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h i g h l i g h t s

• A new MPC suitable for closed-loop re-identification is proposed.
• A re-identification needs to be developed in a closed-loop fashion, since the process cannot be stopped.
• The main problem is the conflict between the control and identification objectives.
• A generalization, from punctual stability to (invariant) set stability, is done to avoid the conflict.
• The proposal could be potentially applied to real processes.
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a b s t r a c t

Themain problem of a closed-loop re-identification procedure is that, in general, the dynamic control and
identification objectives are conflicting. In fact, to perform a suitable identification, a persistent excitation
of the system is needed, while the control objective is to stabilize the system at a given equilibrium point.
However, a generalization of the concept of stability, from punctual stability to (invariant) set stability,
allows for a flexibility that can be used to avoid the conflict between these objectives. Taking into account
that an invariant target set includes not only a stationary component, but also a transient one, the system
could be excited without deteriorating the stability of the closed-loop. In this work, a MPC controller is
proposed that ensures the stability of invariant sets at the same time that a signal suitable for closed-
loop re-identification is generated. Several simulation results show the propose controller formulation
properties.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Model predictive control (MPC) is typically implemented as a
lower stage of a hierarchical control structure. The upper level
stages are devoted to compute, by means of a stationary optimiza-
tion, the targets that the dynamic control stage (MPC) should reach
to economically optimize the operation of the process. Since both
the dynamic and stationary optimizations are model-based opti-
mizations, a periodic updating of themodel parameters are desired
to reach meaningful optimums. In this context, a re-identification
procedure should be developed in a closed-loop fashion, since the
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process cannot be stopped each time an update is needed. As it
is known, the main problem of a closed-loop identification is that
the dynamic control objectives are incompatible with the identi-
fication objectives [1]. In fact, to perform a suitable identification,
a persistent excitation of the system modes is needed, while the
controller takes this excitation as disturbance and tries to reject
this disturbance to stabilize the system.

From a general point of view, the closed-loop identification
methods fall into the following main groups [2]. The direct ap-
proach ignores the feedback law and identifies the open-loop
system using measurements of the input and the output. The in-
direct approach identifies the closed-loop transfer function and
determines the open-loop parameters subtracting the controller
dynamic. To do that, the controller dynamics must be linear and
known. The joint input–output approach takes the input and out-
put jointly, as the output of a system produced by some extra in-
put or set-point signal. Since the last two methods need the exact
knowledge of a linear controller, they are not directly applicable
for closed-loops under constrained MPC controllers.
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Several strategies were developed to perform closed-loop re-
identification under MPC controllers: [3] proposed a controller
namedModel Predictive Control and Identification (MPCI) where a
persistent excitation condition is added by means of an additional
constraint in the optimization problem. This strategy, which was
explored later in [4], turns the MPC optimization problem non-
convex, and so, most of the well-known properties of the MPC
formulation cannot be established. [5] proposed a strategy that
manipulates the steady-state target optimization (in the hierarchi-
cal MPC control structure) in order to excite the system. In the con-
text of data-driven MPC formulations (i.e., MPC that are designed
to perform predictions directly from collected data), the subspace
identification method is exclusively used [6]. In [7–9] several ap-
proaches are presented, where a closed-loop re-identification is
needed to update the data for predictions. Though preliminary
studiesweremade according to the trade-off between stability and
excitation, no definitive results were presented.

In general, none of the reports cited in this section have shown
results regarding the system stability of the MPC while the system
is being re-identified. In thiswork, based on the concept of stability
of an invariant set (as a generalization of stability of a point), aMPC
controllerwith a extended domain of attraction is proposed, which
ensures stability at the same time that a persistent excitation
can be generated to perform a closed-loop re-identification. Some
preliminary results regarding the complete strategy presented in
this work were recently presented in [10].

Notation. Matrices In ∈ Rn×n and 0n,m ∈ Rn×m denote the iden-
tity matrix and the null matrix, respectively. A C-set is a convex
and compact set that contains the origin. A proper C-set is a C-
set that contains the origin as an interior point. Consider two sets
U ⊆ Rn and V ⊆ Rn, containing the origin and a real number λ.
TheMinkowski sumU⊕V ⊆ Rn is defined byU⊕V = {(u+v) :

u ∈ U, v ∈ V}; the set (U \ V) ⊆ Rn is defined as U \ V =

{u : u ∈ U ∧ u ∉ V}; and the setλU = {λu : u ∈ U} is a scaled set
ofU. |v|V is the distance from v toV . The boundary of a setU is de-
fined as ∂U. Given a continuous function Ψ : Rn

→ R, and γ ≥ 0,
the level set N [Ψ , γ ] is defined by N [Ψ , γ ] = {x : Ψ (x) ≤ γ }.
Im:n denotes the nonnegative integers from m to n. Given x ∈ Rn

and y ∈ Rn, ∥x − y∥2
M = (x − y)TM(x − y), with M ∈ Rn×n.

2. Problem statement and preliminaries

Consider a systemdescribed by a linear time-invariant discrete-
time model

x+
= Ax + Bu, y = Cx,

where x ∈ Rn is the system state, x+ is the successor state, u ∈ Rm

is the current control, and y ∈ Rp is the system output. The state,
the control input and the output at discrete-time instant k are de-
noted as x(k), u(k) and y(k), respectively. The system is subject to
hard constraints on state and input, (x(k), u(k)) ∈ Z , (X×U) ⊂

Rn+m for all k ≥ 0, where X ⊂ Rn and U ⊂ Rm. Furthermore, the
following assumption holds:

Assumption 1. Matrix A has all its eigenvalues strictly inside the
unit circle, the pair (A, B) is controllable and the state (correspond-
ing to the true plant) is measured at each discrete-time instant.
Furthermore, the set X is convex and closed, the set U is convex
and compact and both contain the origin in their interior. For sim-
plicity, AX ⊆ λX, with λ ∈ [0, 1).

Previous to the controller formulation, some necessary defini-
tions helpful to generalize the concepts of equilibrium and invari-
ance are introduced. To simplify the notation, we denote system
x+
= Ax + Bu, (x, u) ∈ Z as Non-autonomous system (Nsys) and

system x+
= Ax + Bκ(x), (x, κ(x)) ∈ Z, where κ(x) is a state

feedback, as the Controlled system (Csys). Accordingly, for a given
sequence of control inputs, u = {u(0), . . . , u(j − 1)} and a given
initial state x(0) = x, the solution ofNsys will be denoted as: x(j) =

φ(j; x,u) = Ajx(0) +
j−1

i=0 A
j−i−1Bu(i), j ∈ I≥1. Similarly, for a

given initial state x(0) = x, the solution of Csys will be denoted as:
x(j) = φκ(j; x) = Ajx(0) +

j−1
i=0 A

j−i−1Bκx(i), j ∈ I≥1, for j ∈ I≥1.

Definition 1 (Control Equilibrium Set—CES). A set Ω ⊆ X is a con-
trol equilibrium set for Nsys, if for every point x ∈ Ω the condition
x+

= x holds for some u ∈ U.

The maximal CES, Xss, is given by Xss = (GBU) ∩ X, where
G = (In − A)−1. In the case of controlled systems, Csys, we simply
say that a control equilibrium setΩ is an equilibrium set—(ES), with
u = κ(x). The proper generalization of the concept of equilibrium
point is not the concept of equilibrium set, as a mere aggregation
of steady-state points, but the concept of invariant set (associated
to an equilibrium set), in the sense that both the equilibrium point
and the invariant set are geometric entities such that, if the system
reaches them, it remains in them indefinitely [11–13]:

Definition 2 (λ-Control Invariant Set—λ-CIS). A proper C-set Ω ⊆

X is λ-control invariant, with λ ∈ [0, 1], for Nsys, if x ∈ Ω implies
x+

∈ λΩ , for some u ∈ U.

Again, in the case of controlled systems,Csys, a λ-Control Invari-
ant set is simply a λ-Invariant Set—(λ-IS), with u = κ(x). Further-
more, if λ = 1, the sets are simply Invariant sets, and if λ ∈ [0, 1),
the sets are known as Contractive sets. The concept of invariant set,
as a generalization of an equilibriumpoint,makes possible the gen-
eralization of the concept of attractivity of an equilibrium point.
Then, we can define the attractivity of an IS set as follows [14]:

Definition 3 (Local Attractivity of An IS Set). The IS set Ω ⊂ X
is locally attractive for Csys if for each x in a vicinity of Ω (that
we call the domain of attraction), it follows that |φκ(j; x)|Ω →

0, φκ(j; x) ∈ X, κ(φκ(j; x)) ∈ U as j → ∞.

3. Target invariant set for identification

The objective of this section is to propose a set (in the state
space) that is invariant under the excitation procedure necessary
to perform a suitable identification and, at the same time, can be
used as the attractive target set (generalized equilibrium) by an
MPC controller. As known, to estimate a model frommeasured in-
put and output data, each (controllable) mode of the system must
be excited. To do that, the excitation input signal must contain
enough variability. This property is generally indicated by the no-
tion of persistence of excitation [15]. The persistent excitation input
sequencesmight be of several forms, going from a Pseudo-Random
Binary Signal (PRBS) to a Filtered PseudoGaussianWhiteNoise Sig-
nal. A recent formulation proposed a filtered Gaussian inputs sig-
nal specifically designed for MPC [16]. Independently of the form,
thepersistent excitation sequences have twomainproperties: they
are bounded, belonging to a compact set smaller thanU, andmore
subtle, they have a persistent-variability behavior. Regarding the
first property, we define:

Definition 4 (Excitation Input Set, EIS).An input proper C-setUt
⊂

U ⊂ Rm, with enough size to excite the system will be denoted as
the excitation input set.

The set Ut defines a class of sequences u = {u(0), . . . , u(Tid −

1)} – denoted by CUt – such that u(i) ∈ Ut for i ∈ I0:Tid−1,
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where Tid is the length of the data necessary to perform a suit-
able identification. Now, regarding the second property of persis-
tent excitation, we define the class of all feasible sequences that
fulfill the persistent-variability condition (see [17,3], for the ex-
plicit expression of this condition). This class – that we call the
persistent excitation class, Cpe – is made by sequences of the form
upe =


upe(0), . . . , upe(Tid − 1)


, upe(i) ∈ Ut , i ∈ I0:Tid−1. Notice

that, following the latter classification,Cpe is inCUt , but there is an
entire class of input sequences that are in CUt and not in Cpe. For
instance, a constant sequence of Tid elements, ū = {ū, . . . , ū}, with
ū ∈ Ut , belongs to CUt but does not belong to Cpe.

The solution of Nsys for a particular sequence upe in Cpe, and an
initial state x(0) = x, will be denoted as x(j) = φ(j; x,upe), j ∈ I≥1
(persistently excited system). Notice that once a particular input
sequence is selected, then the systemevolves autonomously, in the
sense that no manipulated controls modify the system evolution.
We can now define a set in the state space that is invariant to the
effect of any persistent excitation sequence.

Definition 5 (λ-Invariant Set for Persistent Excitation). A proper C-
set Xpe

⊆ X is a λ-invariant set for persistent excitation, with
λ ∈ [0, 1], for Nsys, if x ∈ Xpe implies φ(j; x,upe) ∈ λXpe, for
j ∈ I1:Tid , for all upe ∈ Cpe.

The set Xpe is well defined and it is what we need to formulate
the MPC for re-identification. However, Xpe is not easy to char-
acterize, given that the Persistent Excitation condition is not re-
lated to a spatial condition, but to a dynamic requirement. Next, an
approximation of Xpe that is useful for MPC requirements is pro-
posed.

3.1. A MPC target set that is an approximation of Xpe

Instead of associating an invariant set, Xpe, to the class Cpe, we
could relax the definition and associate an invariant set to the class
CUt , which contains Cpe. So, the following definition arises:

Definition 6 (λ-Invariant Set for Identification, λ-ISI). A proper C-
set Xt

⊆ X is a λ-invariant set for identification, with λ ∈ [0, 1],
for Nsys, if x ∈ Xt implies φ(j; x,u) ∈ λXt , for j ∈ I1:Tid , for all
u ∈ CUt .

A λ-ISI set with λ = 1 is simply an ISI set. Since by definition
every input sequence of Cpe is in CUt , it follows that Xpe

⊆ Xt ,
which means that Xt is an outer ‘‘invariant’’ approximation of
Xpe. Clearly, an ISI set definition is a robust invariant set definition
adapted to identification requirements. So, it is relatively easy to
compute, andwe can define the smallest ISI set, for a given system,
which is given by theminimal ISI set [13]: Xt

=


∞

i=0(A
iBUt).

Remark 1. Although the set Xt could be easy to compute (for
polytopic constraint sets), it could be much bigger than Xpe. For
instance, since Persistent Excitation signals cannot remain constant
at a boundary value of Ut , then the boundary regions of the set Xt

(the points far from the origin) that corresponds to the equilibrium
subspace Xss are not in Xpe. The methodical reduction of the size
of set Xt (and so, of the conservatism of the formulation) to obtain
accurate approaches ofXpe could be done in severalways, using for
instance the concepts of probabilistic invariant sets [18] and other
deterministic concepts as the Pontryagin difference, etc.

Next, some properties regarding the ISI sets are stated.

Property 1. A set Xt is aλ-ISI set for Nsys if and only if AXt
⊕BUt

⊆

λXt .

Property 2. Consider a λ-ISI set Xt , with λ ∈ [0, 1], for Nsys, and a
CES set, Xt

ss = GBUt
⊆ X, for the same system. Also consider a λ-IS
set, Ω ⊂ X, with λ ∈ [0, 1), for the autonomous system x+
= Ax,

x ∈ X. Then:
(1) Xt is also a λ-invariant set for persistent excitation, Xpe

( contractivity of Xt under persistent excitation).
(2) For each x in a vicinity of Xt , |φ(j; x,upe)|Xt → 0, φ(j;

x,upe) ∈ X, as j → ∞ ( attractivity of Xt under persistent
excitation).

(3)Xt
ss ⊆ Xt and furthermore, if m < n, Xt

ss ⊂ Xt (Xt includes
stationary and transient states).

(4) Provided that (Xt
⊕ Ω) ⊂ X, there exists a real δ ∈ (λ, 1),

such that if x ∈ (Xt
⊕ Ω), then φ(j; x,u) ∈ δ(Xt

⊕ Ω) for all j ∈

I≥1 and for all upe ∈ Cpe ( contractivity of Xt
⊕ Ω under persistent

excitation).
(5) If δXt

⊂ X, for a constant δ > 1, δXt is also an λ-ISI set
( contractivity of δXt under persistent excitation).

The proofs of these properties are omitted for brevity.

3.2. Target set Xt for model mismatch

It should be noticed that the ISI set Xt , which will be a parame-
ter of the proposed MPC optimization cost, depends on the model.
Since the excitation scenario is precisely given when we suspect
that the currentmodel is no longer accurate, a discussion about the
effect of the model mismatch on the computation of Xt is needed.
Two uncertainty descriptions – that are only particular descrip-
tions – were selected to present robust ISI sets.

Parametric uncertainty
Consider a system given by

x+
= A(w)x + B(w)u, y = C(w)x, w ∈ W ⊆ R, (1)

where A(w) and B(w) are affine functions of w, i.e., A(w) = A +

wĀ, B(w) = B+ wB̄with w belonging to the proper C-set W ⊂ R.
Furthermore, assume that the Nominal model is given by x+

=

A(wN = 0)x + B(wN = 0)u = Ax + Bu, and the unknown Real
model is given by x+

= A(wR)x + B(wR)u, for some wR ∈ W . In
this context, there is a minimal ISI set Xt(w) associated to each
particular model. Now, consider the following theorem:

Theorem 1. Consider a λ-ISI set Xt(w = 0), λ ∈ [0, 1), for x+
=

Ax + Bu, (x, u) ∈ Z. Then, there exists a non-empty set W ⊂ R
for which the set Xt(w = 0) is an ISI set for x+

= A(w)x +

B(w)u, (x, u) ∈ Z, for all w ∈ W .

Proof. Consider

A(w)Xt
⊕ B(w)Ut

= (A + wĀ)Xt
⊕ (B + wB̄)Ut

⊆ (AXt
⊕ BUt) ⊕ w(ĀXt

⊕ B̄Ut)

⊆ λXt
⊕ wΘ

whereΘ , ĀXt
⊕B̄Ut . The first inclusion follows fromMinkowski

sum properties, while the second one follows from the fact that
Xt(w = 0) is a λ-ISI set, λ ∈ [0, 1), for the Nominal model. Now,
since Xt and Ut are proper C-sets, Θ is also a proper C-set. Then,
a value w̄ > 0 does exists such that w̄Θ ⊆ (1 − λ)Xt . Therefore,
we have

A(w)Xt
⊕ B(w)Ut

⊆ λXt
⊕ w̄Θ ⊆ λXt

⊕ (1 − λ)Xt
= Xt .

Then, the non-empty set W , [0, w̄] is such that Xt is an ISI set
for x+

= A(w)x + B(w)u, (x, u) ∈ Z, for all w ∈ W . Furthermore,
assuming that Θ is 0-symmetric, a similar procedure

can be followed for −w̄. In this way, the (non-empty) set W is
given now by W , [−w̄, w̄]. �

Next, based on the result in Theorem 1, a practical form to com-
pute the robust ISI set is proposed.
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Remark 2 (Practical Computation of the Robust ISI Set). Prop-
erty 2(4) provides away to obtain an ISI set like the one required by
the hypothesis of Theorem 1. Consider a λ-IS setΩλ, λ ∈ [0, 1), for
the autonomous system x+

= A(w = 0)x = Ax, x ∈ X, and take
into account that ξ Ωλ, ξ > 0, is also a (contractive) λ-IS set for the
same system. Then, the set Xt

= Xt(ξ , λ) , Xt(w = 0) ⊕ ξ Ωλ,
where Xt(w = 0) is the minimal ISI set for the Nominal system,
is a δ-ISI set, with δ ∈ (λ, 1), for the same Nominal system. Now,
for given sets W , [−w̄, w̄] and Ut , it is desirable to obtain the
smallest robust ISI set Xt(ξ , λ), which can be done by solving the
following problem:

(ξ̄ , λ̄) = min
ξ,λ

{(ξ , λ)|(AXt(ξ , λ) ⊕ BUt)

⊕ w̄(ĀXt(ξ , λ) ⊕ B̄Ut) ⊆ Xt(ξ , λ)}. (2)

The smallest robust ISI set is then given by Xt
= Xt(ξ̄ , λ̄) ,

Xt(w = 0) ⊕ ξ̄Ωλ̄.

Notice that the model described in (1) is not a mere scaling of
matrices A and B, since matrices Ā and B̄ are in general different
from the nominal matrices. So, notice that a general set X̃ contain-
ing all possible minimal invariant sets for the uncertainty system
is not useful for a robust formulation of the MPC, since this set is
not necessarily an ISI set for each model of the family.

Additive disturbance uncertainty
In this case we have a model of the form x+

= Ax + Bu + Dd,
where D is the disturbancematrix, d ∈ D is the disturbance vector
that describes the uncertainty and D is a proper C-set. In such a
case, by selecting a λ-ISI set Xt , for the extended system

x+
= Ax +


B D

 
u
d


,


u
d


∈ Ut

× D,

we obtain a λ-ISI set for the uncertain system x+
= Ax+ Bu+ Dd,

(x, u) ∈ Z, for all d ∈ D . This kind of disturbance can include out-
put noise (i.e., identification noise), measurement noise, and other
kinds of disturbances that cannot be described by the parametric
uncertainty.

The two robust ISI sets presented in this subsection are ISI sets
for uncertain systems. However, it should be noted that an explicit
robust formulation of the proposed MPC strategy, which ensures
the feasible robust convergence, is not in the scope of the present
approach and is delayed for future works.

4. MPC suitable for re-identification (main result)

The objective of the proposed controller is to avoid the conflicts
between excitation and control objectives: when the system is
outside a target set, the target set is a control target; when the
system is inside, the target set is a safe identification set, that is
considered as a generalized equilibrium by the controller.

The key concept to achieve such anMPC controller is to propose
anMPC cost that (1) penalizes the distance to the target set, and (2)
is null at every point of the target set, in the same way a standard
MPC cost is null at the desired punctual target. This means that the
controller does not make a difference between any two points of
the target, or, in other words, the controller leaves the system in
an open loop when it enters the target set. We will start this class
ofMPC controllers with a controller for tracking control equilibrium
sets (CES), which is known as zone control MPC controllers.

4.1. MPC for tracking control equilibrium sets (CES)

Consider the EIS set Ut
⊂ U, and the associated CES set Xt

ss =

GBUt
⊆ X. This controller is formulated following the strategy
proposed in [19,20], usually known as the zone control. The cost
function is given by

V CES
N (x, Xt

ss;u, uss, xss) =

N−1
j=0

(∥x(j) − xss∥2
Q

+ ∥u(j) − uss∥
2
R) + γ |xss|Xt

ss
,

where Q > 0 and R ≥ 0 are penalization matrices, γ > 0 is a
real number, |x|Xt

ss
is the distance function (from x to Xt

ss) and N is
the control horizon. Furthermore, xss = GBuss is a free stationary
state in Xss = GBU. For any current state x ∈ X, the optimization
problem PCES

N (x, Xt
ss) to be solved is given by:

Problem PCES
N (x, Xt

ss)

min
u,uss,xss

V CES
N (x, Xt

ss;u, uss, xss)

s.t.
x(0) = x,
x(j + 1) = Ax(j) + Bu(j), j ∈ I0:N−1
x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1
u(j) = uss, j ∈ IN−1:∞
xss = GBuss.

In this optimization problem, x and Xt
ss are the parameters,

while the sequence u = {u(0), . . . , u(N − 1)} and xss, uss, are
the optimization variables. Notice that xss, uss are only forced to
represent an equilibrium point but are free to assume any feasible
equilibrium value. The control law, derived from the application of
a receding horizon policy, is given by κN(x, Xt

ss) = u0(0; x), where
u0(0; x) is the first element of the solution sequence u0(x). Now
the following theorem can be established:

Theorem 2. Consider that Assumption 1 holds, and consider a given
CES Xt

ss = GBUt
⊆ X, with an associated input set Ut . Then, Xt

ss is
an ES for the closed-loop system x(j) = φκN (j; x, Xt

ss), x(0) = x, j ∈

I≥1. Furthermore, Xt
ss is locally attractive for the same closed-loop

system, with a domain of attraction given by X.

Proof. The proof can be seen in [19,20]. �

Notice that this formulation comes directly from the output
tracking problem, if we consider output zones of the form CXt

ss
(being a particular case the set-point tracking, if set Xt

ss is a single
point). The idea to steer the system to an equilibrium set (with
independence of the single value of the equilibriumpoint) suggests
the possibility to extend this concept to invariant sets, which also
include transient states.

4.2. MPC for tracking invariant sets for identification (ISI)

Now, a generalization of theMPC controller for tracking CES sets
is presented. The idea is to track and reach sets – i.e., ISI sets –
that not only include stationary states, but also transient states,
which is necessary to perform a proper identification. We start
with a quite general formulation, that is particularized in the next
subsections to different applicable cases. The nominal case will be
considered, although the extension to the use of robust ISI sets is
direct. Consider an ISI setXt forNsys, and the associated EIS setUt .
Also consider the following definition

Definition 7 (Generalized Distance Stage Cost Function). A general-
ized distance function dXt (x), from x to the ISI set Xt , is a function
with the following properties: (1) dXt (x) is convex and continuous
for all x ∈ X, (2) dXt (x) = 0 for all x ∈ Xt , (3) dXt (x) > 0 for
all x ∈ X \ Xt , (4) dXt (x) is a Lyapunov function for the excited
system x(j) = φ(j; x,upe), x(0) = x, j ∈ I≥1, for all x ∈ X \ Xt .
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The proposed controller cost function will be given by:

V ISI
N (x, Xt

;u) =

N−1
j=0

(αdXt (x(j)) + βdUt (u(j)))

+ dterXt (x(N)), (3)

where α and β are positive real numbers and dter
Xt (·) is a terminal

cost function defined on Xter , and Xter
⊆ Xt is the terminal set

where the terminal state x(N) is forced to belong. As usual in MPC
design, we need to select a local control action (defined by some
conditions) that will act for predictions inside the terminal set. At
this moment we simply define a fixed control action û = û(x) ∈

Ut . Then, associated to this local control action, the terminal set
and terminal cost must fulfill the following conditions:

Xter is IS for x+
= Ax + Bû, x ∈ X (4)

dterXt (Ax + Bû) − dterXt (x) ≤ −αdXt (x), ∀x ∈ Xter (5)

dterXt (x) = 0, ∀x ∈ Xt . (6)

Different forms for the local control action, the terminal cost and
terminal set will be presented in Section 5.3. For any current state
in the set of states that can be feasibly steered toXter inN steps (the
N-step controllable set to Xter ), x ∈ XN(Xter), the optimization
problem P ISI

N (x, Xt) to be solved is given by:

Problem P ISI
N (x, Xt)

min
u

V ISI
N (x, Xt

;u)

s.t.
x(0) = x,
x(j + 1) = Ax(j) + Bu(j), j ∈ I0:N−1
x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1
x(N) ∈ Xter .

Themaindifferences between this problemandproblem PCES
N (x,

Xt
ss) are: (1) the target set is now an ISI set, which includes tran-

sient states (i.e., the states can be moved in a certain region with
null control cost and without control actions), and (2) the gener-
alized distance functions are now used to penalize the state and
input trajectory in the MPC cost. The controller derived from this
formulation ensures the convergence of the closed-loop system to
the ISI set Xt , and once the system is there, it only ensures that
it will remain indefinitely in it. The next theorems formalize these
properties:

Theorem 3. Let Assumption 1 hold, and consider an ISI set Xt
⊆ X,

with an associated EIS set Ut . Then, Xt is an IS set for the closed-loop
system x(j) = φκN (j; x, Xt), x(0) = x, j ∈ I≥1.

Proof. Consider a state x ∈ Xt . Then, by definition of ISI sets, any
input sequence û = {u(0), . . . , u(N − 1)}, with u(j) ∈ Ut , for
j ∈ I0:N−1, produces a sequence of states that remain in Xt . So,
considering the definition of the generalized distance function,
the input sequence is a trivial optimal solution of P ISI

N (x, Xt), with
V ISI
N (x, Xt

; û) = 0. On the other hand, any input sequence û with
u(j) ∉ Ut , for some j ∈ I0:N−1, produces a cost V ISI

N (x, Xt
; û) ≥ 0.

This means that necessarily u0(0; x) ∈ Ut . This proves that the
MPC cost V ISI

N (x, Xt
;u) is null along every trajectory starting in an

initial state inside Xt , and furthermore, u0(0; x) is a control input
inside Ut . From this fact, it directly follows that Xt is an IS set for
the MPC closed-loop system. �

Theorem 4. Let Assumption 1 hold, and consider an ISI set Xt
⊆ X,

with an associated EIS set Ut . Then, Xt is locally attractive for the
closed-loop system x(j) = φκN (j; x, Xt), x(0) = x, j ∈ I≥1, with a
domain of attraction given by XN(Xter).
Proof. Consider a state x ∈ XN(Xter) \ Xt , at a given time k. Con-
sider also the solution defined for this state,u0(x) = {u0(0; x), . . . ,
u0(N − 1; x)}, and the corresponding state sequence x0(x) =
x0(0; x), . . . , x0(N; x)


, with x(N; x)0 ∈ Xter . The cost function

of Problem P ISI
N (x, Xt) corresponding to u0(x) is given by

V ISI
N

0
(x, Xt) = V ISI

N (x, Xt
;u0(x))

=

N−1
j=0

(αdXt (x0(j; x)) + βdUt (u0(j; x)))

+ dterXt (x0(N; x)).

Now, consider the successor state x+
= Ax+Bu0(0; x), at time k+1,

which is obtained by applying the control law κN(x, Xt) =

u0(0; x), and define the following sequence: û = {u0(1; x), . . . , u0

(N − 1; x), û}, where û is the local control action. Since no model
mismatch is considered for predictions, the successor states x+ is
equal to x0(1; x). This solution has an associated state sequence
x̂ = {x0(1; x), . . . , x0(N; x), x̂}, where x̂ = Ax0(N; x) + Bû. Since
x0(N; x) ∈ Xter and Xter is an IS set for the system x+

= Ax +

Bû, x ∈ X, then x̂ ∈ Xter . Therefore, sequence û is a feasible so-
lution for problem P ISI

N (x, Xt) at time k + 1. The cost function of
Problem P ISI

N (x+, Xt), at k + 1, for the sequence û, is given by

V ISI
N (x+, Xt

; û) =

N−1
j=0

(αdXt (x(j; x+))

+ βdUt (u(j; x+))) + dterXt (x(N; x+)),

where x+
= x0(1; x). So, this cost can be written as a function of x,

V ISI
N (x+, Xt

; û) =

N−1
j=1

(αdXt (x0(j; x)) + βdUt (u0(j; x)))

+ (αdXt (x0(N; x)) + βdUt (û)) + dterXt (x̂).

If we compare now the proposed feasible cost at time k + 1 with
the optimal one at time k, we have:

V ISI
N (x+, Xt

; û) − V ISI
N

0
(x, Xt)

= −αdXt (x0(0; x)) − βdUt (u0(0; x))
+ (αdXt (x0(N; x)) + βdUt (û)) + dterXt (x̂) − dterXt (x0(N; x)).

Since û ∈ Ut by definition, dUt (û) = 0. Furthermore, since x(N;

x)0 ∈ Xter and x̂ ∈ Xter , then—by conditions (5), dter
Xt (x̂) − dter

Xt (x
(N; x)0) ≤ −αdXt (x(N; x)0). Therefore,

V ISI
N (x+, Xt

; û) − V ISI
N

0
(x, Xt)

= −αdXt (x0(0; x)) − βdUt (u0(0; x))
+ αdXt (x0(N; x)) − αdXt (x0(N; x))

= −αdXt (x0(0; x)) − βdUt (u0(0; x)).

Now, by optimality of the solution to Problem P ISI
N (x+, Xt), at k+1,

we have V ISI
N

0
(x+, Xt) ≤ V ISI

N (x+, Xt
; û), and so

V ISI
N

0
(x+, Xt) − V ISI

N
0
(x, Xt) ≤ −αdXt (x0(0; x))

− βdUt (u0(0; x)). (7)

Since the generalized distance is a positive definite function, (7)
implies that x0(0; x) tends to Xt and u0(0; x) tends to Ut as k →

∞, and so, the system converges to the desired ISI set. �

Theorems 3 and 4 suggest that an extra requirement to the in-
put, such as a persistent excitation requirement, could be included
in the proposed cost function. In fact, what is shown is that, when
the system is in Xt , any bounded external input disturbance that
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does not bring the input outside Ut will not produce any effect on
the controller.

4.3. Including the exciting mode

Given the properties of the latter formulation, several strategies
could be followed to excite the system under control, when the
state is in Xt , and furthermore, to update the model parameters
by means of an online estimation. To do the first, we could add an
exciting constraint, as the one used in [21,3], or even a penalization
term into the optimization cost, as the one proposed in [1]. To
update the model parameters, a simple recursive least-square
(RLS) algorithm [15] is recommended for practical applications.

However, since the focus of the present work is mainly in the
separation of the objectives in theMPC formulation, wewill simply
consider a precomputed sequence upe in Cpe (which is also in CUt )
as desired input trajectory. On the other side, no parameter update
methods will be discussed. The proposed persistent excitation MPC
cost function is as follows:

V EXC
N (x, Xt ,upe, k;u) = (1 − ρ(x))V ISI

N (x, Xt
;u)

+ ρ(x)∥u(0) − upe(k)∥,
where ρ(x) = 1 if x ∈ Xt , and ρ(x) = 0, otherwise. The proposed
strategy is a switching control strategy, in which the switching
is operated by function ρ(x). Notice that the state x correspond-
ing to the true plant is assumed to be known, and so, the switch-
ing function operates on true state measurements. For any initial
state x in XN(Xter), at a given time step k, the optimization prob-
lem PEXC

N (x, Xt ,upe, k), to be solved at each time instant k, is given
by:
Problem PEXC

N (x, Xt ,upe, k)

min
u

V EXC
N (x, Xt ,upe, k;u)

s.t.
x(0) = x,
x(j + 1) = Ax(j) + Bu(j), j ∈ I0:N−1
x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1
x(N) ∈ Xter .

Notice that the function ρ(x) is a discontinuous function nec-
essary to cancel the persistent excitation in case that an external
disturbance takes the system away from the invariant set Xt . The
following theorem formalizes the properties of the proposed MPC
controller:

Theorem 5. Let Assumption 1 hold, and consider an ISI set Xt and
a persistent excitation sequence upe in Cpe. Then, for any initial state
x ∈ Xt , the system controlled by the receding horizon MPC control
law κN(x, Xt) = u0(0; x), will be persistently excited inside Xt , i.e.,
x(j) = φκN (j; x, Xt ,upe, j) = φ(j; x,upe), x(0) = x, j ∈ I≥1.
Furthermore, for any initial state x ∈ XN(Xter) \ Xt , the closed-loop
converges to Xt .

Proof. (i) Let us consider an initial state x ∈ XN(Xt) \ Xt . Then,
ρ(x) = 0, and so Problem PEXC

N (x, Xt ,upe, k) is equivalent to
Problem P ISI

N (x, Xt). Furthermore, for Theorem 4, the closed-loop
system will admissibly converge to Xt .

(ii) Consider now an initial state x ∈ Xt . Then ρ(x) = 1, and
the persistent excitation penalization is activated. Furthermore,
(1 − ρ(x))V ISI

N (x, Xt
;u) = 0. This means that the cost of

Problem PEXC
N (x, Xt ,upe, k) will be:

V EXC
N (x, Xt ,upe, k;u) = ∥u(0) − upe(k)∥.

Now, since Xt is an ISI set and the persistent excitation sequence
upe is in Ut , then, the system will remain inside Xt . So, the cost
can be admissibly canceled if and only if u0(0; x) = upe(k) for each
time k. This guarantees the persistent excitation of the open-loop
system. �
Remark 3. Another (practical) alternative to implement the strat-
egy is by defining a second λ-ISI set Xtt

= δXt , δ > 1. Then, if
the state is in Xtt

\ Xt , the system keeps in open-loop (the control
action are forced to be null). The invariant condition of Xtt (Prop-
erty 2(5)) ensures that once the state enter Xtt it will keep in Xtt ,
and furthermore, the attractivity condition of Xt (Property 2(2))
ensures that the state will reach Xt .

4.4. Operation of the loop

Based on the discussion in Sections 4.1–4.3, the MPC con-
troller operationwill be presented.We have two operationmodes:
(1) control operation mode: in this mode no re-identification is
needed, and theMPC for tracking the CES set is implemented (Prob-
lem PCES

N (x, Xt
ss)); and (2) re-identification operation mode: this

mode is activated onlywhen there is a suspect that themodel is not
working properly, and a re-identification is needed. In this mode
the persistent excitation MPC is used (Problem PEXC

N (x, Xt ,upe, k)).

Remark 4. Based on Theorem 5, the re-identification operation
mode has in addition two spatially separatedmodes.When the sys-
tem is outside Xt , it is positively steered to it by the controller;
once it is inside Xt , it cannot be steered outside this set by the
controller, even in an uncertainty scenario as the one described in
Section 3.2. If an unknownmoderate disturbance enters the system
and takes the state outsideXt—and provided that the current state
x is measured or well estimated, then the controller will automati-
cally switch, by means of function ρ(x), to only control the system
to Xt . On the other hand, if a strong disturbance scenario arises, a
re-identification experiment has no sense, and it is recommended
to pass to the Control operation mode.

5. Candidates for generalized distance functions and the termi-
nal costs

Provided that the proposed MPC formulations are strongly
based on the concept of generalized distance functions, two possible
candidates that fulfills Definition 7will be presented in this section.

5.1. Distance from a point to a set

Definition 8 (Distance from a Point to a Set). Given an ISI set Xt
⊂

X, the distance from x to Xt is defined as

|x|Xt , min
x̂∈Xt

∥x − x̂∥2
M , M > 0.

Function |x|Xt has the following properties:

Property 3. (1) |x|Xt is convex and continuous for all x ∈ X,
(2) |x|Xt = 0 for all x ∈ Xt , (3) |x|Xt > 0 for all x ∈ X \ Xt ,
(4) N


|x|Xt , γ


= Xt

⊕ Bγ , for all x ∈ X \ Xt , where Bγ , {x ∈

X : ∥x∥2
M ≤ γ }, γ > 0.

Property 4. Let Assumption 1 hold, and suppose that Xt
⊆ X is an

ISI set for Nsys. Furthermore, consider that matrix M > 0, associated
to the distance function, is such that ATMA − M = −Q for some
Q > 0. Then, the distance function |x|Xt is a Lyapunov function for
the excited system x(j) = φ(j; x,upe), x(0) = x, j ∈ I≥1, for all
x ∈ X \ Xt .

Proof. First, notice that the set Bγ defined in Property 3(4) is a
λ-IS for the system x+

= Ax, x ∈ X, with λ ∈ [0, 1), provided
that matrixM > 0 is such that ATMA − M = −Q for some Q > 0.
Therefore, from Property 2(4), and Property 3(4), it follows that the
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Fig. 1. Descriptive plot of the Modified Minkowski Functional and the Distance Function associated to a given set.
level sets N

|x|Xt , γ


= Xt

⊕ Bγ , with γ > 0, are δ-IS sets, δ ∈

(λ, 1), for the excited system x(j) = φ(j; x,upe), x(0) = x, j ∈ I≥1,
for all x ∈ X \Xt (we assume for simplicity that (Xt

⊕Bγ ) ⊂ X).
Consider now a state x ∈ ∂(Xt

⊕ Bγ ), for some γ > 0, which
implies that |x|Xt = γ . Then,

x+
= (Ax + Bu) ∈ δ(Xt

⊕ Bγ ), ∀u ∈ Ut .

This implies that
x+


Xt ≤ δγ , and so,

x+

Xt ≤ δ |x|Xt , with

δ ∈ (λ, 1), which means that |x|Xt is a Lyapunov function for the
aforementioned system, for all x ∈ X \ Xt . �

5.2. Modified Minkowski functional

The Minkowski functional [11] is defined as:

Definition 9. Given an ISI set Xt
⊂ X, the Minkowski functional

ΨXt associated to Xt is defined as

ΨXt (x) = inf{µ ≥ 0 : x ∈ µXt
}.

The Minkowski functional has a number of useful proper-
ties [11]. It also was already used as a part of MPC costs in works
as [22,23]. However, the Minkowski functional is not null inside
the set to which it is associated. To achieve this property, we need
to introduce themodified Minkowski functional.

Definition 10 (Modified Minkowski Functional). Given a convex set
Xt

⊂ X that includes the origin as an interior point, and a λ-IS,
Ω , with λ ∈ [0, 1), for the system x+

= Ax, x ∈ X, the modified
Minkowski functional is defined as

Ψ̂Xt (x) , inf{µ ≥ 0 : x ∈ Xt
⊕ µΩ}.

Function Ψ̂Xt (x) has the following properties:
Property 5. (1) Ψ̂Xt (x) is convex and continuous for all x ∈ X,
(2) Ψ̂Xt (x) = 0 for all x ∈ Xt , (3) Ψ̂Xt (x) > 0 for all x ∈ X \ Xt ,
(4) N


Ψ̂Xt (x), γ


= Xt

⊕ γΩ , for all x ∈ X \ Xt , γ > 0.

Property 6. Let Assumption 1 hold, and suppose that Xt
⊆ X is an

ISI set for Nsys. Then, Ψ̂Xt (x) is a Lyapunov function for the excited
system x(j) = φ(j; x,upe), x(0) = x, j ∈ I≥1, for all x ∈ X \ Xt .

Proof. This proof follows a similar procedure to the one of
Property 4, taking into account Property 5(4), of the Modified
Minkowski functional, and the λ-IS condition of Ω . �

Fig. 1 shows a schematic plot of a Modified Minkowski
functional and a Distance function – together to the level sets –
associated to an arbitrary polytopic set. Notice that inside the set
the functions are null.

5.3. Several choices for the local control action and the terminal cost
and set

The easiest choice for the local control action, û, is û , 0 ∈ Ut

(this choice is possible since A is stable). Then, the terminal set and
terminal cost are Xter , X and dter

Xt (x) , δdXt (x(j)) ≥


∞

j=0 α

dXt (x(j)), x(0) = x, respectively. Since X is an IS set for x+
= Ax,

by definition, Xter fulfills equality (4). On the other hand, since
dXt (x) is a Lyapunov function for the system x(j) = φ(j; x,upe),
x(0) = x, j ∈ I1:N−2, for x ∈ X \ Xt (Properties 4 and 6), and
u(j) = 0 ∈ Ut , for j ∈ IN−1:∞, it is possible to select a (large
enough) real number δ > 0 such that dter

Xt (x) fulfills inequality (5)
for all x ∈ X. Equality (6) is fulfilled trivially. The drawback of this
choice is that the proposedMPC solution could be far fromoptimal-
ity, since no control action is implemented for predictions beyond
the horizon N .

The other choice for the local control action is to simply select
any fixed û ∈ Ut . Then, two options could be considered for the
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Fig. 2. State evolution (left) outside and (right) inside Xt .
terminal set and terminal cost. The first option is Xter , Xt and
dter

Xt (x) ≡ 0 (no terminal cost). In this case, Xter fulfills equality
(4) and dter

Xt (x) fulfills inequality (5) and equality (6) trivially. One
drawback of this selection is that the domain of attraction of the
proposed MPC is given by XN(Xt), which can be considerably
small. A second option is Xter , Xt

⊕ δX ⊆ X and dter
Xt (x) ≥

∞

j=0 αdXt (x(j)), x(0) = x. In this case, the real number δ < 0
should be selected to maximize the volume of Xter . Notice that
Xter is an ISI set (by Property 2(4)), and so fulfill condition (4).
Furthermore, a simple procedure to obtain the proposed dter

Xt (x),
which fulfill conditions (5) and (6), was presented before.

Remark 5. It should be remarked that no prohibitive computa-
tional costs are added with the proposed MPC formulation. If the
distance function is used as generalized distance function, the op-
timization problem could be re-arranged to remain a QP problem.
If the modified Minkowski functional is used, an additional linear
programming problem should be solved.

6. Simulation results

6.1. Nominal case

In this section some simulation results will be presented, to
evaluate the proposed control strategy. To this end, a 3-state stable
system of the form of Nsys is used, with matrices

A =

 0.5 0.2 −0.3
0.4 0.3 0.4

−0.3 0.2 0.5


, B =

 0.6 0.85
0.5 −0.67

−0.2 0.4



C =


−0.54 0.8 0.2
0.3 −1.1 0.7


.

The constraints of the system are given by: X =

x ∈ R3

: ∥x∥∞

≤ 9

and U =


u ∈ R2

: ∥u∥∞ ≤ 1.25

. The EIS set has been

selected to be Ut
=


u ∈ R2

: ∥u∥∞ ≤ 0.8

, while the persistent

excitation signal was selected to be a (bounded) White Noise
Signal. The ISI set, Xt , was selected with a volume large enough
to give some robustness to the controller. Fig. 2 (right) shows the
relation between the feasible state space X (in light red) and the
ISI set Xt (in dark red).

The simulations were designed to show the re-identification
operation mode of the controller. Several initial states in X \ Xt

was selected. As can be seen in Fig. 2 (left), every (feasible) state is
steered to the target set Xt , and once the system is inside this set,
the exciting procedure is activated. Furthermore, in Fig. 2 (right),
the state evolution inside the target set is shown. Notice that the
state trajectory is around the stationary target Xt
ss, which is also

plotted (shadow plane).
Fig. 3 shows the input, outputs and cost function time evolu-

tions. Notice that there are two clear modes: first, from time k = 0
to time k = 5, the system is steered to the ISI set, with a decreasing
cost function. Then, from time k = 6 on, the cost function remains
null, which corresponds to a persistent excitation determined by
the (bounded) White Noise Signal upe. The two time periods have
been separated using different colors. Notice also that the input is
on its upper bound at the very beginning of the simulation, because
the controller objective is to drive the system to the target. Fur-
thermore, after time k = 5, the input remain inside the EIS set Ut ,
denoted by two dotted lines.

6.2. Model-mismatch case

In this section some simulation results are presented, to evalu-
ate the proposed control strategy in a model uncertainty scenario.
To this end, a 2-state stable system of the form of (1) is used, with
matrices:

A(w) =


0.42 −0.28
0.02 0.6


+ w


−0.6 0.4
−0.6 −0.85


,

B(w) =


0.3

−0.4


+ w


−0.2
−0.4


,

C(w) =

−0.3 0.6


+ w


0.1 0.1


,

and w ∈ W = [−0.22, 0.22]. The Nominal model is given by
A(wN), B(wN) and C(wN), with wN = 0, while the unknown Real
model is given by A(wR) = [0.54 − 0.20; 0.14 0.43], B(wR) =

[0.34; −0.32]T , C(wR) = [−0.32 0.58], which corresponds to
wR = −0.20. The constraints of the system are given by X = {x ∈

R2
: ∥x∥∞ ≤ 17} and U = {u ∈ R : ∥u∥∞ ≤ 1}. The EIS set

has been selected to be Ut
= {u ∈ R : ∥u∥∞ ≤ 0.65}, while the

persistent excitation signal was selected to be a (bounded) White
Noise Signal.

The robust ISI set, Xt , was selected according to Remark 2 (and
Theorem 1). It is given by:

Xt
= Xt(ξ̄ , λ̄) = Xt(wN) ⊕ ξ̄Ωλ̄ = Xt(wN) ⊕ 0.85Ω0.6,

whereXt(wN) is theminimal ISI set corresponding to the Nominal
model, and Ωλ̄ is a λ̄-invariant set for x+

= A(wN)x. Fig. 4 shows a
family of 8 minimal ISI sets, corresponding to parameters w going
from −0.2 to 0.1. Furthermore, the Nominal and the Real minimal
ISI sets Xt(wN) and Xt(wR), together with the ISI set Xt and
ξ̄ Ωλ̄ are plotted. The simulations were designed to show the re-
identification operation mode of the controller. To this end several
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initial states in X \ Xt was selected. As can be seen in Fig. 5 (left),
every (feasible) state is steered to the target set Xt , and once the
system is inside this set, the exciting procedure is activated.

Notice that the system enters Xt(wN) and then leaves it, be-
cause this set is not associated to the Real model. In fact, the mini-
mal ISI set for the real system is given byXt(wR) and it can be seen
that once the system enters this set, it does not leaves it anymore.
The important point here is that Xt is also a (non-minimal) ISI set
for the Real system, and the state never leaves Xt once it enters
the set. These facts are depicted in Fig. 5 (right). Fig. 6 (left) and
(right) show the input, outputs and cost function time evolutions.
Fig. 6 (left) has a time scale that goes only to k = 20 to clearly show
how the MPC control the system. From time k = 0 to time k = 5,
the system is steered to the ISI set, with a decreasing cost function.
Then, from time k = 5 on, the cost function remains null, which
corresponds to the injection of the persistent excitation signal upe.
The two time periods have been separated using different colors.
Notice also that the input is on its upper bound in the first time pe-
riods, because the controller tries to drive the system to the target.

Fig. 6 (right) goes to k = 210 to clearly show the excitation
procedure. Notice that after time k = 5, the input remains inside
the EIS set Ut , denoted by two dotted lines. The excitation signal
has different mean values along the simulation time, to show the
invariance condition of the ISI set in this scenario.

Remark 6. The latter simulation was tested including in the loop
a state observer, since in an identification scenario an observer is
usually present. However, since the selected systems are of small
dimension, and a well-tuned observer was used, the obtained re-
sponses were not substantially different to the responses in Fig. 6.

7. Conclusions

In this work, some results regarding a new MPC formula-
tion suitable for closed-loop re-identification were presented. The
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proposedMPC guarantees persistent excitationwhen the system is
inside a target region and guarantees recursive feasibility and
closed-loop stability to this target region when the system is out-
side.

The key concept to pursue these two opposite objectives is the
concept of attractivity of a robust invariant set, inside of which the
excitation of the system can be made. In this way, the controller
does not superpose the control and identification objectives, since
inside the target region no control is performed and outside the
target region no persistent excitation is injected to the system. To
account for these properties novel generalized distance functions
were proposed to construct the MPC cost function. Furthermore,
to prove convergence of the method these functions have shown
to be formal Lyapunov functions.

From a practical point of view, a main advantage of the method
is that the identification procedure can be made as in open-loop
fashion, since once the system is inside the target region, no control
actions affect the system. On the other side, a preliminary draw-
back of the method is that a new robust invariant set needs to be
computed if the target change. Future research clearly includes the
study of the relation between the invariant target region and the
exciting input set, in order to obtain a less conservative formula-
tion.
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