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We propose to study a problem that arises naturally from both Topological Numbering of 
Directed Acyclic Graphs, and Additive Coloring (also known as Lucky Labeling). Let D be 
a digraph and f a labeling of its vertices with positive integers; denote by S(v) the sum 
of labels over all neighbors of each vertex v . The labeling f is called topological additive 
numbering if S(u) < S(v) for each arc (u, v) of the digraph. The problem asks to find 
the minimum number k for which D has a topological additive numbering with labels 
belonging to {1, . . . , k}, denoted by ηt(D).
We characterize when a digraph has topological additive numberings, give a lower bound 
for ηt(D) and provide an integer programming formulation for our problem. We also 
present some families for which ηt(D) can be computed in polynomial time. Finally, we 
prove that this problem is NP-Hard even when its input is restricted to planar bipartite 
digraphs.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Graph Coloring (GC) is one of the most representative 
problems in graph theory and combinatorial optimization 
because of its practical relevance and theoretical interest. 
Below, we present two known variants of GC.

Let D = (V , A) be a directed acyclic graph (DAG), and 
let S : V → N be a labeling of the vertices of D . If 
S(u) < S(v) for every (u, v) ∈ A, then S is called a topolog-
ical numbering of D [7]. We refer to the problem of finding 
the minimum number k for which such labeling S satisfies 
S(v) ≤ k for all v ∈ V as Topological Numbering of DAGs 
(TN). This number k is also the size of the largest directed 
path in D (Gallai Theorem [9]). TN is solvable in polyno-
mial time and generalizations of it give rise to different ap-
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plications: PERT/CPM problems and the buffer assignment 
problem for weighted rooted graphs [5], and frequency as-
signment problems with fixed orientations [4].

The other variant of GC in which we are interested is 
Additive Coloring (AC), also known as Lucky Labeling. Let 
G = (V , E) be a graph, f : V → N a labeling of its ver-
tices and S(v) the sum of labels over all neighbors of v
in G , i.e., S(v) = ∑

w∈N(v) f (w), where N(v) is the set of 
neighbors of v . If S(u) �= S(v) for every (u, v) ∈ E , then 
f is called additive k-coloring of G , where k is the largest 
label used in f . AC consists in finding the additive chro-
matic number of G , which is defined as the least number 
k for which G has an additive k-coloring and is denoted 
by η(G).

AC was first presented by Czerwiński, Grytczuk and 
Zelazny [6]. They conjecture that η(G) ≤ χ(G) for every 
graph G , where χ(G) is the chromatic number of G . The 
problem as well as the conjecture have recently gained 
considerable interest [1,3,10].

In particular, we proposed an exact algorithm for solv-
ing AC based on Benders’ Decomposition [11]. This al-
gorithm needs to solve several instances of an “oriented 
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version” of AC. Let D = (V , A) be a DAG, f : V → N

a labeling and S(v) = ∑
w∈N(v) f (w) for all v ∈ V . If 

S(u) < S(v) for every (u, v) ∈ A, then f is called topologi-
cal additive k-numbering of D , with k the largest label used 
in f .

Unlike other coloring problems (including AC and TN), 
a digraph may lack any topological additive numbering. 
Let D denote the set of digraphs that have at least one 
topological additive numbering. Then, for D ∈ D , the topo-
logical additive number of D , denoted by ηt(D), is defined 
as the least number k for which D has a topological ad-
ditive k-numbering. We call the problem of finding this 
number Topological Additive Numbering of DAGs (TAN).

As far as we know, there are no references to TAN in 
the literature. Our main contribution is to address TAN 
from a computational point of view. We first present some 
properties of TAN, including a lower bound for ηt(D) and 
families of digraphs for which it is easy to exactly com-
pute this number. At the end, we show that the problem 
is NP-Hard even for planar bipartite digraphs.

2. Basic properties of TAN

Let D = (V , A) be a DAG with V = {1, . . . , n}. We will 
assume that D is connected, and its vertices are ordered so 
that u < v holds whenever (u, v) ∈ A. As usual, d(v) de-
notes the degree of vertex v ∈ V , and G(D) the undirected 
underlying graph of D .

We first note that ηt(D) ≥ η(G(D)). Therefore, lower 
bounds for the additive chromatic number also hold for 
the topological additive number. For instance, in [2] it is 
proved that η(G(D)) ≥ �ω/(n − ω + 1)	, where ω is the 
size of a maximum clique of G(D). However, it is possible 
to get a tighter bound for ηt as follows.

Proposition 1. Let D ∈ D , Q a clique of D and qF , qL the small-
est and largest vertices of Q respectively. Then,

ηt(D) ≥
⌈

d(qF ) + 1

d(qL) − |Q | + 2

⌉
.

Proof. We follow [2]. Let f be a topological additive 
k-numbering of D . For each vertex q ∈ Q , let Yq =∑

w∈N(q)\Q f (w) − f (q). It is clear that |N(q) \ Q | − k ≤
Yq ≤ k|N(q) \ Q | − 1.

On the other hand, for any q1, q2 ∈ Q such that q1 < q2, 
we have S(q1) < S(q2), or equivalently,

Yq1 +
∑
w∈Q

f (w) < Yq2 +
∑
w∈Q

f (w).

Hence, Yq1 < Yq2 . Since qF ≤ q ≤ qL for all q ∈ Q , the 
values of Yq must be between |N(qF ) \ Q | − k and 
k|N(qL) \ Q | − 1. By the pigeonhole principle, we ob-
tain |Q | ≤ k|N(qL) \ Q | − |N(qF ) \ Q | + k. Therefore, k ≥
�(d(qF ) + 1)/(d(qL) − |Q | + 2)	. �

Note that (i) this bound is tight for D ∈ D when G(D)

is a complete graph or a complete bipartite graph, and
(ii) unlike the result given in [2], larger cliques do not nec-
essarily lead to better lower bounds.
Fig. 1. A digraph that does not belong to D .

Now, we analyze when a digraph has topological addi-
tive numberings. The following is a sufficient condition.

Observation 1. Let D be a DAG and u, v two vertices of D such 
that N(u) ⊆ N(v). If there is a directed path from v to u, then 
D /∈ D .

The previous condition is not necessary since the di-
graph in Fig. 1 does not belong to D either.

Although we do not know a combinatorial characteriza-
tion of D , we now describe a polynomial-time procedure 
that determines whether a digraph is in D . Observe that 
the following integer linear program solves TAN:

min k

subject to∑
w∈N(v)

f (w) −
∑

w∈N(u)

f (w) ≥ 1, ∀(u, v) ∈ A (1)

k − f (v) ≥ 0, ∀v ∈ V (2)

f (v) ∈N, ∀v ∈ V

We call IPF this formulation and LR its linear relaxation, 
i.e., the linear program that comprises constraints (1), (2)
and f (v) ≥ 1 for all v ∈ V . If LR is infeasible, then D /∈ D . 
Otherwise, there exists an optimal solution of LR whose 
components are rational numbers; by multiplying these 
components by a suitable positive integer, we obtain a 
topological additive numbering of D . Therefore, LR is fea-
sible if, and only if, D ∈ D . Since deciding whether LR is 
feasible can be computed in polynomial time, we conclude 
that:

Proposition 2. Given a DAG D, deciding whether D ∈ D is inP .

Next, we present some families of digraphs where TAN 
is solved in polynomial time. We say that a digraph D is 
r-partite when G(D) is r-partite, and D is complete when 
G(D) is complete. We say that an r-partite digraph is 
monotone when it can be partitioned into V 1, V 2, . . . , Vr
and each of the arcs in V i × V j satisfies i < j. It is easy to 
see that a complete r-partite digraph belongs to D if, and 
only if, it is monotone. In this case, the topological additive 
number can be computed as follows.

Proposition 3. Let D be a complete monotone r-partite di-
graph. Then,

ηt(D) = max

{⌈
si

|V i|
⌉

: i = 1, . . . , r

}
,

where sr = |Vr | and si = max{1 + si+1, |V i |} for all i =
1, . . . , r − 1.
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Fig. 2. Construction of digraph DΦ : for each variable x, DΦ has a copy of the right digraph, and for each clause c = y ∨ z ∨ w , DΦ has a copy of the left 
digraph. A bipartition is shown through the color of the vertices.
Proof. For any labeling f and set S ⊂ V , let f (S) =∑
v∈S f (v). Note that f is a topological additive number-

ing if, and only if, f (V i) > f (V i+1) for all i = 1, . . . , r − 1, 
since for all j > i, u ∈ V i and w ∈ V j , we have S(w) −
S(u) = f (V i) − f (V j) > 0.

Now, consider a labeling f such that, for all i = 1, . . . , r, 
f (V i) = si and f (v) ∈ {�si/|V i|�, �si/|V i|	} for all v ∈ V i . 
Clearly, it is a topological additive p-numbering with p =
max{�si/|V i |	 : i = 1, . . . , r − 1}.

In order to prove that f is optimal, and by way of 
contradiction, suppose that there is a topological addi-
tive numbering f ′ such that f ′(V j) < f (V j) for some 
j ∈ {1, . . . , r}; moreover, assume that j is the largest index 
satisfying this inequality. Then, from f ′(V j) ≥ |V j| follows 
that

f ′(V j) < f (V j) = 1 + s j+1 = 1 + f (V j+1)

≤ 1 + f ′(V j+1),

contradicting that f ′(V j) > f ′(V j+1). �
We now extend Proposition 3 for monotone (not nec-

essarily complete) bipartite digraphs. As implied by The-
orem 1 (in Section 3), it is NP-hard to obtain ηt(D) for 
general bipartite digraphs.

Proposition 4. Let D be a monotone bipartite digraph. Then,

ηt(D) = max

{⌊
d(u)

d(v)

⌋
+ 1 : v ∈ V 2, u ∈ N(v)

}
.

Proof. Let v∗ ∈ V 2 and u∗ ∈ N(v∗) be such that
�d(u∗)/d(v∗)� is maximized, and let p = �d(u∗)/d(v∗)� +
1 = �(d(u∗) + 1)/d(v∗)	. Proposition 1 applied to Q =
{u∗, v∗} grants ηt(D) ≥ p. A topological additive p-num-
bering f , defined by f (v) = 1 for vertices v ∈ V 2
and f (v) = p for v ∈ V 1, provides the matching upper 
bound. �
3. Computational complexity of TAN

We have seen that deciding whether D ∈ D can be 
done in polynomial time. Moreover, deciding whether 
ηt(D) = 1 can be computed fast by checking whether 
d(u) < d(v) for every arc (u, v). Nevertheless, deciding 
whether ηt(D) = 2 is NP-complete. The proof given be-
low shares the same approach of [1].

Let Φ be a 3-SAT formula with sets of clauses C and 
variables X ; let GΦ = (VΦ, EΦ) be the graph of Φ , where 
VΦ = C ∪ X ∪ {¬x : x ∈ X} and EΦ = {(x, ¬x) : x ∈ X} ∪
{(c, y), (c, z), (c, w) : c ∈ C, c = y ∨ z ∨ w}. It is known that, 
given a 3-SAT formula Φ for which GΦ is planar, decid-
ing whether there is a truth assignment that satisfies Φ
is NP-complete [8]. This problem is called Planar 3-SAT 
(type 2) (P3SAT2). We will assume, without loss of gener-
ality, that no literal is repeated within a clause (since, for 
instance, each clause of the form y ∨ y ∨ z may be replaced 
by two clauses x ∨ y ∨ z and ¬x ∨ y ∨ z, where x is an un-
used literal, maintaining planarity).

Our proof relies on a polynomial-time reduction from 
P3SAT2 to TAN. Consider an instance Φ of P3SAT2 and 
construct the following digraph DΦ from GΦ as follows 
(Fig. 2):

• For each x ∈ X , add vertices x1, x2, . . . , x5, u1, u2, . . . , u6

to V , and replace edge (x, ¬x) with arcs (x1, x), 
(x1, ¬x), (x2, x1), (x3, x2), (x4, x2), (x5, x2), (u1, x), 
(u2, x), (u3, x), (u4, ¬x), (u5, ¬x), (u6, ¬x).

• For each c = y ∨ z ∨ w ∈ C , add vertices c1, c2, . . . , c5

to V , and replace edges (c, y), (c, z) and (c, w)

with arcs (c, y), (c, z), (c, w), (c, c1), (c2, c1), (c3, c1), 
(c4, c1), (c5, c).

By construction and since GΦ is planar, G(DΦ) is planar 
and bipartite.

For the next two lemmas assume that DΦ has a topo-
logical additive 2-numbering f .

Lemma 1. f (x) + f (¬x) ≥ 3 for all x ∈ X.
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Proof. In first place, S(x2) < S(x1). Since x2 has 4 neigh-
bors, S(x2) ≥ 4 and then S(x1) ≥ 5. Since S(x1) = f (x) +
f (¬x) + f (x2) and f (x2) ≤ 2, we get f (x) + f (¬x) ≥ 3. �
Lemma 2. f (y) + f (z) + f (w) ≤ 5 for all c = y ∨ z ∨ w ∈ C.

Proof. In first place, S(c) < S(c1). Since c1 has 4 neigh-
bors, S(c1) ≤ 8. Hence, S(c) ≤ 7. Since S(c) = f (y) +
f (z) + f (w) + f (c1) + f (c5) and f (c1) + f (c5) ≥ 2, we get 
f (y) + f (z) + f (w) ≤ 5. �
Theorem 1. It is NP-complete to decide whether ηt(D) = 2
for a digraph D whose underlying graph is planar and bipartite.

Proof. We follow [1]. Let Φ be a 3-SAT formula such that 
GΦ is planar, and DΦ the digraph generated from GΦ

with the procedure given above. We only need to show 
that there exists a topological additive 2-numbering f of 
DΦ if, and only if there also exists a truth assignment 
Γ : X → {true, false} that satisfies Φ .

⇐) Let Γ be a truth assignment that satisfies Φ . Below, 
we propose a topological additive 2-numbering f of DΦ :

• For each x ∈ X , let f (x1) = f (x3) = f (x4) = f (x5) = 1
and f (x2) = f (u1) = f (u2) = f (u3) = f (u4) = f (u5) =
f (u6) = 2; if Γ (x) = true then let f (x) = 1 and 
f (¬x) = 2, otherwise, let f (x) = 2 and f (¬x) = 1. 
Then, S(x3) = S(x4) = S(x5) = 2, S(x2) = 4, S(x1) = 5, 
S(u1) = S(u2) = S(u3) ≤ 2, S(u4) = S(u5) = S(u6) ≤ 2
and for all x ∈ X ∪ ¬X we have S(x) ≥ 7. Moreover, 
S(x) ≥ 9 when (c, x) ∈ A.

• For each c ∈ C , let f (c) = f (c2) = f (c3) = f (c4) = 2
and f (c1) = f (c5) = 1. Then, S(c2) = S(c3) = S(c4) = 1, 
S(c5) = 2, S(c1) = 8 and 5 ≤ S(c) ≤ 7 (since Γ satis-
fies Φ).
⇒) Let f be a topological additive 2-numbering f
of DΦ . By Lemma 1, for each x ∈ X , the values f (x) and 
f (¬x) cannot be both 1. Hence, we can set Γ (x) = true
when f (x) = 1 and Γ (x) = false when f (¬x) = 1. In the 
case that f (x) = f (¬x) = 2, Γ (x) may be arbitrarily true
or false. Now, by Lemma 2, for every c = y ∨ z ∨ w , at least 
one of the three values f (y), f (z), f (w) must be 1. There-
fore, the assignment satisfies c and then Φ . �
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