation through viscous dampers and
stiffening by means of optimal placement of X steel diagonal braces. A
book published in 2009 by Takewaki [17] shows a state-of-the-art on
optimal performance-based design of buildings under seismic excitation
providedwith passive dampers. Aydin [18], developed amethod to opti-
mize the size and location of added viscous dampers based on base mo-
ment transfer function in planar steel frames. Different optimization
techniques based on top displacement, top absolute acceleration and
base shear are also compared. A recent work which compares the struc-
tural performance achieved by different techniques for optimal viscous
damper placement by means of non-linear time history analyses was
presented by Whittle et al. [19].

While many works deal with optimal damper distribution, only a
few of them explicitly define the total added damping (damping capac-
ity) of the energy dissipation system to achieve a required seismic
performance.

A procedure to optimally define the damping coefficients of added vis-
cous dampers to meet an expected level of performance on buildings
under seismic excitation is proposed. The performance criterion is
expressed in terms of a maximum interstory drift, which is one of the
most important limitations provided by the seismic design codes. In
order to assess the effectiveness of the damper distribution, for a given
level of performance, different optimization strategies are addressed.
The excitation is modeled as a stationary stochastic process characterized
by a power spectral density compatible with the response spectrum
defined by the seismic design code and the analysis is performed in the
frequency domain.

Through numerical examples, on planar and three-dimensional steel
buildings with coupled lateral and torsional effects, the proposedmeth-
odology is verified.

2. Model of earthquake excitation

Studies on dissipation systems' efficiency and influence of the exci-
tation characteristics are carried out in time domain by Monte Carlo
simulation using a sufficient number of deterministic artificially gener-
ated records [20]. However, in optimization problemswith high compu-
tational cost due to numerous iterations, an alternative simple method
is required. Stochastic analysis, conducted in frequency domain, is an at-
tractive method in which, a power spectral density function (PSDF),
rather than a collection of time histories, can be used for modeling the
excitation.

2.1. Derivation of design spectrum compatible power spectral density
function

It is known that earthquake excitation is inherently random, howev-
er, if the evolution of the frequency content with time can be neglected,
the input groundmotion can be characterized by a power spectral den-
sity function (PSDF). In this study the earthquake excitation is assumed
as a stationary Gaussian random process x

::
g tð Þ with zero mean repre-

sented by means of a design spectrum compatible PSDF. Following the
methodology developed by Vanmarcke [21] cited in the work
conducted by Giaralis and Spanos [22], the design spectrum compatible
PSDF can be approximated by the following recursive equation:

G ω j

� �
¼ 4ξ

ω jπ−4ξω j−1

S2a ω j; ξ
� �

η2j ω j; ξ
� �−Δω

Xj−1

k¼1

G ωkð Þ
0
@

1
A ω jNω0 ð1Þ

in which G(ωj) and Sa(ω,jξ) are the one-sided PSDF and the median
pseudo-acceleration response spectrum at a specific frequency ωj, re-
spectively, and ξ = 0.05 is the assumed damping ratio; Δω is the fre-
quency step in which the frequency range was discretized; the peak
factor ηj is calculated by Eq. (2) and it represents the factor by which
the root mean square (rms) value of the response of a SDOF oscillator
must be multiplied to predict the level Sa below by which the peak re-
sponse of the oscillator will remain, with probability p, throughout the
duration of the input process Ts. Herein, the following approximated
semi-empirical formula for the calculation of the peak factor is adopted,
which is known to be reasonably reliable for earthquake engineering
applications (Vanmarcke [21]):

η j ¼
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being Eqs. (3) and (4) close form expressions derived for a white noise
PSDF which has to be a priori assumed without knowledge of G(ωj)
when the peak factor is calculated by Eq. (2); Ts = 20 sec. is the dura-
tion assumed for the underlying stationary process; p = 0.5 is an ap-
propriate probability assumed for the purposes of this study; ω0 =
0.36 rad/s denotes the lowest bound of the existence domain of
Eq. (3) for a PSDF and Ts a priori assumed [22].

The power spectrum density estimation obtained by Eq. (1) can be
improved via the following iterative scheme [22]:

Giþ1 ω j

� �
¼ Gi ω j

� � Sta ω j; ξ
� �

Sia ω j; ξ
� �

2
4

3
5
2

ð5Þ

in which Sa
t(ωj,ξ) and Sa

i (ωj,ξ) are the target design spectrum and the
associated design spectrum estimated in the ith iteration.
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3. Evaluation of stochastic response

The equations governing the dynamic motion of the structure pro-
vided with viscous dampers subjected to earthquake excitation may
be written in the matrix form as [6]:

Mx
::
tð Þ þ Cþ Cvð Þẋ tð Þ þ Kx tð Þ ¼ −Mrx

::
g tð Þ ð6Þ

whereM, K and C are the mass, stiffness and the proportional damping
matrices of size n × n, respectively, the matrix of the added viscous
damping is denoted byCv, r is the influence vector,x

::
g tð Þ is the horizontal

acceleration of groundmotion andx tð Þ, ẋ tð Þ and x(t) are the generalized
acceleration, velocity and displacement vectors, of size n × 1 respec-
tively, being n the number of degree of freedom. Eq. (6) can be written
such as the following system of first-order differential equations:

d
dt

y ¼ Gyþw ð7Þ

where y is the state vector

y ¼ xT ẋ
T

n oT ð8Þ

G is the augmented system matrix

G ¼ 0½ � I½ �
−M−1K −M−1 Cþ Cvð Þ

� �
ð9Þ
Wj=Wj-1 + 
Optimization

SQP

Cvj

+

C K M

Total capac
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f (cv)

Fig 1. Flowchart of the pro
and w is the excitation vector

w ¼ − 0f g 1f gx::0
� �T ð10Þ

where {0} and {1} denotes the null and unit vector, respectively, of size
1 × n; [0] and [I] denotes the null and identity matrix, respectively, of
size n × n; M−1 is the inverse of mass matrix M, and x0 tð Þ denotes the
ground motion assumed as a zero-mean white noise random process
with a PSDF of constant intensity, S0.Let the covariance matrix of y be
S with

Sij ¼ E yiy j

h i
ð11Þ

in which E[.] is the expectation operator and yi is the ith element of
vector y.

It can be shown [20] that for a zero-mean white noise random pro-
cess, S satisfies the following differential equation:

d
dt

S ¼ GST þ SGT þ D ð12Þ

in which D is the covariance matrix between the state and excitation
vectors and Dij = 0 except that D2n,2n = 2π S0,.

As the excitation is assumed stationary,D is time independent, then,
the stationary solution of Eq. (12) can be obtained by solving the
σdmax

µd<dlim
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Lyapunov matrix equation

GST þ SGT þ D ¼ 0: ð13Þ

Note that the previous stochastic response has been obtained for a
white noise type excitation with constant PSDF; however, the PSDF
obtained by Eq. (5) represents the stationary Gaussian random process,
xg tð Þ. This obstacle can be circumvented byfiltering thewhite noisex0 tð Þ
through two linear filters as follows:

x
::
g tð Þ þ 2ξgωg ẋg tð Þ þω2

gxg tð Þ ¼ − x
::
f tð Þ þ x0 tð Þ

� �
; ð14Þ

x
::
f tð Þ þ 2ξ fω f ẋ f tð Þ þω2

f x f tð Þ ¼ −x
::
0 tð Þ ð15Þ
Fig. 3. Steel structure
in whichωg, ξg,ωf and ξf are the ground filter parameters. Eqs. (14) and
(15) lead to the Clough and Penzien stationary PSDF [23]
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Thus, to make compatible the PSDFs given by Eqs. (5) and (16), the
filter parameters are estimated by fitting both functions.

On the basis of the above considerations, the stochastic structural re-
sponse is obtained by solving Eq. (13) in which, the state vector, y, the
augmented system matrix, G, and excitation vector, w, can be re-
written as follow:

y ¼ xT ẋT x f ẋf xg ẋg
n oT ð17Þ

G ¼

0½ � I½ � 0f gT 0f gT 0f gT 0f gT
−M−1K −M−1 Cþ Cvð Þ − 1f gTω2

f − 1f gT2ξ fω f 1f gTω2
g 1f gT2ξgωg

0f g 0f g 0 1 0 0
0f g 0f g −ω2

f −2ξ fω f ω2
g 2ξgωg

0f g 0f g 0 0 0 1
0f g 0f g 0 0 −ω2

g −2ξgωg

2
66666664

3
77777775
ð18Þ

w ¼ 0f g 0f g 0 0 0 −x
::
0

� �T ð19Þ
(Example 1) [30].



Table 1
Example 1: Model properties.

Story Mass per floor [106 kg] Stiffness [108 N/m]

1 0.2464 4.905
2 0.3986 4.905
3 0.3932 4.905
4 0.3932 4.4145
5 0.3905 4.4145
6 0.3905 4.4145
7 0.3905 4.1202
8 0.3905 4.1202
9 0.3905 3.924
10 0.3905 3.924
11 0.3905 3.924
12 0.3905 3.924
13 0.3905 3.7278
14 0.5844 3.5316
15 0.3624 2.7468
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and the elements of the covariance matrix D of size 2n + 4 × 2n + 4
are Dij = 0 except that D2n + 4,2n + 4 = 2πS0.

4. Optimal placement of viscous dampers

The challenge for the problem of optimal viscous damper placement
is to find, in every possible location, the damping coefficient cvi which
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Fig. 4. Damping coefficient vs. damping capacity. Objective function: (a) max drift. (b) Top
minimize/maximize a given objective function f. Then, the optimization
problem is stated as follows:

min=max
cv

f cvð Þ ð20Þ

subject to the constraints on the total added damping and on each
damping coefficient given by:

Xnd
i¼1

cvi ¼ W ð21Þ

0≤cvi ≤W i ¼ 1…nd ð22Þ

whereW is the damping capacity needed to achieve the required struc-
tural performance and nd is the number of added dampers.

4.1. Objective function

Different objective functions can be chosen depending on the re-
quired design objective. With the aim of assessing different strategies,
in this study, the following objective functions are presented:
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4.1.1. Minimization of maximum drift
This strategy seeks to reduce the structural dynamic response

through the control of maximum interstory drift. Based on this premise,
the optimization problemmay be formulated as follows: Find the vector
of the damping coefficients cv = {cvi} of added dampers, which mini-
mize the maximum root mean square (rms) value of interstory drifts
of the structure. Thus, the objective function takes the form:

minimize
cv

σdmax ¼ max σd1
;σd2

;…;σdn

� �
ð23Þ

where the vector of the rms values of interstory drifts σd
¼ σd1

;σd2
;…;σdn

n o
can be obtained as [24]:

σd ¼ diag TSTT
� �1=2 ð24Þ

in which T is a constant matrix consisting of 1, −1 and 0 and S is
obtained by solving Eq. (13).

4.1.2. Minimization of top displacement
The problem of optimal damper distribution based on theminimiza-

tion of the top displacementmay be formulated as follows: Find the vec-
tor of the damping coefficients cv = {cvi} of added dampers, which
minimize the rms of the top displacement of the structure. Thus, the ob-
jective function can be expressed as

minimize
cv

σxn
ð25Þ
0 10 20 30 40 50 60 70 80 90 100
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Damping coefficient [kN s/mm]

0 10 20 30 40 50 60 70 80 90 100
Damping coefficient [kN s/mm]

S
to

ry

Optimal
Uniform

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

S
to

ry

Optimal
Uniform

a)

c)

Fig. 5. Final damping coefficient formaximum story drift equal 1%. Objective function: (a) max
energy.
where the root mean square value of top displacementσ xn
is the square

root of the n-th element in the diagonal of matrix S, which corresponds
to the top displacement degree of freedom.
4.1.3. Minimization of the sum of maximum drift and base shear force
Because interstory drift and top displacement are essential deforma-

tion parameters for seismic design, theminimization of both, is essential
for determining optimal damper placement. However, the structural
deformation reduction can be achieved by increasing the stiffness,
which can lead to increase the base shear force. Therefore, both,
interstory drift and base shear force should be considered in the optimi-
zation problem. Accordingly, the problemof optimal damper placement
may be stated as the sum of the rms values of the maximum interstory
drift and base shear force, both, relative to the values obtained on the
original structure (without added dampers). Thus, the objective func-
tion takes the form:

minimize
cv

σdmax

σd0 max
þ σv

σv0

ð26Þ

where σd max is themaximum rms value of interstory drifts of the struc-
ture, σv is the rms value of the base shear force and the subscript 0 indi-
cates values of the original structure.

The rms value of base shear force can be obtained as follows [24]

σv ¼ rKSxK
TrT þ r Cþ Cvð ÞSẋ Cþ Cvð ÞTrT

� �1=2 ð27Þ
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Table 3
Example 2: Floor mass and stiffness.

Story Mass per floor Stiffness

Translation
[kg]

Rotational
[107 kg m2]

Longitudinal
X [kN/m]

Transverse
Y [kN/m]

1 358,000 5.5379 412,800 446,760
2 358,000 5.5379 412,800 446,760
3 358,000 5.5379 412,800 446,760
4 358,000 5.5379 412,800 446,760
5 358,000 5.5379 412,800 446,760
6 358,000 5.5379 412,800 446,760

Table 2
Objective functions efficiency (for a maximum interstory drift equal to 1%).

Objective function Total damping
capacity
[kNs/mm]

Base shear force
[103 kN]

Top
displacement
[m]

ξ [%]

Min (maximum drift) 220 7.674 0.1713 10.13
Min (top displacement) 240 7.332 0.1642 10.90
Min (max drift + base
shear force)

220 7.589 0.1707 10.16

Max (dissipated
energy)

450 7.119 0.1412 15.11

Uniform 380 7.007 0.1559 11.51
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where the sub-matrices of S are:

Sx ¼
S1;1 S1;2 … S1;n
S2;1 S2;2 … S2;n
⋮ ⋮ ⋱ ⋮

Sn;1 Sn;2 … Sn;n

2
664

3
775 and Sẋ

¼
Snþ1;nþ1 Snþ1;nþ2 … Snþ1;2n
Snþ2;nþ1 Snþ2;nþ2 … Snþ2;2n

⋮ ⋮ ⋱ ⋮
S2n;nþ1 S2n;nþ2 … S2n;2n

2
664

3
775: ð28Þ

4.1.4. Maximization of dissipated energy
Another attractive strategy based on dissipated energy for optimal

damper distribution may be formulated as: Find the vector of the
damping coefficients cv = {cvi}, which maximize the total dissipated
energy through the dampers. Thus, the objective function is expressed
as follows:

maximize
cv

Ed ð29Þ

where Ed represents the total dissipated energy per cycle determined
as:

Ed ¼
Xnd

i¼1

cviω1πΔ
2
i ð30Þ

where Δi is the relative displacement amplitude of the cycle under con-
sideration, nd is the number of added dampers, cvi is the damping coef-
ficient of the ith damper andω1 is the natural frequency of the structure.
In this studyΔiwas assumed equal to the rms of the relative displacement
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Fig. 6. Response for different objective functions. (a) Pea
σΔi of each damper during the excitation motion. Then

Ed ¼
Xnd
i¼1

cviω1πσ
2
Δi: ð31Þ

4.2. Required performance

Limitations on interstory drift are given by seismic design code pro-
visions to control deformations and to prevent potential instabilities in
both structural and non-structural elements. To define the minimum
damping capacity of the dissipation system, the peak of the maximum
interstory drift was adopted as performance criterion. In accordance
with the provision of the IBC 2003 [25], for a typical steel shear struc-
ture, seismic use group III, the interstory drift limit is 0.010. Thus, an
interstory drift limit equal to 0.010 will be used in the next examples
as level of performance required for the dissipation system design.

For a given excitation, the mean peak of the maximum interstory
drift can be calculated from the maximum root mean square value de-
termined by Eq. (23) as follows (Der Kiureghian [26]):

μdmax ¼ pfσdmax ð32Þ

pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnνeτ

q
þ 0:5775ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 lnνeτ
p ð33Þ

where μdmax is the mean peak of the maximum interstory drift, pf is the
peak factor, σdmax (Eq. 23) is the standard deviation of the maximum
interstory drift, νe is the modified mean zero-crossing rate, and τ is the
time duration of the excitation. Der Kiureghian [26] derived a simple ex-
pression for νe from a SDOF subjected towhite noise ground acceleration
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Fig. 7. 6-Story high steel frame building (Example 2).
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given by:

νe ¼ 1:90ξ0:15−0:73
� �

ν; ξb0:54ð Þ
ν; ξ≥0:54ð Þ

(
ð34Þ

where

ν ¼ ω1

π
ð35Þ

in which ν is the zero-crossing rate of the response, andω1 and ξ are the
natural frequency and the damping ratio of the SDOF structure, respec-
tively. For multi-degree-of-freedom (MDOF) structures, the natural fre-
quency and damping ratio of the fundamental vibration mode are used
under the assumption that the fundamental mode dominates the dy-
namic response.
(a) Frame FX1 (Y = -10.05 m.) 

(c) Frame FX2 (Y = +10.05 m.)

(e) Frame

Fig. 10. Damping coefficient vs. dampin
5. Optimization procedure

In this study, the Sequential Quadratic Programming (SQP) meth-
od [27,28] was chosen to solve the optimization problem stated by
the objective function and constraint equations (Eqs. 20, 21 and
22). The proposed procedure, which includes the SQP algorithm, de-
fines the damping coefficient cvi, in every possible location sequen-
tially, for gradually increasing damping capacity until the required
performance is achieved. The procedure starts with the structure
model without added dampers, i.e. cvi = 0. Once the filter parame-
ters have been determined, the stochastic response is evaluated by
Eq. (13) (see Section 3). From Eq. (32), the peak of maximum
interstory drift is calculated and then compared with the limitations
provided by the seismic code (Section 4.2). If the required perfor-
mance level is achieved, the procedure ends, else, the damping ca-
pacity W is increased by a damping step ΔW. Given ΔW, the
optimal damping coefficients cvi are determined through the SQP al-
gorithm, considering the selected objective function. Then, the ma-
trix of the added dampers Cv must be added to the damping matrix
(b) Frame FY1 (X =-20.10 m.) 

(d) Frame FY2 (X = 10.05 m.) 

 FY3 (X = 20.10 m.) 

g capacity. Excitation: Y direction.
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C of the original structure to reevaluate the stochastic response by
solving Eq. (13). The procedure continues until the required perfor-
mance is achieved. For clarity, in Fig. 1 the flowchart of the proposed
methodology is shown.
6. Numerical examples

6.1. Excitation

In this study, the excitation was defined from the UBC 97 [29]
response spectrum. Fig. 2(a) shows the UBC 97 pseudo-acceleration
response spectrum for seismic zone 4, soil profile type SB, and seismic
source type A, with closest distance to known seismic source equal to
5 km. In Fig. 2(b) the corresponding compatible PSDF obtained by
Eq. (5) (dashed line) and the Clough–Penzien approach (Eq. 16) (con-
tinuous line) are displayed.
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6.2. Example 1: 15 story planar building frame

This example consists of four steel moment-resisting frames in each
direction, 15-story high, in a buildingwith two planes of symmetry [30].
Fig. 3 shows the geometric characteristics of the structure and the mass
perfloor and story stiffness on the z–y plane are indicated in Table 1. For
low amplitude vibration, the fundamental period resulted equal to
T1 = 1.89 s. The internal damping was assumed equal to 2% of critical
damping ratio.

Using the proposed methodology, the optimal damper placement
for every objective function (Section 4.2) and increasing damping ca-
pacity is performed. Fig. 4(a)–(d) shows that different objective func-
tions lead to similar damper distributions at each damping capacity,
except for the maximum dissipated energy objective function.

Thefinal distribution of added dampers that lead to the required level
of performance (max story drift = 1%) for every objective function is
presented in Fig. 5(a)–(d). For comparison purposes, the corresponding
uniform distribution is also included. As can be seen in Fig. 5(a)–(c),
the dampers are added in first seven stories, with damping capacities
of 220, 240 and 220 kNs/mm for each of the respective objective func-
tions. In the case of dissipated energy objective function, the optimiza-
tion procedure indicates that the damping capacity of 450 kNs/mm
should be distributed between 4th and 11th story, except in the 5th
story (Fig. 5(d)).

While, similar performances in terms of maximum interstory drift,
base shear force and top displacement have been achieved with all ob-
jective functions (see Table 2), the damping capacity required for the
uniform distribution and dissipated energy is markedly different of
the other objective functions. From Fig. 6(a) and (b), it is clear that
although those two distributions lead to smaller absolute displacement
at expense of higher damping, they display inefficiency in themaximum
interstory drift control.

Because one of themost efficient objective function is the sum of the
maximum interstory drift and base shear force, it will be used in the
next example.
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6.3. Example 2: 6 story 3D building with one direction eccentricity

In order to assess the lateral and torsional vibration control, a 6-story
high steel frame building with one direction eccentricity is considered.
The structure consists of three identical moment-resisting frames in Y
direction and two in X direction. Principal properties are summarized
in Table 3 and general dimensions are indicated in Fig. 7. The fundamen-
tal periods in both directions, for low amplitude vibration, are T1x =
0.77 s and T1y = 0.76 s. The internal damping was assumed equal to
2% of the critical.
The global stiffness andmassmatrices for a coordinate system locat-
ed in mass center are given by:

K ¼

X
i
kx i 0 −

X
i
kx iYi

0
X

i
ky i

X
i
ky iXi

−
X

i
kx iYi

X
i
ky iXi

X
i
kx iY

2
i þ ky iX

2
i

� �
2
664

3
775 ð36Þ

M ¼
Mt 0 0
0 Mt 0
0 0 Mθ

2
4

3
5 ð37Þ

whereMt andMθ are the translationalmass and themassmoment of in-
ertia diagonal matrices, respectively and the external added damper
matrix is:

Cv ¼

X
i
Cvxi 0 −

X
i
Cvxi Yi

0
X

i
Cvyi

X
i
Cvyi Xi

−
X

i
Cvxi Yi

X
i
Cvyi Xi

X
i
Cvxi

Y2
i þ Cvyi X

2
i

� �
2
664

3
775 ð38Þ

where i indicates the ith frame into the structure, kx/yi and Cvx=yi are the
stiffness and damper matrix in X/Y direction of the ith frame, respec-
tively; and Xi and Yi represent the distances in X and Y direction of the
ith frame to the mass center, respectively.

Using as objective function the maximum drift and base shear force
and a maximum story drift equal to 1% as performance criteria, the op-
timization procedure is conducted.

Assuming that the excitation initially acts in X direction (structure
without eccentricity), the optimal damper coefficients in each frame
for increasing damping capacity and the structural response, in X direc-
tion, for a damping capacity of 27 kNs/mmare displayed in Figs. 8 and 9,
respectively. Since, in this case there is no eccentricity, the total required
damping has only beenused tomeet the allowed translational interstory
drift of 1%. As expected, Fig. 8 shows that, the damping capacity is equal-
ly distributed among both frames located in the excitation direction. No
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dampers are placed in frames oriented with Y direction. It can also be
seen that the dampers are gradually installed at the first and second
stories, which present greater drift (Fig. 9(b)).

With an installed damping capacity equal to 13.5 kNs/mm in each
FXi frame, the analysis is now conducted with the same excitation act-
ing in Y direction (eccentric structure). From Fig. 10 it is clear that, for
achieving the required performance, the optimization procedure aims
to reduce the stiffness eccentricity and the excessive drift adding
dampers in the first three stories of the farthest frame (FY1).

Fig. 11 shows how the final damping capacity of 57 kNs/mm should
be distributed per story and frame to achieve the performance criterion
(max drift = 1%). The corresponding lateral and torsional structural
response, in Y direction, is displayed in Fig. 12.

Because the system is linear, the same results had been obtained
assuming the excitation in reverse order, initially in Y direction and
then X direction.

7. Conclusions

From the present study it is worth mentioning the following issues:

- The proposed procedure allows optimally designing viscous energy
dissipation systems in a computationally efficient way.

- The excitationmodeled as a stationary stochastic process defined by
a design spectrum compatible PSD, which characterizes the seismic
excitation at the structure site, enabled to achieve a robust design
of the dissipation system.

- The comparative study allowed inferring that similar seismic perfor-
mance may be achieved in terms of interstory drift and base shear
force using any of the objective functions studied,with the exception
of the case of maximum dissipated energy through the dampers,
which exhibited a low efficiency.

- The robustness of the optimization algorithm in addressing transla-
tional–torsional coupling problems was also confirmed.

- Results showed that for building structures with different stiffness
distribution over the height, the devices should be placed where
the greatest interstory drifts occur (usually on the first stories). Ad-
ditionally, it is clear that the optimization procedure aims to correct
the stiffness eccentricity, by placing the dampers in such a way to si-
multaneously minimize both, the torsional effects and the transla-
tional response.
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