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ABSTRACT

Context. Spectral modelling of type II supernova atmospheres indicates a clear dependence of metal line strengths on progenitor
metallicity. This dependence motivates further work to evaluate the accuracy with which these supernovae can be used asenvironment
metallicity indicators.
Aims. To assess this accuracy we present a sample of type II supernova host Hii-region spectroscopy, from which environment oxygen
abundances have been derived. These environment abundances are compared to the observed strength of metal lines in supernova
spectra.
Methods. Combining our sample with measurements from the literature, we present oxygen abundances of 119 host Hii regions by
extracting emission line fluxes and using abundance diagnostics. These abundances are then compared to equivalent widths of Feii
5018 Å at various time and colour epochs.
Results. Our distribution of inferred type II supernova host Hii-region abundances has a range of∼0.6 dex. We confirm the dearth
of type II supernovae exploding at metallicities lower thanthose found (on average) in the Large Magellanic Cloud. The equivalent
width of Feii 5018 Å at 50 days post-explosion shows a statistically significant correlation with host Hii-region oxygen abundance.
The strength of this correlation increases if one excludes abundance measurements derived far from supernova explosion sites. The
correlation significance also increases if we only analyse a‘gold’ IIP sample, and if a colour epoch is used in place of time. In addition,
no evidence is found of a correlation between progenitor metallicity and supernova light-curve or spectral properties– except for that
stated above with respect to Feii 5018 Å equivalent widths – suggesting progenitor metallicity is not a driving factor in producing the
diversity that is observed in our sample.
Conclusions. This study provides observational evidence of the usefulness of type II supernovae as metallicity indicators. We finish
with a discussion of the methodology needed to use supernovaspectra as independent metallicity diagnostics throughout the Universe.

Key words. (Stars:) supernovae: general – ISM: abundances – (ISM:) HIIregions – Galaxies: abundances

1. Introduction

A fundamental parameter in our understanding of the evolution
of galaxies is the chemical enrichment of the Universe as a func-
tion of time and environment. Stellar evolution and its explosive
end drive the processes which enrich the interstellar (and indeed
intergalactic) medium with heavy elements. Galaxy formation
and evolution, together with the evolution of the complete
Universe are controlled by the speed and temporal location of
chemical enrichment. This is observed in the strong correlation
between a galaxy’s mass and its gas-phase oxygen abundance
(see Tremonti et al. 2004). One also observes significant radial
metallicity gradients within galaxies (see e.g. Henry & Worthey
1999; Sánchez et al. 2014) which provides clues to their past
formation history and future evolution.

To determine the rate of chemical enrichment as a function
of both time and environment, metallicity indicators throughout
the Universe are needed. In nearby galaxies one can use spectra
of individual stars to measure stellar metallicity (see, e.g.
Kudritzki et al. 2012). However, further afield this becomes
impossible and other methods are required. In relatively nearby
galaxies (<70 Mpc) one can observe the stellar light from
clusters to constrain stellar metallicities (see e.g. Gazak et al.
2014), or gas-phase abundances can be obtained through
observations of emission lines within Hii regions produced by
the ionisation (and subsequent recombination) of the interstel-
lar medium (ISM) (see e.g. review of various techniques in
Kewley & Ellison 2008). At higher redshifts, the latter emission
line diagnostics become the dominant source of measurements.

Emission line diagnostics can be broadly separated into
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two groups. The first group, so called empirical methods, are
those where the ratio of strong emission lines within Hii-region
spectra are calibrated against abundance estimations from
measurements of the electron temperature (Te, referred to as a
direct method and derived from the ratio of faint auroral lines,
e.g. [Oiii] 4363 Å and 5007Å, see Osterbrock & Ferland 2006).
Some of the most popular empirical relations are those presented
in Pettini & Pagel (2004), which use the ratio of Hα 6563 Å to
[N ii] 6583 Å (the N2 diagnostic), or a combination of this with
the ratio of Hβ 4861 Å to [Oiii] 5007 Å (the O3N2 diagnostic).
These diagnostics were updated in Marino et al. (2013) (hence-
forth M13), and we use the latter for the main analysis in this
paper. The second group of diagnostics are those which use the
comparison of observed emission line ratios with those pre-
dicted by photoionisation/stellar population-synthesis models
(see e.g. McGaugh 1991; Kewley & Dopita 2002). A major is-
sue currently plaguing absolute metallicity determinations is the
varying results that are obtained with different line diagnostics.
For example, the photoionisation model methods generally give
abundances that are systematically higher than those derived
through empirical techniques. López-Sánchez et al. (2012)
published a review of the systematics involved between the
various abundance diagnostics. It should also be noted thatthe
majority of these techniques use oxygen abundance as a proxy
for metallicity, neglecting elemental variations among metals.

Given the number of issues with current metallicity diag-
nostics, any new independent technique is of significant value.
Dessart et al. (2013) presented type II supernova (SN II) model
spectra produced from progenitors with distinct metallicity.
Dessart et al. (2014; hereafter D14) then showed how the
strength of metal lines observed within photospheric phase
spectra are strongly dependent on progenitor metallicity.Here
we present spectral observations of SNe II in comparison to
abundances inferred from host Hii-region emission line spectra.
This comparison presents observational evidence that these
explosive events may indeed be used as metallicity indicators
throughout the Universe.

SNe II are the most frequent stellar explosion in the Uni-
verse (Li et al. 2011). They are the result of massive stars (>8-
10 M⊙) that undergo core collapse at the end of their lives. The
type II designation indicates these events have strong hydrogen
features in their spectra (see Minkowski 1941, and Filippenko
1997 for a review of SN spectral classifications), implying their
progenitors have retained a significant fraction of hydrogen prior
to exploding. Historically SNe II have been separated into II-
Plateau (IIP), showing an almost constant luminosity for 2–
3 months in their light-curves post maximum, and II-Linear
(IIL) which decline faster in a ‘linear’ manner post maximum
(Barbon et al. 1979). However, recent large samples have been
published which question this distinction and argue for a con-
tinuum in SN decline rates and other properties (Anderson etal.
2014b; A14, and Sanders et al. 2015, although see Faran et al.
2014b,a; Arcavi et al. 2012 for distinct conclusions). (In the rest
of the manuscript we simply refer to all types as ‘SNe II’, and
differentiate events by specific photometric/spectroscopic pa-
rameters where needed.) It is clear that SNe II show signifi-
cant dispersion in their light-curves and spectral properties (see
e.g. A14, Anderson et al. 2014a and Gutiérrez et al. 2014), and
A14 and Gutiérrez et al. (2014) have speculated (following ear-
lier predictions; see Blinnikov & Bartunov 1993) that this ob-
served dispersion could be the result of explosions of progeni-
tors with distinct hydrogen envelope masses at death.

In D14, a conceptual study of SNe II as environment metal-
licity indicators was published (following Dessart et al. 2013 in
which the impact of various stellar and explosion parameters
on the resulting SN radiation was examined). Model progeni-
tors of increasing metallicity produced spectra with metal-line
equivalent widths (EWs) of increasing strength at a given post-
explosion time or colour. This is the result of the fact that the
hydrogen-rich envelope – which is the region probed during the
photospheric phase of SN II evolution – retains its originalcom-
position (given that nuclear burning during the stars life or the
explosion has negligible/weak influence on the hydrogen-rich
envelope metal content). Hence, the strength of metal line EWs
measured during the ‘plateau’ phase of SNe II is essentiallyde-
pendent on the abundance of heavy elements contained within
that part of the SN ejecta, together with the temperature of the
line forming region. The results of D14 therefore make a predic-
tion that SNe II with lower metal line EWs will be found within
environments of lower metallicity within their host galaxies. The
goal of the current paper is to test such predictions by observing
SN II host Hii regions, and compare SN pseudo–EWs (pEWs)
to host Hii-region metal abundances.

The manuscript is organised in the following way. In the next
section the data sample is introduced, both of the SNe II, and
of host Hii-region spectroscopy. This is followed by a brief de-
scription of spectral models. In section 3 we summarise the anal-
ysis methods, and in section 4 the results from that analysisare
presented. In section 5 the implications of these results are dis-
cussed, together with future directions of this research. Finally,
in section 6 we draw our conclusions.

2. Data sample and comparison spectral models

The data analysed in this publication comprise two distinct
types of observations. The first is of SN II optical spectroscopy
obtained during their photospheric phases, i.e. from discovery
to at most∼100 days post explosion. These data are used to
extract absorption line pEW measurements. The second data
set is emission line spectral observations of host Hii regions of
SNe II. These are used to estimate SN II environment oxygen
abundances, which can be used as metallicity proxies. In the
course of this work we compare our observational results with
the predictions from the spectral models of D14. The detailsof
these models are briefly summarised below.

2.1. Supernova observations

Our SN sample comprises>100 SNe II observed by the
Carnegie Supernova Project (CSP, Hamuy et al. 2006) plus pre-
vious SN II follow-up surveys (‘CATS et al.’ Galbany et al.
2016, sources listed in A14). A list of SNe II included in this
analysis is given in the Appendix Table A.1, together with var-
ious parameters from A14 and Gutiérrez et al. (2014). In Table
A.1 we also list the host galaxy properties: recession velocity
and absoluteB-band magnitude. The mean host galaxy absolute
magnitude is –20.5, and the lowest host magnitude is –17.7. The
vast majority of the SN sample have host galaxies intrinsically
brighter than the Large Magellanic Cloud (LMC),1 suggesting
the vast majority of the sample have environment metallicities
higher than those generally found in the LMC (assuming the ac-
cepted luminosity–metallicity relation). This is important for the
discussion presented later with respect to a lack of SNe II inlow

1 HyperLeda: http://leda.univ-lyon1.fr/
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Fig. 1. Model spectra (D14) from four distinct progenitor models at50
days post explosion: 0.1, 0.4, 1 and 2× solar metallicity. The dotted
black lines bracket the Feii 5018 Å absorption feature we use in this
analysis.

metallicity environments.
Optical low-resolution (typical spectral resolutions between

5 and 8 Å, FWHM) spectroscopic time series were obtained for
SNe II from epochs close to explosion out to nebular phases
through a number of SN follow-up campaigns. We do not go into
the details of the follow-up surveys here, however more informa-
tion can be found in a number of previous publications (see e.g.
Hamuy 2003; Hamuy et al. 2006, 2009; Contreras et al. 2010;
Folatelli et al. 2010). Initial analyses of these spectroscopic data
focussing on the nature of the dominant Hα line can be found
in Gutiérrez et al. (2014) and Anderson et al. (2014a), whilethe
full data release and analysis will be published in upcomingpa-
pers (Gutiérrez et al. in preparation).

The data were obtained with a range of instruments in vari-
ous forms of long slit spectroscopy. Data reduction was achieved
in the standard manner using routines withiniraf2, including
bias-subtraction; flat-field normalisation; 1d spectral extraction
and sky-subtraction; and finally, wavelength and flux calibra-
tion. More details of this process as applied to CSP SN Ia spec-
troscopy can be found in Folatelli et al. (2013).

2.2. H ii-region spectroscopy

In ESO period P94 (October 2014 – March 2015) 50 hrs of VLT
(+ FORS2) time at Cerro Paranal were allocated to this project.
This was to observe∼100 Hii regions coincident or near the site
of SNe II. SNe II were taken from the publications of A14, plus
other SNe II from the CSP (a small number of ‘normal’ SN II
which were not presented in A14, plus a few IIn and IIb), i.e. the
same sample as discussed above with respect to transient optical

2
iraf is distributed by the National Optical Astronomy Observatory,

which is operated by the Association of Universities for Research in As-
tronomy (AURA) under cooperative agreement with the National Sci-
ence Foundation.

wavelength spectroscopy. Measurements from these emission
line spectra are also combined with those of other SNe II which
were previously presented in Anderson et al. (2010) (where
many values were taken from Covarrubias 2007). In Appendix
Table B.2 the source of the abundance measurements (here, or
from Anderson et al. 2010) is indicated.

SN II host Hii regions were observed using VLT–FORS2
(Appenzeller et al. 1998) in long-slit mode (LSS). We used the
300V grating together with the GG435 blocking filter and a 1′′

slit. This set-up provided a wavelength range of 4450–8650Å,
with a resolution of 1.68 Å pixel−1. As our target SNe II are no
longer visible (a requirement for our observations and analysis
methods), to centre the slit on SN II explosion sites the telescope
was first aligned to a nearby bright star. Blind offsets to the
SN location were then applied and the slit position angle was
chosen to intersect the SN host-galaxy nucleus.

Data reduction was performed in the standard manner using
iraf, in the form of: bias-subtractions; flat-field normalisations;
1d spectral extraction and sky-subtraction of emission line spec-
tra; and finally wavelength and flux calibration. One dimensional
spectral extraction was first achieved on the exact region where
each SN exploded. However, in many cases no emission lines
were detected in that region (consistent with the non-detection
of Hα within SN II environments as reported in Anderson et al.
2012), and extractions were attempted further along the slit in
either direction until sufficient lines (at a minimum Hα and
[N ii]) could be detected. The distances of these extraction
regions from those of SN explosion coordinates are listed in
the Appendix Table B.2, and the effect of including Hii-region
measurements offset from explosion sites is discussed below.

2.3. Synthetic spectra of SN IIP at different metallicities

The observational research presented in this manuscript was mo-
tivated by the study of D14. That study used four models with
distinct progenitor metallicities, producing synthetic spectral
time series. Progenitors of 15 M⊙ initial mass, and progenitor
metallicities of 0.1, 0.4, 1, and 2 times solar ( Z⊙) were evolved
from the main sequence until death withmesa (Paxton et al.
2011) – adopting Z⊙ = 0.02. Upon reaching core-collapse, pro-
genitors were exploded and synthetic spectral sequences com-
puted usingcmfgen (Dessart & Hillier 2010; Hillier & Dessart
2012). The reader is referred to Dessart et al. (2013) and D14for
a detailed explanation of the modelling procedure (Dessartet al.
2013 explore a large range of progenitor parameters and their
subsequent effects on the model SNe II produced, while D14
concentrates on the effect of progenitor metallicity).

In Figure 1 model spectra are plotted, one for each progen-
itor metallicity, taken at 50 days post explosion (50 d). Onecan
clearly see the effects of increasing metallicity on the model
spectra, in particular at bluer wavelengths (i.e. bluewards of Hα,

∼<6000 Å). The higher metallicity models exhibit many more
lines which are also significantly stronger in EW. As one goes
to the lower metallicity models spectra appear much ‘cleaner’
being dominated by Balmer lines and showing weaker signs of
metal line blanketing.

D14 explored the effects of changing progenitor metallic-
ity with all other parameters constant (initial mass, mass-loss
and mixing length prescriptions). However, there are otherpre-
SN parameters which may significantly affect the evolution and
strength of spectral line EWs (the important features we usein
the current work), and produce degeneracies in SN measure-
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Fig. 2. Two examples of both SN II spectra (upper panels, at epochs close to 50 days post explosion) and host Hii-region spectra (lower panels).
Left: SN 2003bl, a SN with relatively high Feii 5018 Å pEW and O3N2 abundance, andRight: SN 2007oc with relatively low Feii 5018 Å pEW
and O3N2 abundance. The position of the Feii 5018 Å absorption feature in the SN spectra is indicated in blue. In the Hii-region spectra we
indicate the position of the emission lines used for abundance estimations: Hβ in green, [Oiii] in cyan, Hα in blue, and [Nii] in magenta.

ments. D14 showed how SNe II with distinct pre-SN radii (cre-
ated using the same progenitors, but evolved with a distinctmix-
ing length prescription for convection) produced different EW
strengths and evolutions for the same progenitor metallicity. This
is seen in Figs. 4 and 10, where the models are referred to as
m15mlt1 (larger radius) and m15mlt3 (smaller radius, m15mlt2
is the solar metallicity model already discussed above). Weuse
such models to compare the metal line EWs resulting from metal
abundance variations or from changes in the progenitor struc-
ture.

3. Analysis

As outlined above, our data comprises two distinct sets, and
hence our analysis is split into two distinct types of measure-
ments. These are now outlined in more detail. In Fig. 2 we
present examples of our data, indicating the position of thespec-
tral lines used in our analysis.

3.1. SNe II Fe ii 5018 Å EW measurements

To quantify the influence of progenitor metallicity on observed
line strengths, in this publication we concentrate on the strength
of the Feii 5018Å line. This line is prominent in the majority
of SNe II from relatively early times, i.e. at the onset of hy-
drogen recombination, and stays present throughout the photo-
spheric phase. In addition, it is not significantly contaminated by
other SN lines. One issue with this line is that it is in the wave-
length range where one observes narrow Hβ and [Oiii] emission
lines from host Hii regions. Often it is difficult to fully remove
these features in spectral reduction and extraction, and they can
contaminate the broad spectral features of the SN. When nar-
row H ii-region emission lines are present in our SN spectra,
they are removed by simply interpolating the SN spectra be-

tween either side of the emission line. The uncertainty created
by this process is taken into account when estimating flux er-
rors. pEWs are measured in all spectra obtained within 0–100
days post explosion (see A14 for details of explosion epoch es-
timations). To measure pEWs we proceed to define the pseudo
continuum (the adjacent maxima that bound the absorption) ei-
ther side of the broad SN absorption feature and fit a Gaussian.
These are defined as ‘pseudo’ EWs due to the difficulty in know-
ing/defining the true continuum level. This procedure is achieved
multiple times, each time removing narrow emission lines when
present. A mean pEW is then calculated together with a standard
deviation, with the latter being taken as the pEW error. In this
way we obtain a pEW for each spectral epoch. The same mea-
surement procedure undertaken for observations is achieved for
model spectra, meaning that for models we also present pEWs
to make consistent comparisons with observations (even though
in the case of models we know the true continuum and could
measure true EWs).

3.2. Host H ii-region abundance measurements

Fluxes of all detected narrow emission lines within host Hii-
region spectra are measured by defining the continuum on either
side of the emission and fitting a Gaussian to the line. The lines
of interest for our abundance estimations are: Hβ, [O iii], Hα, and
[N ii]. Using these fluxes, gas-phase oxygen abundances are cal-
culated using the N2 and O3N2 diagnostics of both M13 and the
earlier calibrations from Pettini & Pagel (2004). These arelisted
in Table B.2. Abundance errors are estimated by calculating
the minimum and maximum line ratios taking into account line
flux errors, i.e. the ‘analytic’ approach outlined in Biancoet al.
(2015) (and used on the previous sample of Anderson et al.
2010). In addition, in Figs. 8 and 9 the systematic errors from
the M13 N2 and O3N2 diagnostics are also shown.
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Fig. 3. Evolution of Feii 5018 Å pEWs with time for all SNe II within
the sample. Individual measurements are shown in blue, together with
their errors. These are connected by black lines. Also presented are the
time sequence of pEWs measured from synthetic spectra (Dessart et al.
2013), for four models of distinct progenitor metallicity.

We are restricted in the abundance diagnostics we can use
simply because of small number of detected emission lines in
our data. Our exposure times were relatively short so in many
cases only Hα and [Nii] are detected, making the N2 diagnos-
tic the only possibility. An advantage of both the N2 and O3N2
diagnostics is that they are essentially unaffected by either host-
galaxy extinction and/or relative flux calibration, due to the use
of ratios of emission lines close in wavelength. While both the
M13 and Pettini & Pagel (2004) abundances are listed in Ta-
ble B.2, we use the M13 values for our analysis given the re-
calibration of the diagnostics including additional Hii-regionTe
measurements3.

4. Results

Above we have presented two sets of observations: spectral
line Feii 5018 Å pEW measurements during the photospheric
phase of SNe II, and emission line spectral measurements of
SN II host Hii regions, with the latter being used to obtain
environment oxygen abundances. The distributions of these
are now both presented. Then we proceed to correlate both
parameters, and confront model predictions with SN and host
H ii-region observations. In addition, we analyse how pEWs
are related to other SN II light-curve and spectral parameters,
and finally we search for correlations between environment
metallicity and SN II transient properties.

3 If we were to use the Pettini & Pagel (2004) values instead then our
results and conclusions remain unchanged.

Fig. 4.Same as Fig. 3, but now the observational data are binned in time.
The black sold line represents the mean pEW within each time bin,
while the dashed blue lines indicate the standard deviation. Together
with the four distinct metallicity models (Dessart et al. 2013 shown in
solid red lines) we also present spectral series produced from two ad-
ditional solar metallicity progenitors, but with distinctmixing length
prescriptions, leading to smaller (mlt3, shown as the dotted red line)
and larger (mlt1, shown as the dashed red line) RSG progenitor radii
(see Section 2.3 for more details).

4.1. Fe ii 5018 Å pEW distribution and evolution

The time evolution of SN pEWs is shown in Fig. 3, together with
those from spectral models. In Fig. 4 we present these same mea-
surements but now with the observations binned (with bins of0–
20 days, then 20–30, 30–40, 40–50, 50–60, 60–70, 70–80, and
80–100 days). In both figures the evolution of model pEWs is
also presented. These figures show the increase in time of pEWs
(using the convention that a deeper absorption is documented as
a larger positive pEW), but also the large dispersion between dif-
ferent SNe II. One can also see the distinct strength and evolution
of Feii 5018 Å pEWs found within model spectra from the four
distinct progenitor metallicities. The effect on model spectra of
changing pre-SN radii (at a fixed, solar, metallicity) can beseen
in Fig. 4 (m15mlt1 larger radius, and m15mlt3 smaller radius).

In Fig. 5 the pEW – time past explosion trends from Fig. 3
are again presented but now split into 4 panels, separating SNe
by their pEWs at 50 d post explosion (see below for discussion
of this measurement). It is now possible to observe the trends of
individual SNe in more detail. This confirms the monotonic be-
haviour of Feii 5018 Å pEWs with time past explosion through-
out the ‘plateau’ phase of SNe II evolution (<100 days post ex-
plosion), in qualitative agreement with models. The plot also
shows that SNe with similar pEWs at 50 d evolve in a similar
manner with relatively low dispersion.

To proceed with our analysis pEWs are required at consis-
tent epochs between SNe. Our epoch of choice is 50 d (more
details below). To estimate the pEW at this epoch, interpola-
tion/extrapolation is needed. This is achieved for SNe II with
≥2 measurements available and where in the case of extrapola-
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Fig. 5. Evolution of Feii 5018 Å pEWs with time, as presented in Fig. 3, separated into 4panels splitting the sample by their Feii 5018 Å pEWs
at 50 d. The distributions go from low pEW in panel a) through to the highest pEW sample in panel d). The overall sample is presented in blue,
while the ‘Gold’ sample discussed later is plotted in magenta. (Errors are not plotted to enable better visualisation ofthe trends.)

tion, a spectrum is available at 50±10 days post explosion. Then
a low order polynomial fit is made to the pEW measurements,
and this is used to obtain a pEW at 50 d. We use the RMS error
of this fit as the error on the interpolated pEW. This interpolation
was possible in 82 cases, and a histogram of these measurements
is presented in Fig. 6.

4.2. Host H ii-region abundances

In Fig. 7 we present the distribution of all SN II emission line
abundance measurements for both the N2 and O3N2 M13 diag-
nostics. The N2 distribution has a mean value of 12+log[O/H]
= 8.49 dex, and a median of 8.52 dex. The distribution shows a
peak at just below∼8.6 dex, and a tail out to lower abundances
with the lowest value of 8.03 dex. The O3N2 distribution has a
mean of 8.41 dex, and a median value of 8.44 dex. The distribu-
tion shows a peak at∼8.5 dex, a range of∼0.6 dex, and a tail out
to lower abundances with the lowest value of 8.06 dex. Using
a solar value of 12+log[O/H] = 8.69 dex (Asplund et al. 2009),
the O3N2 distribution thus ranges between 0.23 and 0.87 Z⊙,
with a mean of 0.51 Z⊙. However, we stress that any discussion
of absolute metallicity scale when dealing with emission line

diagnostics is problematic, and it is probable that the N2 and
O3N2 diagnostics give systematically lower abundances than
the true intrinsic values (see e.g. López-Sánchez et al. 2012 and
references therein).

4.3. SN II Fe ii 5018 Å pEWs and host H ii region abundance

In Fig. 8 SN II Feii 5018 Å pEWs at 50 d are plotted against
the N2 diagnostic on the M13 scale. To test the significance
of this trend, and all subsequent correlations, we run a Monte
Carlo simulation randomly selecting events from the distribu-
tion in a bootstrap with replacements manner 10000 times. The
mean Pearson’s correlationr value is determined together with
its standard deviation using the 10000 random sets of pEW –
abundances. The lower limit of the chance probability of find-
ing a correlation,p, is then inferred using these values4. With a

4 It is generally considered that forr values between 0.0 and 0.2 there
is zero or negligible correlation; between 0.2 and 0.3 weak correlation;
between 0.3 and 0.5 moderate correlation; and above 0.5 signifies strong
correlation. Thep value gives the probability that this level of correla-
tion is found by chance.
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Fig. 6. Histogram of Feii 5018 Å pEW measurements for our sample
of SN II spectra, interpolated to 50 d. The position of the mean pEW is
indicated by the vertical dashed line.

Fig. 7. M13 N2 and O3N2 abundance distributions, together with their
mean values (dashed lines).

total of 82 events which have SN II Feii 5018Å pEWs and N2
oxygen abundance measurements, we findr = 0.34±0.09, and
a chance probability of finding a correlation of≤2.4 %. Statis-
tics using only the observed distribution give:r = 0.34, p =
0.18%. Hence, using N2 we find a moderate strength correlation
between SN pEW and host Hii-region abundance. It is clearly
observed that there is a lack of SNe II with high pEW and low
abundance at the bottom right of Fig. 8. There are fewer SN en-
vironments where we were able to also measure (in addition to

Fig. 8.pEW of the Feii 5018 Å absorption line measured at 50 d plotted
against host Hii-region oxygen abundance on the N2 M13 scale. The
dashed line indicates the mean best fit to the data. Error barson individ-
ual measurements are the statistical errors from line flux measurements.
The large black error bar gives the N2 diagnostic error from M13.

Hα and [Nii]) the Hβ and [Oiii] fluxes needed to compute abun-
dances on the O3N2 scale. We are able to do this in 44 cases,
and here we obtain a meanr value of 0.50±0.10, which gives a
chance probability of≤0.7 %. Statistics using only the observed
distribution give:r = 0.50,p = 0.05 %. The correlation is shown
in Fig. 9. While the statistical significance is higher for the O3N2
diagnostic (and therefore we use that diagnostic for subsequent
sub-samples), both of these figures show there is a statistically
significant trend in the direction predicted by models: SNe II
with larger Feii 5018 Å pEWs tend to be found in environments
of higher oxygen abundance. These observational results hence
agree with model predictions, and motivate further work to use
SNe II as environment metallicity indicators. We also note that
the RMS errors on the M13 N2 and O3N2 diagnostics (as plot-
ted in Figs. 8 and 9), appear to be large when compared to the
spread of values in our plots. Given that we do find evidence
for correlation, this suggests the true precision of those diagnos-
tics for predicting Hii-region abundance is better than the values
given by M13.

In Fig. 10 we over-plot SN II models at four different metal-
licities, together with the additional two models at solar metallic-
ity but with different pre-SN radii (D14), onto the observed Feii
5018Å pEW vs. Hii-region abundance plot. The model metal-
licities are converted from fractional solar to oxygen abundance
using a solar value of 8.69 dex (Asplund et al. 2009). One can
see that the models produce a much steeper trend than that ob-
served. We also see that models with the same progenitor metal-
licity but with different pre-SN radii produce a range of almost
10 Å in Feii 5018 Å pEWs. This uncertainty can be reduced
with a slight time shift (of pEW measurements) or by compar-
ing at a given colour (see below for additional analysis). How-
ever, in general, SN II observations favour relatively low progen-
itor radii (Dessart et al. 2013; González-Gaitán et al. 2015), and
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explosions similar to that of the large radius model are proba-
bly rare in nature. Therefore the actual uncertainty in observed
SNe II is probably less than that represented by this range of
models. Another interesting observation from Fig. 10 is thelack
of any SN close to the tenth solar model. There is also a lack
of SNe II at super-solar values. We discuss this (possibly small)
range of metallicities probed by observations below.

4.3.1. Sub-samples

In Figs. 8 and 9 all SNe II were included irrespective of their
light-curve or spectral properties. This means that we include
SNe II with a wide range of absolute magnitudes, ‘plateau’ de-
cline rates (s2), and optically thick phase durations (OPTd) (and
other SN parameters which differ from one event to the next).
The models of D14 all produce SN light-curves and spectra typ-
ical of ‘normal’ SNe IIP. In addition, those figures includedall
SN II abundance measurements, including events with abun-
dances estimated from a region of their host galaxies at signifi-
cant distances from explosion sites. Here these issues are further
investigated.

First we construct a sub-sample of events where abundance
estimations were carried out less than 2 kpc away from the explo-
sion sites5. When this is achieved we are left with 56 SNe II with
measurements on the N2 scale and 32 on the O3N2 scale. We
again test for correlation using Monte Carlo bootstrappingwith
replacements, and in the case of N2 a correlation coefficientr of
0.42±0.10 is found, giving a chance probability (N=56) of≤ 1.6
%. Using O3N2 we obtainr = 0.55±0.10 and ap value of≤1.0
% (N=32). The level of correlation thus increases when we only
include abundance measurements closer to SN explosion sites.
This is to be expected, as SNe II have relatively short lifetimes
and are therefore not expected to move significantly from their
birth sites. As one moves away from exact explosion sites en-
vironment metallicity becomes less representative of progenitor
abundance due to spatial metallicity changes from one region of
a galaxy to another, especially in terms of increasing/decreasing
galacto-centric offset.

To produce a sub-sample of ‘normal’ SNe IIP cuts are made
to our sample in terms of light-curve morphologies. SNe II with
s2 values≥ 1.5 mag per 100 days, and/or OPTd values≤ 70 days
are removed from the sample. Using these cuts a ‘Gold IIP’ sam-
ple of 22 SNe II is formed, which would generally be considered
typical SNe IIP by the community. Testing for correlation, this
sub-sample has anr value= 0.68±0.10 and ap value= ≤0.5
%. This correlation is presented in Fig. 11, and shows the in-
crease in strength of correlation as compared to the full O3N2
sample in Fig. 9 (characterised byr = 0.50±0.10). The fast de-
clining (s2 ≥ 1.5 mag per 100 days) sample presents a lower
level of correlation (than that of the ‘normal’ SNe IIP): for15
SNe,r = 0.57±0.18 andp = ≤4.6 %. Both the ‘Gold IIP’ and
fast-declining samples show the same linear trends within their
errors. This suggests that ‘normal’ SNe IIP are better metallicity
indicators than their faster declining counterparts.

4.3.2. The epoch of pEW measurements

Above we presented the pEW distribution and then correlations
with H ii-region abundances using Feii 5018Å pEWs at 50 d.

5 This limit is somewhat arbitrary, however it removes cases where ex-
tractions are at a significant distance from explosion sites, while main-
taining a sufficient number of events to enable a statistically significant
analysis.

This epoch was chosen as it corresponds to when the vast
majority of SNe II are around halfway through the photospheric
phase of their evolution. SNe II can show significant tempera-
ture variations at early times and one does not want to measure
pEWs when temperature differences could be a significant
factor controlling their strength. Fig. 4 also shows that pEWs
have a rapid increase at early times after first appearing at
∼15 days, and therefore one wants to avoid this region where
non-metallicity systematics may dominate differences in pEWs.
At much later than 50 d some SNe II already start to transition
from the photospheric phase to radioactively powered epochs.
Here, pEWs may start to be affected by mixing of He-core
material (in addition to the fact that spectral observations
become more sparse). We now test whether this selected epoch
is the most appropriate to measure pEWs.

pEW measurements are interpolated to: 30, 40, 60 and 70
days post explosion. These values are then correlated against
host Hii-region abundances on the N2 scale (used to ensure
sufficient statistics for valid comparisons) and the strength ofthe
correlations are compared. In addition, in place of the explosion
epoch, pEWs are estimated with respect tottran: the epoch of
transition from the initial s1 decline to the slower ‘plateau’ s2
phase (see A14 for details of those measurements). We choose
the epochttran+20 days, which roughly coincides with 50 d, but
varies (approximately±10–15 days) between SNe II. The results
of these comparisons are presented in Table 1. In terms of time
post explosion we see that the choice of 50 days is in fact valid.
Its is also observed that 50 d does just as well asttran+20 days. A
time epoch with respect to OPTd is also investigated (OPTd is
the OPtically Thick phase time duration, from explosion to the
end of the ‘plateau’, A14). pEWs are interpolated to OPTd–30
days (again to coincide on average with t= ∼50 d), and we run
our correlation tests for both this new OPTd sample, and the
same SNe II but with pEWs at 50 d. Values are again displayed
in Table 1, and it is found that using OPTd as the time epoch
is no better than using the explosion epoch. In conclusion the
choice of 50 d for pEW measurements appears to be robust.

Now, in place of time, we investigate whether a stronger cor-
relation exists if pEWs are measured at a colour epoch. As al-
ready seen in the D14 spectral models: differences in pre-SN
properties can significantly affect the strength of spectral lines
(see Figs. 4, 10). Together with the metal abundance within the
ejecta, the other main contributor to line appearance and subse-
quent strength is the temperature/ionisation of the line formation
region. Models corresponding to different progenitor radii pro-
duce SNe II with distinct temperature evolution. Therefore, ex-
amining observational pEWs at a consistent colour (i.e. temper-
ature) may be of interest. Fig. 12 presents the evolution of pEWs
with SN colour (using the sample defined below). This confirms
the behaviour discussed above: pEWs increase with increasing
SN colour.

A major issue with any colour analysis is correction for ex-
tinction in the line-of-sight within host galaxies. However, as
discussed in detail in Faran et al. (2014b), without detailed mod-
elling and early-time data (see e.g. Dessart et al. 2008), there is
no current satisfactory method for accurately correcting SNe II
for host galaxy reddening. This is particularly pertinent for the
current study where our goal is to obtain differences in intrin-
sic colours (i.e. assuming SNe II have similar colours during the
plateau would simply lead us to use a time epoch). Another com-
plication is that the CSP and previous CATS et al. samples do not
have the same filter observations.

To continue the investigation we proceed in the following
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Fig. 9. Same as Fig. 8, but now for the O3N2 diagnostic on the M13 scale. The dashed line indicates the mean best fit to the data. Errorbars on
individual measurements are the statistical errors from line flux measurements. The large black error bar gives the O3N2diagnostic error from
M13.

manner. To begin, all SNe II having host galaxyAV values pub-
lished in A14 higher than 0.1 magnitude, or where noAV es-
timate was possible because either the pEW of narrow ISM
sodium lines was higher than 1 Å, or where the upper limit of
this quantity was higher than 1 Å, are removed from the sam-
ple. We then assume that the rest of the sample is effectively free
of significant host galaxy reddening. For all SNe II within the
CSP sample we createV − i colour curves, while for the CATS
et al. samplesV − I colour curves (both corrected for MW ex-
tinction) are produced6. Low-order polynomials are fit to these
colour curves and we then interpolate to measure the colour at
50 d. For each sample (CSP/CATS et al.) a mean 50 dayV−i/V−I
colour is calculated. For each individual SN we proceed to mea-
sure a pEW for Feii 5018 Å at the corresponding mean colour
epoch. This method negates any need to converti-band magni-
tudes intoI, or vice versa, and is valid if it is assumed that the
CSP and CATS et al. samples are drawn from the same underly-
ing SN II distribution.

In Fig. 13 we plot Feii 5018 Å pEWs at these colour epochs
against host Hii-region abundance on the O3N2 scale. Testing

6 Note, CATS et al. photometry was published in Galbany et al. 2016,
while CSP optical photometry will be published in Anderson et al. (in
preparation), and a full colour analysis of the latter concentrating on
host galaxy extinction will be provided in de Jaeger et al. (in prepara-
tion).

for correlation we find, for N= 17,r = 0.69±0.12 andp ≤1.7 %,
while for the same SNe II but with pEWs measured at 50 d we
find r = 0.61±0.16 andp ≤7.0 %. This suggests that in using a
colour epoch in place of time, one further removes SN systemat-
ics and strengthens the case for SNe II to be used as metallicity
indicators.

4.4. Correlations between pEWs and other SN II parameters

Here we correlate pEWs at 50 d with the SN II light-curve
and spectral parameters presented by A14 and Gutiérrez et al.
(2014). The statistical significance of correlations between
pEWs and these parameters are listed in Table 2. A full discus-
sion of these correlations, together with figures and discussion
of their implications for our understanding of SNe II explosions
and progenitors will be left for a future publication (Gutíerrez
et al. in preparation). However, there are some interestingtrends
seen in Table 2 and we briefly discuss those now.

The absolute magnitude at maximum light, Mmax, of SN II
is found to strongly correlate with the Feii 5018 Å pEW at 50 d.
Indeed, while the pEW also shows correlation with Mend and
Mtail (all in the sense that brighter SNe II have lower pEWs at
a consistent time epoch), the strength of the correlation isless.
This is in agreement with A14, where Mmax was shown to be
a more important parameter in understanding the diversity of
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Table 1.Epoch of pEW measurements: testing the level of correlationbetween Feii 5018 Å pEWs and host Hii-region abundances when different
epochs for pEW measurements are used. In the first column the epoch is listed, followed by the number of SNe II available in column 2. The
Pearson’s meanr value is then given together with the standard deviation. Finally in column 4 the chance probability of finding a correlation is
listed.

Epoch N SNe II r p
Days after explosion epoch

30 90 0.30±0.09 ≤ 4.7 %
40 83 0.32±0.09 ≤ 3.6 %
50 82 0.35±0.09 ≤ 1.8 %
60 75 0.30±0.11 ≤ 10.3 %
70 68 0.38±0.10 ≤ 2.1 %

With respect tottran
+20 39 0.24±0.16 ≤ 63 %

Same sample but at 50 d
50 39 0.30±0.15 ≤ 36 %

With respect to OPTd
–30 55 0.34±0.11 ≤ 9.1 %

Same sample but at 50 d
50 55 0.35±0.11 ≤ 7.8

Table 2.Statistics of correlations between Feii 5018 Å pEWs and SN II light-curve and spectral parameters. Inthe first column the SN II parameter
is listed. (Mmax is the maximumV-band absolute magnitude; Mend the magnitude at the end of the ‘plateau’, Mtail the magnitude at the start of
the radioactive tail; s1 the initial decline from maximum; s2 the decline rate during the ‘plateau’; s3 the decline rate of the radioactive tail;56Ni
the synthesised nickel mass, with56Ni* including upper limit calculations; Pd the duration from the inflection point of s1 and s2 to the end of
the ‘plateau’; OPTd the duration from explosion to the end ofthe ‘plateau’; a/e the ratio of the pEW of absorption to emission of Hα; and Hαvel

the FWHM velocity of Hα.) This is followed by the number of SNe II in column 2. The Pearson’s meanr value is then given together with the
standard deviation. Finally in column 4 the chance probability of finding a correlation is listed.

LC/spec parameter N SNe II r p
Mmax 77 0.64±0.09 ≤ 2.2×10−4 %
Mend 79 0.47±0.11 ≤ 0.11 %
Mtail 29 0.48±0.14 ≤ 7.1 %
s1 20 –0.48±0.15 ≤ 16 %
s2 77 –0.41±0.13 ≤ 1.4 %
s3 24 –0.50±0.24 ≤ 22 %

56Ni 13 –0.46±0.23 ≤ 45 %
56Ni* 36 –0.54±0.10 ≤ 0.72 %

Pd 17 0.26±0.31 ≤ 100 %
OPTd 24 0.12±0.14 ≤ 100 %

a/e 43 0.60±0.10 ≤ 0.064 %
Hαvel 24 –0.61±0.09 ≤ 0.92 %

SNe II than the end of ‘plateau’ magnitude Mend. The decline
rates, s1, s2 and s3, all show some degree of correlation with
the Feii 5018 Å pEW in the direction that slower decliners have
higher pEWs. Interestingly, when we include upper limits,56Ni
masses show a strong correlation with pEWs: SNe II which pro-
duce more nickel have lower pEWs. The time duration OPTd,
i.e. the time between explosion and the end of the ‘plateau’ to-
gether with Pd (ttran to end of ‘plateau’) show zero correlation
with pEWs. Finally, the spectral parameters a/e (the ratio of the
pEW of absorption to emission of Hα) and the FWHM velocity
of Hα (see Gutiérrez et al. 2014 for more details) both show a
strong correlation with pEWs. SNe II with large pEWs at 50 d
have larger a/e values and smaller velocities.

4.5. The influence of metallicity on SN II diversity

We test for correlation between SN II host Hii-region abundance
and light-curve and spectral parameters. No evidence for cor-

relation is found between abundance and any SN II parame-
ter, except that with metal line pEWs. In Figs. 14, 15, 16 we
show host Hii-region abundance plotted against Mmax, s2, and
OPTd respectively. One can see that no trends appear. In Ta-
ble 3 the results of statistical tests for trends between these pa-
rameters and host Hii-region abundance, together with all other
SN II light-curve and spectral properties presented in A14 and
Gutiérrez et al. (2014) are shown. In addition, we repeat the
statistics for the correlation between SN II Feii 5018Å pEWs
and host Hii region abundance already presented above. It is
clear that the only (thus far measured/presented) SN II param-
eter which shows any correlation with environment metallicity
is the Feii 5018 Å pEW.

These results suggest that the diversity of SN II propertiesin
the current sample does not stem from variations in metallicity
– either the range in metallicity is too small to matter (which is
likely) or some other stellar parameter (e.g. main sequencemass)
is more influential.
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Table 3. Statistics of correlation tests between host Hii-region abundance, and SN II light-curve and spectral parameters. In the first column the
SN II parameter is listed (described in the caption of Table 2), followed by the number of SNe II in column 2. The Pearson’s meanr value is then
given together with the standard deviation. Finally in column 4 the chance probability of finding a correlation is listed

LC/spec parameter N SNe II r p
Mmax 102 0.04±0.08 ≤ 100 %
Mend 104 0.09±0.08 ≤ 92 %
Mtail 37 0.003±0.16 ≤ 100 %
s1 24 –0.17±0.30 ≤ 100 %
s2 102 –0.02±0.11 ≤ 100 %
s3 28 –0.27±0.28 ≤ 100 %

56Ni* 43 0.12±0.16 ≤ 100 %
Pd 18 0.26±0.31 ≤ 100 %

OPTd 66 0.12±0.14 ≤ 100 %
a/e 43 0.23±0.13 ≤ 52 %

Hαvel 43 0.009±0.12 ≤ 100 %
Feii 5018 Å pEW (50) 82 0.34±0.09 ≤ 2.4 %

Fig. 10.Comparison of the D14 models with observations. pEWs of the
Feii 5018 Å absorption line measured at 50 d plotted against the host
H ii-region oxygen abundance using the O3N2 M13 diagnostic, with the
positions of the six distinct models over plotted. The red circles indicate
the same progenitors changing metallicity, while the triangle (m15mlt1,
larger radius) and square (m15mlt3, smaller radius) present the same
metallicity but changing pre-SN radii.

5. Discussion

Dessart et al. (2014) presented SN II model spectra producedby
progenitors of distinct metallicity, and showed how the strength
of metal lines increases with increasing progenitor metallicity.
Those models therefore made a prediction that SNe II with
higher metal line pEWs will be found in environments of higher
metallicity. In this publication we have concentrated on the
strength of the Feii 5018 Å line as measured in observed SN II
spectra, and shown that indeed the pEW of this line shows a sta-
tistically significant trend with host Hii-region abundance, with
the latter derived from the ratio of Hii-region emission lines. We
now discuss this result in more detail, and outline the next steps

Fig. 11. ‘Gold IIP’ sample of pEWs against O3N2 abundances, using
SNe II with s2 values≤ 1.5 mag per 100 days, and/or OPTd values≥
70 days.

to use SNe II as independent environment metallicity probes.
The implications of the above results on the progenitors andpre-
SN evolution of SNe II are also further explored.

5.1. The use of photospheric phase SN II spectra as
independent metallicity indicators

The aim of this work is to confront model predictions with ob-
servations to probe the accuracy of SNe II as metallicity indi-
cators. The correlation observed between SN Feii 5018 Å pEW
and host Hii-region abundance suggests that SNe II may be at
least as accurate at indicating environment metallicity asthe
popularly used N2 and O3N2 diagnostics. This is inferred from
Figs. 8, 9, 11, and 13. The dispersion within these correlations
is similar to (or better than) the internal dispersion of theemis-
sion line diagnostics. This probably implies that a) the majority
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Fig. 12. Evolution of Feii 5018 Å pEWs with SN colour. In the top
panel the CSP sample is shown using theV − i colour, while in the
bottom panel the CATS et al. sample usingV − I is presented. (Errors
on colours and pEWs are not presented to enable better visualisation of
trends.)

Fig. 13.SN II pEWs against O3N2 abundances for theV− i/V− I colour
sample.

of the dispersion on the pEW–abundance plots arises from the
diagnostics and not the SN measurements, and b) the RMS val-
ues of M13 underestimate the true precision of N2 and O3N2.
This finding motivates work to use SNe II as metallicity indica-
tors independent of these emission line diagnostics.

Currently there is a lack of SNe II within this sample at both
low (sub–LMC) and high (super-solar) metallicities (although

Fig. 14. Host Hii-region oxygen abundance plotted against SN II
‘plateau’ decline, s2.

Fig. 15.Host Hii-region oxygen abundance plotted against SN absolute
V-band maximum, Mmax.

we caution that the latter may be due to the saturation of the
M13 diagnostics at above∼solar metallicity). Finding SNe II
within these environments and adding these to the sample would
allow metallicity differences to dominate changes in pEW, and
lend further support to the use of SN II as metallicity probes.
A first step to remove the calibration from strong emission line
diagnostics could be to obtain deeper spectra of the host Hii re-
gions to enable detections of emission lines which provide elec-
tron temperature estimates, i.e. the direct method. In thiscase
SNe II would still be tied to the same scale as those diagnostics
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Fig. 16.Host Hii-region oxygen abundance plotted against SN OPTd:
time duration from explosion to end of ‘plateau’.

used throughout the Universe. One may look at models to cali-
brate the SN observations. However, to do this accurately would
probably require individual fitting of each SN to a large gridof
spectral models. Currently, what we can state with confidence
is that an observed SN II at∼50 d days post explosion with a
pEW<10 Å suggests an environment metallicity of less than or
equal to LMC metallicities (∼<0.2 Z⊙). At the other extreme, if

one finds a SN II with an Feii 5018Å pEW∼> 30 Å, this im-
plies the SN exploded within a∼solar abundance (12+log[O/H]
= 8.69 dex, Asplund et al. 2009) region or higher.

5.2. Progenitor metallicity as a minor player in producing
SN II light-curve and spectral diversity?

Metallicity is thought to be a key ingredient in stellar evolution,
driving the extent of mass-loss through metallicity dependent
stellar winds. However, a major finding presented here is of
zero evidence for correlation between SN parameters and
environment abundance (except in the case of the pEW of metal
lines affected by the nascent composition of the SN ejecta).
This suggests metallicity is in fact playing a negligible role
in producing the diversity observedin the current sample.
However, we suspect the range in metallicity is too narrow to
drive SN II diversity. There are many other parameters which
likely change within our sample such as progenitor mass,
mass-loss rates, degree of binary interaction etc. It may bethat
when we eventually probe a larger range of metallicity we start
to see the effects of progenitor metallicity on SN diversity. It
is noted however that even if our sample lacks SNe II in the
extremes of the metallicity distribution, the rate of theseevents
is unlikely to be significant compared to the current sample.In
conclusion, over the range of progenitor metallicities we have in
our current sample, chemical abundanceis not a driving force in
producing SN II light-curve and spectral diversity.

5.3. The lack of SNe II in low-metallicity environments

The lack of SNe II in low metallicity environments (e.g. those
found in the Small Magellanic Cloud or lower) was already
noted in Stoll et al. (2013) and D14. In the current analysis we
now have additional constraints through our environment abun-
dances. In a sample of 115 (52) SNe II on the N2 (O3N2) scale,
the lowest metallicity environment is that of SN 2003cx, at an
oxygen abundance of 8.03 (8.06) dex on the N2 (O3N2) scale.
Using the solar abundance of 8.69 dex (Asplund et al. 2009) this
translates to 0.22 Z⊙, i.e. ∼abundances found in the LMC. As
noted above and discussed in López-Sánchez et al. (2012), the
N2 and O3N2 scales give systematically lower abundances than
those from other emission line methods. If this is the case then
the lack of low-metallicity environment SNe II would become
even more apparent. There also appears to be a lack of SNe II in
super-solar metallicity environments. However, if we accept that
the N2 and O3N2 scales give systematically low abundances,
then this may become less significant.

Other SN II environment metallicities have been published.
For sake of comparison we calculate our distributions now on
the Pettini & Pagel (2004) scale (see Table B.2). On this scale a
mean N2 abundance= 8.62±0.21 dex and a mean O3N2 abun-
dance= 8.55±0.21 dex is found. Anderson et al. (2010) pub-
lished a sample of 46 SNe II oxygen abundances and derived
a very similar distribution as that found here, which is unsur-
prising given that about half of those values are included inour
sample. Kuncarayakti et al. (2013) analysed very nearby SNeII
environments and found a mean 12+log[O/H] value of 8.58 dex
for 15 SNe II, again very similar to our sample. One common
parameter between these samples is that the SNe II were gener-
ally found via galaxy targeted searches, and therefore theymay
be biased towards more massive, higher metallicity galaxies. In-
deed, the Palomar Transient Factory (PTF, Rau et al. 2009) pub-
lished a distribution of CC SN host galaxy absolute magnitudes
which probed a greater number of dwarf galaxies than found in,
e.g. our sample (see further discussion in the appendix of A14).
However, Stoll et al. (2013) obtained emission line spectraof the
host Hii regions of a representative sample of PTF SN II hosts,
and concluded that the abundance distribution was indistinguish-
able from that found in targeted samples (e.g. Anderson et al.
2010). In conclusion, there appears to be a true lack of (pub-
lished) SNe II found with SMC or lower metallicities. Finding
and studying such SNe II will not only serve our analysis to fur-
ther calibrate SNe II as metallicity probes, but will also allow the
study of how massive stars explode at low metallicity.

5.4. Future directions

In this work we have focussed on the dependence of the pEW
of a single spectral line Feii 5018 Å on environment metallicity.
In future work we will analyse the full distribution of SN pho-
tospheric phase metal line strengths to determine the most direct
indicator of progenitor metallicity. In addition, we are currently
limited to a relatively small range in metallicity. Observing ad-
ditional SNe II outside of this range will aid in removing other
systematic uncertainties in the correlations we have presented.

While there is still much to understand, the ultimate aim of
this work would be to independently map the metallicity distri-
bution of galaxies throughout the Universe using SNe II. To aid
in this goal one may think of observing SNe II in both a range
of environments and out to higher redshifts. The advantage of
SNe II over traditional metallicity indicators is that a) they probe
the specific location where they explode within their hosts,b)
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in principle one can obtain abundances of distinct elementsand
not simply oxygen, and c) SNe II are intrinsically bright thus the
currently proposed metallicity diagnostic can be efficient – in
terms of telescope observing time – for probing distant galaxies.
In terms of constraining a range of relative metal abundances it
is important to calibrate all metal lines within SNe II spectra, and
understand the systematics in their measurements and metallic-
ity predictions. SNe II explosions accurately trace the star forma-
tion within galaxies (e.g. Botticella et al. 2012). Hence, mapping
metallicity with SNe II discovered by un-targeted searcheswill
accurately trace the chemical abundance of star-forming regions
within galaxies.

6. Conclusions

Following the study of D14, we present observations of a large
sample of SN II host Hii-region spectroscopy from which gas-
phase oxygen abundances are inferred. These are compared to
pEW measurements of Feii 5018 Å and a statistically significant
trend is observed, in that SNe II with higher pEWs explode in
higher metallicity environments. This paves the way for the
use of SNe II as independent metallicity indicators throughout
the Universe. While we observe significant dispersion in this
trend, this is expected because a) the SNe II included show
many different properties, and b) the abundance diagnostic
used for comparison itself shows significant dispersion in its
correlation with electron temperature. Indeed, the significance
of correlation is increased if we only consider: a) Hii-region
measurements close to explosion sites; b) SNe II which have
light-curve morphologies similar to ‘normal’ SNe IIP; and c) if
we use a colour epoch for pEW measurements in place of time.

We also search for trends of progenitor (inferred from
environment) metallicity with various SN II light-curve and
spectral parameters. However, no such trends are observed.
We therefore conclude, that at least within the current sample,
progenitor metallicity plays a negligible role in producing the
observed diversity of SNe II.
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Appendix A: SN and host galaxy data

The details of all SNe II and their host galaxies included in
the current analysis are presented in Table A.1. These SNe II
are those events analysed in A14 and Gutiérrez et al. (2014),to-
gether with several other SNe II from the CSP et al. surveys.
In addition, we obtained host Hii-region spectroscopy of a few
SNe IIb and a couple of SNe IIn, the details of which are also
listed in Table A.1.
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Appendix B: H ii-region abundances and SN pEWs

SN II host Hii-region abundances and measured SN pEWs are
listed in Table B.2.
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Table A.1.SN and host galaxy data

SN Host galaxy Vr(km s−1) Host MB s2(mag 100d−1) Mmax(mag) OPTd(d) a/e Hαvel(km s−1)
1986L NGC 1559 1305 –21.3 1.28 –18.19 93.7 0.21 6354
1990E NGC 1035 1241 –19.2 · · · · · · · · · · · · · · ·

1990K NGC 150 1588 –20.2 · · · · · · · · · · · · · · ·

1991al NGC 4411B 4575 –18.8 1.55 –17.51 · · · 0.28 7771
1992af ESO 340-G038 5541 –19.7 0.37 –16.98 54.03· · · · · ·

1992am MCG –01-04-039 14397 –21.4 1.17 –17.33 · · · · · · · · ·

1992ad NGC 4411B 1270 –18.6 · · · · · · · · · · · · · · ·

1992ba NGC 2082 1185 –18.0 0.73 –15.34 103.97 0.68 4439
1993A anon 8790 · · · 0.72 –16.44 · · · · · · · · ·

1993K NGC 2223 2724 –20.9 2.46 –17.92 · · · · · · · · ·

1993S 2MASX J22522390 9903 –20.6 2.52 –17.52 · · · · · · · · ·

1999br NGC 4900 960 –19.4 0.14 –13.77 · · · 0.61 3566
1999ca NGC 3120 2793 –20.4 1.73 –17.48 80.48 · · · · · ·

1999cr ESO 576-G034 6069 –20.4 0.58 –16.90 78.06 0.19 5728
1999eg IC 1861 6708 –20.9 1.70 –16.86 · · · · · · · · ·

1999em NGC 1637 717 –19.1 0.31 –16.76 96.04 0.57 5915
2002ew NEAT J205430.50 8975 · · · 3.58 –17.42 · · · · · · · · ·

2002fa NEAT J205221.51 17988 · · · 1.58 –16.95 67.29 · · · · · ·

2002gd NGC 7537 2676 –19.8 0.11 –15.43 · · · 0.19 4023
2002gw NGC 922 3084 –20.8 0.30 –15.76 82.33 0.46 6217
2002hj NPM1G+04.0097 7080 · · · 1.92 –16.91 90.24 0.38 6857
2002hx PGC 023727 9293 · · · 1.54 –17.00 68.03 · · · · · ·

2002ig anon 23100 · · · 2.73 –17.66 · · · · · · · · ·

2003B NGC 1097 1272 –21.4 0.65 –15.36 83.19 0.4 4251
2003E MCG–4-12-004 4470 –19.7 -0.07 –15.70 97.42 0.40 5028
2003T UGC 4864 8373 –20.8 0.82 –16.54 90.59 0.55 7360
2003bl NGC 5374 4377 –20.6 0.24 –15.35 92.81 0.47 6596
2003bn 2MASX J10023529 3828 –17.7 0.28 –16.80 92.97 0.6 6121
2003ci UGC 6212 9111 –21.8 1.79 –16.83 92.53 · · · · · ·

2003cn IC 849 5433 –20.4 1.43 –16.26 67.80 0.22 5074
2003cx NEAT J135706.53 11100 · · · 0.76 –16.79 87.82 0.29 7314
2003dq MAPS-NGP O43207 13800 · · · 2.50 –16.69 · · · · · · · · ·

2003ef UGC 7820 5094 –20.1 0.81 –16.72 90.93 · · · · · ·

2003eg NGC 4727 4388 –22.3 2.93 –17.81 · · · · · · · · ·

2003ej UGC 7820 5094 –20.1 3.46 –17.66 68.97 · · · · · ·

2003fb UGC 11522 5262 –20.9 0.48 –15.56 84.27 · · · · · ·

2003gd M74 657 –20.6 · · · · · · · · · · · · · · ·

2003hd MCG– 04-05-010 11850 –21.7 1.11 –17.29 82.39 0.76 4800
2003hk NGC 1085 6795 –21.3 1.85 –17.02 86.00 · · · · · ·

2003hl NGC 772 2475 –22.4 0.74 –15.91 108.92· · · · · ·

2003hn NGC 1448 1170 –21.1 1.46 –16.74 90.10 0.29 7268
2003ho ESO 235-G58 4314 –19.8 · · · · · · · · · · · · · · ·

2003ib MCG– 04-48-15 7446 –20.8 1.66 –17.10 · · · · · · · · ·

2003ip UGC 327 5403 –19.4 2.01 –17.75 80.74 · · · · · ·

2003iq NGC 772 2475 –22.4 0.75 –16.69 84.91 · · · · · ·

2004dy IC 5090 9352 –20.9 0.09 –16.03 24.96 · · · · · ·

2004ej NGC 3095 2723 –20.9 1.07 –16.62 96.14 · · · · · ·

2004er MCG– 01-7-24 4411 –20.2 0.40 –16.74 120.15 0.56 7680
2004fb ESO 340-G7 6100 –20.9 1.24 –16.19 · · · · · · · · ·

2004fc NGC 701 1831 –19.5 0.82 –16.21 106.06 0.37 5440
2004fx MCG– 02-14-3 2673 · · · 0.09 –15.58 68.41 · · · · · ·

2005J NGC 4012 4183 –20.4 0.96 –17.28 94.03 0.54 6637
2005K NGC 2923 8204 –19.6 1.67 –16.57 · · · · · · · · ·

2005Z NGC 3363 5766 –19.6 1.83 –17.17 78.84 · · · · · ·
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SN Host galaxy Vr(km s−1) HostMB s2(mag 100d−1) Mmax(mag) OPTd(d) a/e Hαvel(km s−1)
2005af NGC 4945 563 –20.5 · · · · · · 104.01 · · · · · ·

2005an ESO 506-G11 3206 –18.6 1.89 –17.07 77.71 0.17 8548
2005dk IC 4882 4708 –19.8 1.18 –17.52 84.22 0.3 7008
2005dn NGC 6861 2829 –21.0 1.53 –17.01 79.76 · · · · · ·

2005dt MCG –03-59-6 7695 –20.9 0.71 –16.39 112.86· · · · · ·

2005dw MCG –05-52-49 5269 –21.1 1.27 –16.49 92.59 · · · · · ·

2005dx MCG –03-11-9 8012 –20.8 1.30 –16.05 85.59 · · · · · ·

2005dz UGC 12717 5696 –19.9 0.43 –16.57 81.86 0.66 5952
2005es MCG+01-59-79 11287 –21.1 1.31 –16.98 · · · · · · · · ·

2005gk 2MASX J03081572 8773 · · · 1.25 –16.44 · · · · · · · · ·

2005gz MCG -01-53-22 8518 –21.3 · · · · · · · · · · · · · · ·

2005kh NGC 3094 2220 –19.7 · · · · · · · · · · · · · · ·

2005me ESO 244-31 6726 –21.4 1.70 –16.83 76.91· · · · · ·

2006Y anon 10074 · · · 1.99 –17.97 47.49 0.01 7588
2006ai ESO 005-G009 4571 –19.2 2.07 –18.06 63.26 0.08 7291
2006bc NGC 2397 1363 –20.9 -0.58 –15.18 · · · · · · · · ·

2006be IC 4582 2145 –18.7 0.67 –16.47 72.89 0.34 6308
2006bl MCG+02-40-9 9708 –20.9 2.61 –18.23 · · · · · · · · ·

2006it NGC 6956 4650 –21.2 1.19 –16.20 · · · · · · · · ·

2006iw 2MASX J23211915 9226 –18.3 1.05 –16.89 · · · 0.46 6162
2006ms NGC 6935 4543 –21.3 0.11 –16.18 · · · · · · · · ·

2006qq* ESO 553-G36 8688 –20.7 · · · · · · · · · · · · · · ·

2006qr MCG –02-22-023 4350 –20.2 1.46 –15.99 96.85 0.55 5440
2007W NGC 5105 2902 –20.9 0.12 –15.80 77.29 0.52 4800
2007X ESO 385-G32 2837 –20.5 1.37 –17.84 97.71 0.2 8091
2007Z PGC 0016993 5333 –22.9 · · · · · · · · · · · · · · ·

2007aa NGC 4030 1465 –21.1 -0.05 –16.32 · · · 0.7 5028
2007ab MCG –01.43-2 7056 –21.5 3.30 –16.98 71.30· · · · · ·

2007am** NGC 3367 3039 –21.4 · · · · · · · · · · · · · · ·

2007av NGC 3279 1394 –20.1 0.97 –16.27 · · ·

2007ay** UGC 4310 4359 –18.7 · · · · · · · · · · · · · · ·

2007hm SDSS J205755 7540 · · · 1.45 –16.47 · · · · · · · · ·

2007il IC 1704 6454 –20.7 0.31 –16.78 103.43 0.38 7634
2007it NGC 5530 1193 –19.6 1.35 –17.55 · · · · · · · · ·

2007oc NGC 7418 1450 –19.9 1.83 –16.68 71.62 0.11 7634
2007sq MCG –03-23-5 4579 –22.2 1.51 –15.33 88.34· · · · · ·

2008F MCG –01-8-15 5506 –20.5 0.45 –15.67 · · · · · · · · ·

2008H ESO 499-G05 4292 –21.5 · · · · · · · · · · · · · · ·

2008M ESO 121-26 2267 –20.4 1.14 –16.75 75.34 0.22 6674
2008N NGC 4273 2382 –20.6 · · · · · · · · · · · ·

2008W MCG -03-22-7 5757 –20.7 1.11 –16.60 83.86 · · · · · ·

2008ag IC 4729 4439 –21.5 0.16 –16.96 102.95· · · · · ·

2008aw NGC 4939 3110 –22.2 2.25 –17.71 75.83 0.13 7817
2008bh NGC 2642 4345 –20.9 1.20 –16.06 · · · 0.22 6857
2008bk NGC 7793 227 –18.5 0.11 –14.86 104.83 0.65 2925
2008bm CGCG 071-101 9563 –19.5 2.74 –18.12 87.04· · · · · ·

2008bp NGC 3905 2723 –21.6 3.17 –14.00 58.62 · · · · · ·

2008br IC 2522 3019 –20.9 0.45 –15.30 · · · 0.4 4571
2008bu ESO 586-G2 6630 –21.6 2.77 –17.14 44.75· · · · · ·

2008fq NGC 6907 3162 –21.8 · · · · · · · · · · · · · · ·

2008ga LCSB L0250N 4639 · · · 1.17 –16.45 72.79 · · · · · ·

2008gi CGCG 415-004 7328 –20.0 3.13 –17.31 · · · · · · · · ·

2008gq** MCG -02-26-39 3628 –19.4 · · · · · · · · · · · · · · ·

2008gr IC 1579 6831 –20.6 2.01 –17.95 · · · 0.17 8731
2008ho NGC 922 3082 –20.8 0.30 –15.11 · · · · · · · · ·

2008if MCG –01-24-10 3440 –20.4 2.10 -17.94 75.85 0.08 8731
2008il ESO 355-G4 6276 –20.7 0.93 -16.61 · · · · · · · · ·

2008in NGC 4303 1566 –20.4 0.83 -15.40 92.20 0.23 6903
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SN Host galaxy Vr(km s−1) HostMB s2(mag 100d−1) Mmax(mag) OPTd(d) a/e Hαvel(km s−1)
2009A anon 5160 · · · · · · · · · · · · · · · · · ·

2009N NGC 4487 1034 –20.2 0.34 –15.25 89.50 0.41 5348
2009aj ESO 221-G18 2844 –19.1 · · · · · · · · · · · · · · ·

2009ao NGC 2939 3339 –20.5 –0.01 -15.79 41.71 · · · · · ·

2009au ESO 443-21 2819 –19.9 3.04 -16.34 · · · · · · · · ·

2009bu NGC 7408 3494 –20.9 0.18 -16.05 · · · 0.5 5934
2009bz UGC 9814 3231 –19.1 0.50 -16.46 · · · · · · · · ·

Table A.1. SN names followed by their respective host galaxies are listed in columns one and two. These are followed by the host galaxy
recession velocity (taken from NED: http://ned.ipac.caltech.edu/) in column 3, and host galaxy absoluteB-band magnitude (taken from HyperLeda:
http://leda.univ-lyon1.fr/) in column 4. We then list SNV-band photometric and spectroscopic Hα parameters:s2 the ‘plateau’ decline rate, Mmax

the absolute magnitude at maximum light, OPTd the opticallythick phase duration, a/e the ratio of pEWs of Hα absorption to emission, and Hαvel

the FWHM velocity of Hα (with the latter two measured at a common epoch), in columns 5, 6, 7, 8, and 9 respectively. The reader is referred to
A14 and Gutiérrez et al. (2014) for more details of those measurements. (It is important to note that the SN magnitudes we use within this analysis
have not been corrected for host galaxy extinction.) * labels SNe IIn, while ** labels SNe IIb.
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Table B.1.H ii-region abundances and SN pEWs

SN Hii distance (kpc) M13 N2 (dex) M13 O3N2 (dex) PP04 N2 (dex) PP04 O3N2 (dex) pEW at 50d (Å)

1986L* 0.74 8.46+0.02
−0.02 8.39+0.02

−0.02 8.52+0.04
−0.04 8.52+0.03

−0.03 10.85±1.67
1990E* 5.08 8.48+0.02

−0.02 · · · 8.57+0.04
−0.04 · · · · · ·

1990K* 3.11 8.51+0.02
−0.02 8.47+0.02

−0.02 8.63+0.04
−0.05 8.63+0.03

−0.03 10.48±0.48
1991al* 3.39 8.43+0.02

−0.02 8.57+0.02
−0.02 8.47+0.03

−0.03 8.79+0.03
−0.03 13.57±0.83

1992af* 0.08 8.36+0.02
−0.02 8.29+0.02

−0.02 8.37+0.03
−0.03 8.36+0.03

−0.03 · · ·

1992am* 0.49 8.53+0.02
−0.02 8.51+0.02

−0.02 8.66+0.05
−0.05 8.69+0.03

−0.03 · · ·

1992ad 2.66 8.52+0.05
−0.05 · · · 8.65+0.11

−0.12 · · · · · ·

1992ba* 0.27 8.53+0.02
−0.02 · · · 8.67+0.04

−0.05 · · · 20.19±0.78
1993A 0.03 8.50+0.04

−0.04 · · · 8.60+0.08
−0.08 · · · · · ·

1993K 0.32 8.56+0.03
−0.03 8.56+0.03

−0.04 8.75+0.07
−0.07 8.76+0.05

−0.05 11.43±0.50
1993S 0.00 8.60+0.02

−0.02 · · · 8.87+0.06
−0.06 · · · 17.01±0.06

1999br* 0.35 8.47+0.03
−0.02 · · · 8.55+0.05

−0.05 · · · 25.89±1.06
1999ca* 1.84 8.41+0.02

−0.02 8.35+0.02
−0.02 8.45+0.03

−0.03 8.45+0.03
−0.03 17.57±0.25

1999cr* 0.64 8.08+0.02
−0.02 8.09+0.02

−0.02 8.11+0.02
−0.02 8.06+0.03

−0.03 13.72±2.81
1999eg 0.93 8.66+0.05

−0.05 · · · 9.03+0.15
−0.17 · · · · · ·

1999em* 0.23 8.51+0.03
−0.03 · · · 8.63+0.06

−0.06 · · · 22.59±1.07
2002ew 1.09 8.44+0.05

−0.04 8.32+0.05
−0.04 8.49+0.08

−0.08 8.41+0.07
−0.06 8.88±4.70

2002fa 4.18 8.55+0.06
−0.05 · · · 8.71+0.13

−0.13 · · · 15.11±2.34
2002gd 0.00 8.49+0.05

−0.05 8.36+0.03
−0.03 8.58+0.09

−0.10 8.47+0.05
−0.05 22.51±3.26

2002gw* 2.07 8.24+0.02
−0.02 8.22+0.02

−0.02 8.24+0.02
−0.02 8.27+0.03

−0.03 19.91±1.04
2002hj 2.65 8.41+0.01

−0.01 · · · 8.45+0.02
−0.02 · · · 17.13±2.68

2002hx 8.91 8.55+0.05
−0.05 8.49+0.06

−0.07 8.72+0.12
−0.12 8.66+0.09

−0.10 21.04±1.06
2002ig 0.00 8.34+0.11

−0.09 · · · 8.34+0.11
−0.12 · · · · · ·

2003B* 3.80 8.55+0.02
−0.02 8.57+0.02

−0.02 8.72+0.05
−0.05 8.79+0.03

−0.03 24.55±0.91
2003E* 0.28 8.12+0.02

−0.02 8.20+0.02
−0.02 8.14+0.02

−0.02 8.23+0.03
−0.03 11.15±3.90

2003T* 2.29 8.51+0.02
−0.02 8.49+0.02

−0.02 8.64+0.05
−0.05 8.66+0.03

−0.03 23.97±0.58
2003bl 2.26 8.54+0.01

−0.01 8.59+0.01
−0.01 8.70+0.02

−0.02 8.81+0.02
−0.02 23.93±1.87

2003bn 0.00 8.52+0.03
−0.03 · · · 8.64+0.06

−0.06 · · · 15.08±3.31
2003ci* 5.18 8.50+0.02

−0.02 8.56+0.02
−0.02 8.61+0.04

−0.04 8.76+0.03
−0.03 15.92±0.94

2003cn 2.61 8.38+0.02
−0.02 8.35+0.02

−0.02 8.40+0.03
−0.03 8.45+0.03

−0.03 16.93±2.54
2003cx 0.48 8.03+0.06

−0.05 8.06+0.03
−0.03 8.06+0.06

−0.04 8.03+0.05
−0.04 11.49±1.58

2003dq 0.50 8.15+0.03
−0.03 8.15+0.02

−0.02 8.17+0.03
−0.03 8.15+0.03

−0.03 · · ·

2003ef* 1.62 8.53+0.02
−0.02 8.59+0.02

−0.02 8.66+0.04
−0.05 8.81+0.03

−0.03 22.29±0.61
2003eg 10.01 8.57+0.05

−0.04 · · · 8.77+0.11
−0.13 · · · · · ·

2003ej 0.13 8.34+0.04
−0.03 8.27+0.02

−0.02 8.34+0.04
−0.04 8.34+0.03

−0.03 10.43±0.50
2003fb* 4.52 8.49+0.02

−0.02 8.46+0.03
−0.03 8.58+0.05

−0.05 8.62+0.04
−0.04 19.23±1.51

2003gd* 0.20 8.45+0.04
−0.04 8.45+0.05

−0.06 8.50+0.06
−0.07 8.61+0.08

−0.09 30.00±0.50
2003hd* 1.31 8.46+0.02

−0.02 8.38+0.02
−0.02 8.52+0.04

−0.04 8.50+0.03
−0.03 15.34±1.37

2003hk* 13.43 8.51+0.02
−0.02 8.44+0.02

−0.02 8.62+0.04
−0.05 8.60+0.03

−0.03 18.43±1.16
2003hl* 1.00 8.53+0.02

−0.02 8.63+0.02
−0.02 8.66+0.04

−0.05 8.87+0.03
−0.03 21.85±1.96

2003hn* 3.30 8.42+0.02
−0.02 8.35+0.02

−0.02 8.46+0.03
−0.03 8.46+0.03

−0.03 17.43±0.27
2003ho 1.22 8.54+0.06

−0.05 · · · 8.69+0.13
−0.13 · · · 16.94±0.65

2003ib 1.64 8.56+0.03
−0.02 · · · 8.74+0.06

−0.06 · · · 14.77±0.01
2003ip 3.46 8.54+0.06

−0.05 · · · 8.71+0.13
−0.14 · · · 9.21±2.26

2003iq 0.00 8.51+0.02
−0.02 · · · 8.64+0.04

−0.04 · · · 19.81±0.67
2004dy 1.31 8.62+0.01

−0.01 · · · 8.91+0.03
−0.04 · · · · · ·

2004ej 0.78 8.55+0.04
−0.04 8.57+0.04

−0.04 8.71+0.10
−0.11 8.79+0.06

−0.06 20.74±0.46
2004er 0.52 8.47+0.01

−0.01 8.41+0.01
−0.01 8.54+0.02

−0.02 8.55+0.02
−0.02 13.58±1.95

2004fb 0.00 8.56+0.01
−0.01 · · · 8.74+0.02

−0.03 · · · 15.48±0.50
2004fc 0.00 8.54+0.02

−0.02 8.51+0.03
−0.03 8.71+0.05

−0.06 8.70+0.05
−0.05 16.62±4.04

2004fx 5.05 8.43+0.05
−0.04 · · · 8.47+0.08

−0.08 · · · 18.75±1.39
2005J 1.70 8.59+0.03

−0.03 · · · 8.81+0.09
−0.09 · · · 15.99±2.08

2005K 0.14 8.42+0.05
−0.04 · · · 8.46+0.07

−0.07 · · · 20.15±0.50
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SN Hii distance (kpc) M13 N2 (dex) M13 O3N2 (dex) PP04 N2 (dex) PP04 O3N2 (dex) pEW at 50d (Å)

2005Z -0.01 8.55+0.02
−0.02 · · · 8.71+0.06

−0.06 · · · 12.36 0.75
2005af 0.55 8.53+0.07

−0.06 · · · 8.66+0.14
−0.15 · · · · · ·

2005an 0.00 8.53+0.03
−0.02 · · · 8.67+0.06

−0.06 · · · 15.07±1.26
2005dk 1.82 8.54+0.03

−0.03 · · · 8.69+0.07
−0.07 · · · 13.71±0.37

2005dn 0.56 8.15+0.03
−0.03 · · · 8.17+0.02

−0.03 · · · 4.05±0.65
2005dt 6.84 8.44+0.08

−0.06 · · · 8.49+0.12
−0.12 · · · · · ·

2005dw 0.00 8.53+0.01
−0.01 8.51+0.01

−0.01 8.68+0.01
−0.01 8.69+0.02

−0.02 · · ·

2005dx 0.00 8.52+0.03
−0.03 · · · 8.65+0.07

−0.07 · · · · · ·

2005dz 2.21 8.54+0.04
−0.04 · · · 8.69+0.08

−0.10 · · · 35.56±3.05
2005es 0.00 8.60+0.06

−0.06 · · · 8.85+0.16
−0.18 · · · · · ·

2005gk 0.00 8.51+0.04
−0.04 · · · 8.62+0.07

−0.08 · · · · · ·

2005gz 0.00 8.55+0.01
−0.01 8.55+0.03

−0.03 8.71+0.03
−0.03 8.75+0.04

−0.05 · · ·

2005kh 3.36 8.55+0.05
−0.05 · · · 8.71+0.11

−0.15 · · · · · ·

2005me 3.17 8.48+0.03
−0.03 · · · 8.56+0.06

−0.06 · · · · · ·

2006Y 0.00 8.28+0.04
−0.04 8.21+0.03

−0.03 8.28+0.04
−0.04 8.25+0.05

−0.04 6.74±1.18
2006ai 0.00 8.51+0.03

−0.03 8.49+0.02
−0.02 8.62+0.06

−0.06 8.66+0.03
−0.03 15.43±1.26

2006bc 0.00 8.57+0.03
−0.03 8.53+0.04

−0.04 8.77+0.08
−0.09 8.72+0.06

−0.06 · · ·

2006be 0.04 8.57+0.02
−0.02 8.35+0.02

−0.02 8.76+0.04
−0.04 8.46+0.03

−0.03 15.72±0.71
2006bl 0.00 8.51+0.03

−0.03 · · · 8.62+0.06
−0.06 · · · · · ·

2006it 0.00 8.61+0.02
−0.02 · · · 8.89+0.05

−0.05 · · · · · ·

2006iw 5.10 8.55+0.01
−0.01 · · · 8.72+0.04

−0.04 · · · 13.25±0.50
2006ms 0.00 8.57+0.03

−0.03 · · · 8.78+0.07
−0.07 · · · · · ·

2006qq 0.00 8.52+0.03
−0.02 8.54+0.04

−0.04 8.65+0.05
−0.05 8.74+0.06

−0.06 · · ·

2006qr 1.31 8.63+0.04
−0.04 · · · 8.95+0.12

−0.13 · · · 24.84±2.26
2007W 0.00 8.47+0.06

−0.05 8.45+0.06
−0.06 8.54+0.10

−0.10 8.60+0.09
−0.09 24.22±1.23

2007X 4.16 8.60+0.05
−0.05 · · · 8.85+0.13

−0.15 · · · 13.81±0.99
2007Z 0.00 8.56+0.02

−0.02 · · · 8.75+0.06
−0.06 · · · · · ·

2007am 0.00 8.53+0.01
−0.01 8.58+0.01

−0.01 8.68+0.01
−0.01 8.81+0.02

−0.02 · · ·

2007aa 0.00 8.76+0.01
−0.01 · · · 9.45+0.04

−0.04 · · · 23.55±0.67
2007ab 9.88 8.58+0.06

−0.06 · · · 8.80+0.16
−0.17 · · · 17.35±1.54

2007av 0.00 8.58+0.02
−0.02 8.51+0.03

−0.03 8.80+0.06
−0.07 8.69+0.04

−0.04 22.50±0.14
2007ay 0.26 8.58+0.02

−0.02 · · · 8.80+0.05
−0.05 · · · · · ·

2007hm 10.99 8.47+0.02
−0.02 8.44+0.05

−0.05 8.55+0.03
−0.03 8.59+0.08

−0.08 12.85±1.00
2007il 0.00 8.49+0.02

−0.02 8.40+0.02
−0.02 8.57+0.04

−0.04 8.54+0.03
−0.02 14.23±2.22

2007it 1.47 8.58+0.02
−0.02 · · · 8.80+0.07

−0.07 · · · · · ·

2007oc 1.54 8.36+0.02
−0.02 8.23+0.02

−0.02 8.37+0.02
−0.02 8.28+0.03

−0.03 10.01±1.77
2007sq 3.08 8.52+0.03

−0.03 · · · 8.64+0.07
−0.07 · · · 8.75±0.50

2008F 0.05 8.59+0.06
−0.05 · · · 8.81+0.15

−0.15 · · · · · ·

2008H 0.13 8.63+0.01
−0.01 · · · 8.93+0.04

−0.04 · · · 22.00±2.40
2008M 0.00 8.43+0.03

−0.03 8.34+0.03
−0.03 8.48+0.05

−0.05 8.44+0.05
−0.05 20.36±3.95

2008N 0.00 8.58+0.02
−0.02 · · · 8.81+0.06

−0.06 · · · · · ·

2008W 0.00 8.60+0.04
−0.04 8.48+0.04

−0.05 8.86+0.11
−0.13 8.66+0.07

−0.07 17.80±2.61
2008ag 4.24 8.50+0.01

−0.01 · · · 8.61+0.02
−0.02 · · · 23.88±0.73

2008aw 0.49 8.62+0.01
−0.01 8.51+0.02

−0.02 8.91+0.04
−0.04 8.70+0.03

−0.03 12.47±0.60
2008bh 0.51 8.58+0.04

−0.04 · · · 8.80+0.09
−0.10 · · · 16.15±0.50

2008bk 0.17 8.49+0.06
−0.05 · · · 8.58+0.11

−0.12 · · · 24.12±0.83
2008bm 0.00 8.33+0.02

−0.02 8.24+0.02
−0.02 8.33+0.02

−0.02 8.28+0.03
−0.02 10.32±0.81

2008bp 2.39 8.54+0.06
−0.05 · · · 8.68+0.14

−0.14 · · · 34.47±6.53
2008br 1.17 8.46+0.02

−0.02 8.40+0.02
−0.02 8.53+0.04

−0.04 8.54+0.03
−0.03 23.53±4.98

2008bu 0.00 8.26+0.02
−0.02 · · · 8.26+0.02

−0.02 · · · · · ·

2008fq 0.00 8.57+0.04
−0.04 · · · 8.78+0.09

−0.10 · · · · · ·

2008ga 16.18 8.50+0.07
−0.06 · · · 8.61+0.13

−0.14 · · · 17.00 2.30
2008gi 0.00 8.53+0.02

−0.02 8.45+0.03
−0.04 8.68+0.04

−0.05 8.61+0.05
−0.06 16.38±1.75

2008gq 7.46 8.44+0.02
−0.02 8.41+0.03

−0.03 8.48+0.04
−0.04 8.55+0.04

−0.04 · · ·

2008gr 1.97 8.46+0.03
−0.03 · · · 8.52+0.05

−0.06 · · · 6.26±1.11
2008ho 0.00 8.30+0.01

−0.01 8.26+0.01
−0.01 8.30+0.01

−0.01 8.33+0.02
−0.02 · · ·
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SN Hii distance (kpc) M13 N2 (dex) M13 O3N2 (dex) PP04 N2 (dex) PP04 O3N2 (dex) pEW at 50d (Å)

2008if 0.37 8.62+0.17
−0.11 · · · 8.90+0.40

−0.38 · · · 9.67±1.17
2008il 1.88 8.37+0.03

−0.03 · · · 8.38+0.04
−0.04 · · · · · ·

2008in 0.34 8.61+0.01
−0.01 8.53+0.01

−0.01 8.88+0.02
−0.02 8.72+0.02

−0.02 24.62±0.77
2009A 0.00 8.22+0.03

−0.03 8.19+0.02
−0.02 8.22+0.02

−0.02 8.22+0.03
−0.02 · · ·

2009N 0.23 8.48+0.02
−0.02 · · · 8.57+0.04

−0.05 · · · 26.60±0.67
2009aj 3.49 8.29+0.03

−0.03 8.31+0.04
−0.04 8.29+0.03

−0.03 8.40+0.07
−0.06 9.02±0.90

2009ao 0.00 8.55+0.02
−0.02 · · · 8.71+0.05

−0.05 · · · 18.87±0.39
2009au 0.00 8.56+0.03

−0.03 · · · 8.76+0.08
−0.08 · · · 14.65±2.63

2009bu 0.42 8.42+0.02
−0.02 · · · 8.45+0.03

−0.04 · · · 14.19±0.31
2009bz 3.44 8.43+0.03

−0.03 · · · 8.48+0.05
−0.05 · · · · · ·

Table B.2. In the first column we list the SN name. In column 2 the distanceof the spectral extraction region from the explosion site isgiven. In
columns 3 and 4 we list the oxygen abundances as calculated bythe M13 N2 and O3N2 diagnostics respectively. These are followed by the the
oxygen abundances as calculated by the Pettini & Pagel (2004) N2 and O3N2 diagnostics in columns 5 and 6. Finally in column7 we list the Feii
5018 Å pEWs as estimated at 50 d. Errors on pEWs are those obtained from the fitting process to the sample of pEWs for each SN. In the case of
a straight-line fit to two data points we set the minimum errorto 0.5Å. The inferred abundances of SN 2005dn are upper limits as [Nii] was not
detected in the spectra. To estimate abundances a 3σ [N ii] flux upper limit was calculated using an estimation of the RMS noise in the spectrum
close in wavelength to the spectral line. Removing this SN from our correlations has a negligible effect on our results and conclusions. The SNe
where abundance measurements are taken from Anderson et al.(2010) are indicated by * next to the SN name.
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