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Impurity diffusion coefficients are entirely obtained from a low cost classical molecular statics technique
(CMST). In particular, we show how CMST is appropriate in order to describe the impurity diffusion
behavior mediated by a vacancy mechanism. In the context of the five-frequency model, CMST allows
to calculate all the microscopic parameters, namely: the free energy of vacancy formation, the
vacancy-solute binding energy and the involved jump frequencies, from them, we obtain the macroscopic
transport magnitudes such as: correlation factor, solvent-enhancement factor, Onsager and diffusion
coefficients. Specifically, we perform our calculations in f.c.c. diluted Ni–Al and Al–U alloys. Results for
the tracer diffusion coefficients of solvent and solute species are in agreement with available experimen-
tal data for both systems. We conclude that in Ni–Al and Al–U systems solute atoms migrate by direct
interchange with vacancies in all the temperature range where there are available experimental data.
In the Al–U case, a vacancy drag mechanism could occur at temperatures below 550 K.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The low enrichment of U–Mo alloy dispersed in an Al matrix is a
prototype for new experimental nuclear fuels [1]. When these met-
als are brought into contact, diffusion in the Al=U—Mo interface
gives rise to interaction phases. Also, when subjected to tempera-
ture and neutron radiation, phase transformation from cU to aU
occurs and intermetallic phases develop in the U–Mo/Al interac-
tion zone. Fission gas pores nucleate in these new phases during
service producing swelling and deteriorating the alloy properties
[1,2]. An important technological goal is to delay or directly avoid
undesirable phase formation by inhibiting interdiffusion of Al and
U components. Some of these compounds are believed to be
responsible for degradation of properties [3].

Housseau et al. [4], based on the effective diffusion coefficients
values calculated from their experimental permeation tests, have
demonstrated that these undesirable phases have not influence
on the mobility of U in Al. On the other hand, Bierlin and Green
[5] have reported the activation energy values of U mobility in Al,
based on the maximum rate of penetration of U into Al.

On the other hand, Brossa et al. [6], have produced couples and
triplets structures using deposition methods to study the efficient
diffusion barriers that should have simultaneously, a good bonding
effect and a good thermal conductivity. The practical interest of a
Ni barrier is shown by several publications concerning with the dif-
fusion in the systems Al—Ni;Ni—U and Al—Ni—U. The study of the
Ni—Al binary system was, limited to solid samples of the sand-
wich-type, clamped together by a titanium screw and diffusion
treatments have been carried out. Results from this work [6], have
inspired present calculations.

Therefore it is important to study carefully and with special
attention the initial microscopic processes that originate these
intermetallic phases. In order to deal with this problem we started
studying numerically the static and dynamic properties of vacan-
cies and interstitials defects in the Al(U) bulk and in the neighbor-
hood of a ð111ÞAl=ð001ÞaU interface using molecular dynamics
calculations [7,8]. Here, we review our previous works [7,8], per-
forming calculation of the tracer diffusion coefficients in binary
Ni—Al and Al—U alloys, using analytical expressions of the diffusion
parameters in terms of microscopical magnitudes.

We have summarized the theoretical tools needed to express
the diffusion coefficients in terms of microscopic magnitudes such
as, the jump frequencies, the free vacancy formation energy and
the vacancy-solute binding energy. Then we start with non-
equilibrium thermodynamics in order to relate the diffusion
coefficients with the phenomenological Onsager L-coefficients.
The microscopic kinetic theory, allows us to write the Onsager
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coefficients in term of the jump frequency rates [9,10], which are
evaluated from the migration barriers and the phonon frequencies
under the harmonic approximation. The lattice vibrations are trea-
ted within the conventional framework of Vineyard [11] that cor-
responds to the classical limit.

The jump frequencies are identified by the model developed
further by Le Claire in Ref. [12], known as the five-frequency model
for f.c.c lattices. The method includes the jump frequency associ-
ated with the migration of the host atom in the presence of an
impurity at a first nearest neighbor position. All this concepts need
to be put together in order to correctly describe the diffusion
mechanism. Hence, in the context of the shell approximation, we
follow the technique developed by Allnatt in Refs. [9,10] to obtain
the corresponding transport coefficients, which are related to the
diffusion coefficients through the flux equations.

A similar procedure for f.c.c. structures was performed by Man-
tina et al. [13,14] for Mg; Si and Cu diluted in Al but using density
functional theory (DFT). Also, using DFT calculations for b.c.c. struc-
tures, Choudhury et al. [15] have calculated the tracer self-diffusion
and solute diffusion coefficients in diluted Fe—Ni and Fe—Cr alloys
including an extensive analysis of the Onsager L-coefficients.

In the present work, we do not employ DFT, instead we use a
classical molecular statics technique coupled to the Monomer
method [16]. This much less computationally expensive method
allows us to compute at low cost a bunch of jump frequencies from
which we can perform averages in order to obtain more accurate
effective frequencies. Although we use classical methods, we have
also reproduced the migration barriers for Ni—Al with DFT calcula-
tions coupled to the Monomer method [17].

We proceed as follows, first of all we validate the five-frequency
model using the Ni—Al system as a reference case for which there is
a large amount of experimental data and numerical calculations
[18]. Since, the Al—U and Ni—Al systems share the same crystallo-
graphic f.c.c. structure, the presented description is analogous for
both alloys. The full set of frequencies are evaluated employing
the economic Monomer method [16]. The Monomer is used to
compute the saddle points configurations from which we obtain
the jumps frequencies defined in the five-frequency model.

For the Ni—Al system case, our results of the tracer solute and
self-diffusion coefficients are in good agreement with the experi-
mental data. In this case we found that Al in Ni, at diluted concen-
trations, migrates as a free specie in the full range of temperatures
here considered. In the case of Al—U, present calculations show
that both, the tracer and self-diffusion coefficients agree very well
with the available experimental data in Ref. [4], although a vacancy
drag mechanism could occur at temperatures below 500 K, while,
for at high temperatures the solute U migrates by direct inter-
change with the vacancy.

The paper is organized as follows: In Section 2 we briefly
introduce a summary of the macroscopic equations of atomic
transport that are provided by non-equilibrium thermodynamics
[19–21]. In this way analytical expressions of the intrinsic diffusion
coefficients in binary alloys in terms of Onsager coefficients are
presented. Section 3, is devoted to give the way to evaluate the
Onsager phenomenological coefficients following the procedure
of Allnatt [9,10] in terms of the jumps frequencies in the context
of the five-frequency model. In Section 4 we show the methodol-
ogy used to evaluate the tracer diffusion coefficients for the solvent
and solute atoms, as well as, the so called solvent enhancement
factor. Finally, in Section 5 we present our numerical results using
the theoretical procedure here summarized, which show a perfect
accuracy with available experimental data, also we give an expres-
sion for the vacancy wind parameter which gives essential infor-
mation about the flux of solute atoms induced by vacancy flow.
The last section briefly presents some conclusions.
2. Theory summary: the flux equations

Isothermal atomic diffusion in binary A—S alloys can be
described through a linear expression between the fluxes Jk and
the driving forces related by the Onsager coefficients Lij as,

Jk ¼
XN

i

LkiXi; ð1Þ

where N is the number of components in the system, Jk describes
the flux vector density of component k, while Xk is the driving force
acting on component k. The second range tensor Lij is symmetric
(Lij ¼ Lji) and depends on pressure and temperature, but is indepen-
dent of the driving forces Xk. From (1) the 1st Fick’s law, which
describes the atomic jump process on a macroscopic scale, can be
recovered. On the other hand, for each k component, the driving
forces may be expressed, in absence of external force, in terms of
the chemical potential lk, so that [19],

Xk ¼ �Tr lk

T

� �
: ð2Þ

In (2) T is the absolute temperature, and the chemical potential
lk is the partial derivative of the Gibbs free energy with respect to
the number of atoms of specie k that is,

lk ¼
@G
@Nk

� �
T;P;Nj–k

¼ l�kðT; PÞ þ kBT lnðckckÞ; ð3Þ

where ck, is the activity coefficients, which is defined in terms of the
activity ak ¼ ckck and ck, is the molar concentration of specie k.

For the particular case of a binary diluted alloy ðA; SÞ with N
available lattice sites per unit volume, containing molar concentra-
tions cA for host atoms, cS of solute atoms (impurities) and cV

vacancies, the fluxes in terms of the Onsager coefficients are
expressed as,

JA ¼ �
kBT
N

LAA

cA
� LAS

cS

� �
1þ @lncA

@lncA

� �
rcA; ð4Þ

JS ¼ �
kBT
N

LSS

cS
� LAS

cA

� �
1þ @lncS

@lncS

� �
rcS; ð5Þ

and

JV ¼ �ðJA þ JSÞ: ð6Þ

From (4) and (5), we define

DA ¼
kBT
N

LAA

cA
� LAS

cS

� �
/A; ð7Þ

DS ¼
kBT
N

LSS

cS
� LSA

cA

� �
/S: ð8Þ

In the case of cA; cS � cV , the diffusion coefficient for the
vacancy is given by,

DV ¼
kBT
cV

LAA þ LSS þ 2LASð Þ: ð9Þ

In (7) and (8), DA and DS are the intrinsic diffusion coefficients
for solvent A and solute S respectively, while DV is the vacancy dif-
fusion coefficient [22]. In (7) and (8) the quantities /A; /S are the
thermodynamic factors,

/A ¼ 1þ @lncA

@lncA

� �
¼ /S ¼ 1þ @lncS

@lncS

� �
: ð10Þ

Murch and Qin [21] have shown that the standard intrinsic dif-
fusion coefficients in (7) and (8) can be expressed in terms of the
tracer diffusion coefficients DH

A ;D
H

S which are measurable quanti-
ties, and the collective correlation factor fij (i; j ¼ A; S) as:
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DA ¼ D0
A fAA �

cA

cS
f ðAÞAS

� �
/A ¼ DH

A
fAA

fA
� cA

cS

� �
f ðAÞAS

fA

" #
/A; ð11Þ

DS ¼ D0
S fSS �

cS

cA
f ðSÞAS

� �
/S ¼ DH

S
fSS

fS
� cS

cA

� �
f ðSÞAS

fS

" #
/S: ð12Þ

The intrinsic diffusion coefficients in (11) and (12) are known as
the modified Darken equations, where D0

i ¼ s2Ci=6 (i ¼ A; S) are the
diffusion coefficients of atoms of specie i in a complete random
walk performing Ci jumps of length s per unit time. The collective
correlation factors fij are related to the Lij coefficients through,

fAA ¼
kBT
NcA

LAA
1

D0
A

 !
; f SS ¼

kBT
NcS

LSS
1

D0
S

 !
; ð13Þ

and for the mixed terms,

f ðAÞAS ¼
kBT
NcA

LðAÞAS

1
D0

A

 !
; f ðSÞAS ¼

kBT
NcS

LðSÞAS

1
D0

S

 !
: ð14Þ

The tracer correlation factors fA; fS are defined as the ratios
fA ¼ DH

A =D0
A and fS ¼ DH

S =D0
S respectively. The term in square brack-

ets in the second term of Eqs. (11) and (12), is the vacancy wind
factor G [24]. In the next sections, we present the Onsager coeffi-
cients in terms of the atomic jump frequencies taken from Ref.
[9,10].
3. The L-coefficients in the shell approximation

In order to understand the effect of different vacancy exchange
mechanisms on solute diffusion, we adopt an effective five fre-
quency model à la Le Claire [12] for f.c.c. lattices, assuming that
the perturbation of the solute movement by a vacancy V, is limited
to its immediate vicinity. Fig. 1 defines the jump rates xi

(i ¼ 1;2;3;4) considering only jumps between first neighbors. For
them, w2 implies in the exchange between the vacancy and the sol-
ute, w1 when the exchange between the vacancy and the solvent
atom lets the vacancy as a first neighbor to the solute (positions
denoted with circled 1 in Fig. 1). The frequency of jumps such that
the vacancy goes to sites that are second neighbor of the solute is
denoted by x3 (sites with circled 2). The model includes the jump
Fig. 1. The five-frequency model of a solute-vacancy pair in a f.c.c. lattice.
rate x4 for the inverse of x3. Jumps toward sites that are third and
forth neighbor of the solute are all denoted with x03 and x003 respec-
tively while x04 and x004 are used for their respective inverse
frequency jumps. The jump rate x0 is used for vacancy jumps
among sites more distant than forth neighbors of the solute atom.
In this context, that enables association (x4) and dissociation reac-
tions (x3), i.e. the formation and break-up of pairs, the model
include free solute and vacancies to the population of bounded
pairs. It is assumed that a vacancy which jumps from the second
to the third shell, with x0, will never return (or returns from a ran-
dom direction). As in Ref. [15] we express

7xH

3 ¼ 2x3 þ 4x03 þx003; ð15Þ

and

7xH

4 ¼ 2x4 þ 4x04 þx004: ð16Þ

The six symmetry types of vacancy sites that are in the first
coordination shell (first neighbor with the solute) or in the second
coordination shell (sites accessible from the first shell by one single
vacancy jump) are shown in Fig. 2. Sites that are equally distant
from the solute atom S at the origin, and that have the same
abscissa (x-coordinate in Fig. 2) share the same vacancy occupation
probability ni, equivalently for ni. Table 1 resumes the sites proba-
bility with nij where for i – 0 there is only one index i that is given
in crescent order with the distance to the solute atom S in a posi-
tive abscissa, while i denote sites with negative x coordinate. For
the sites in the x ¼ 0 plane (i ¼ 0), the sites are denoted with two
indexes as n0j, where the second index j is given in crescent order
of the distance to the solute atom S. Table 1 denotes the number of
different types of sites and the distance of them to the x axis.

The Onsager coefficients can be entirely obtained in terms of
both, the free and paired specie concentrations, and the jump fre-
quencies xi. For the case of binary alloys the coefficients are LAA; LSS

and LAS.
As was shown in Refs. [9,10], the Onsager coefficient for the

solute specie can be written as
Fig. 2. (Colors online) The coordinated shell model in f.c.c. lattice (see Ref. [23]). The
different types of symmetries shown are detailed in Table 1. In the figure, blue
bullets are the first twelve neighbors sites with the solute S at the origin. In green
the 42 subsequent sites. In red, the third coordinated shell from which the vacancy
never returns to the second shell.



Table 1
Probability of occurrence of the vacancy at a site of the subset nj .

nij [23] n5 n4 n3 n2 n1 n01 n02 n0

# of sites 4 8 4 1 4 4 4 4
separation 2a a

ffiffiffi
2
p

0 a
ffiffiffi
5
p

a a
ffiffiffi
2
p

2a a
ffiffiffi
2
p
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LSS ¼ Lðx2Þ 1� 2x2

X

� 	
; ð17Þ

were the function LðxiÞ is,

LðxiÞ ¼ Nbcpxi
s2

6
: ð18Þ

In (18) s ¼ a=
ffiffiffi
2
p

is the jump length, with a is the lattice param-
eter for f.c.c. solvent A and cp denotes the site fraction of solute
atoms with a vacancy among their z nearest-neighbor sites. X in
(17) is given by

X ¼ 2ðx1 þx2Þ þ 7xH

3 F: ð19Þ

Introducing X (19) in LSS (17), we obtain the tracer correlation
factor for the solute fS as,

fS ¼
2x1 þ 7xH

3 F
2ðx1 þx2Þ þ 7xH

3 F
: ð20Þ

The quantity F in (20) is a function of the ratio y ¼ xH

4 =x0 which
is expressed as,

7ð1� FÞ ¼ yðB1y3 þ B2y2 þ B3yþ B4Þ
B5y4 þ B6y3 þ B7y2 þ B8yþ B9

: ð21Þ

Table 2 shows the Bi coefficients in (21) calculated by Manning
[24] and Koiwa [25] using respectively exact and perturbative
methods. Also following [9,10], the mixed coefficient LAS is,

LAS ¼ LSA

¼ 2Lðx2Þ � 3xH

3 � 2x1 þ 7xH

3 ð1� FÞðx0 �xH

4

xH

4
Þ

� 	
1
X
: ð22Þ

While for the solvent,

LAA ¼ Lð0ÞAA þ Lð1ÞAA ; ð23Þ

with

Lð0ÞAA ¼ Lð4x1 þ 14xH

3 Þ þ 2Nbs2x0ðcV � cpÞ½1� 7ðcS � cpÞ�; ð24Þ

and

Lð1ÞAA ¼ �2Lð3xH

3

� 2x1Þ ð3xH

3 � 2x1Þ þ 7xH

3 ð1� FÞ x0 �xH

4

xH

4

� �� �
1
X

� 2Lð3xH

3 � 2x1Þ � 7xH

3 ð1� FÞ x0 �xH

4

xH

4

� �� �
1
X

� 2Lð3xH

3 Þ
x0 �xH

4

xH

4

� �2

� 7ð1� FÞð2x2 þ 2x1 þ 7xH

3 Þ
1
X

� �
: ð25Þ
Table 2
Coefficients in the expression for F for the five frequency model calculated by Manning [2

B1 B2 B3 B4

Ref. [24] 20 380 2062 3189
Ref. [25] 10 180 924 1338
For evaluating the L-coefficients (17), (22) and (23), two param-
eters are needed, namely, the fraction of unbounded vacancies
c0V ¼ cV � cp and the unbound solute atoms c0S ¼ cS � cp. They are
related with the frequency jumps through the mass action equa-
tion [12],

cp

c0V c0S
¼ z expð�Eb=kBTÞ ¼ xH

4

xH

3
; ð26Þ

where Eb is the binding energy of the solute atom with a vacancy at
its nearest neighbor sites. Then, if the pairs and free vacancies are in
local equilibrium and the fraction of solute cS is much greater than
both cV and cp, we can define the equilibrium constant K as,

cp

cV � cp
¼ zcS expð�Eb=kBTÞ � KcS; ð27Þ

and equivalently

cp ¼ cV
KcS

1þ KcS

� �
: ð28Þ

In the next section we present the analytical expressions for the
tracer diffusion coefficients DH

A and DH

S in terms of the jump fre-
quencies xi defined in the five-frequency model through the full
set of L-coefficients expressions in (17)–(25).

4. The tracer diffusion coefficients DA and DS

The diffusion model here described, is validated by the compar-
ison of present simulations with available experimental data for
the tracer diffusion coefficients DH

A and DH

S .
In the diluted limit (cS ! 0) the intrinsic diffusion coefficient DS

in (8) is identical to the tracer diffusion coefficient DH

S ,

DS ¼ DH

S ð0Þ ¼
kBT
NcS

LSS: ð29Þ

Introducing LSS from (17) in (29), and assuming that
cV � cp ! c0V ¼ cV in the detailed balance Eq. (26), we obtain an
expression for the tracer solute diffusion coefficient as,

DH

S ð0Þ ¼
s2

6
x2

cp

cS

� �
� 2x1 þ 7xH

3 F
2x1 þ 2x2 þ 7xH

3 F

� 	

¼ z
s2

6
x2cV expð�Eb=kBTÞ � fS: ð30Þ

where s ¼ a=
ffiffiffi
2
p

and z ¼ 12, is the coordination number for f.c.c. lat-
tices. In (30) the term in brackets is the solute correlation factor fS.

On the other hand, based on Le Claire’s model [12], the tracer
self-coefficient DH

A ðcSÞ with a diluted concentration cS of solute
atoms S, can be expressed in terms of the self diffusion coefficient
DH

A ð0Þ, of the pure A matrix and the so called solvent enhancement
factor bAH as,

DH

A ðcSÞ ¼ DH

A ð0Þð1þ bAH cSÞ: ð31Þ

As was shown in Ref. [26], the self-diffusion coefficient DH

A ð0Þ in
(31), can be obtained from expression (30) for the tracer diffusion
coefficient S, by replacing all the jump frequencies xi by x0 and
taking Eb ¼ 0. Hence, the self-diffusion coefficient can be written
as:
4] and Koiwa [25].

B5 B6 B7 B8 B9

4 90 656 1861 1711
2 40 253 596 435
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DH

A ð0Þ ¼ z
s2

6
x0cV f0; ð32Þ

where f0, the correlation factor for pure f.c.c. metals, is obtained
from fS in (20) by replacing all the jump frequencies xi by x0. Note
that in (21) if xH

4 =x0 ¼ 1, and the Bi coefficients are those in Table 2
then 7F ¼ 5:69 or 7F ¼ 5:15, respectively for the Manning [24] or
Koiwa [25] descriptions. Inserting the value 7F ¼ 5:69 or
7F ¼ 5:15 in (20) we obtain f0 ¼ 0:7936 or f0 ¼ 0:7814, respectively.

At thermodynamic equilibrium the vacancy concentration
cV ¼ cð0ÞV is given by,

c0
V ¼ exp �EV

f =kBT
� �

; ð33Þ

where EV
f is the formation energy of the vacancy in pure A. The

entropy terms are here set to zero, which is a simplifying approxi-
mation. So that, inserting (33) in (32) we get

DH

A ð0Þ ¼ z
s2

6
x0f0 exp �bEV

f

� �
: ð34Þ

As was demonstrated by Le Claire in Ref. [12], the solvent
enhancement factor, bAH in (31), depends on the properties of the
solute-vacancy model. As an approximation for the five-frequency
model, only valid in the context of the random alloy model [19],
bAH can be calculated directly from the Onsager phenomenological
coefficients LAS and LAA in (22) and (23) respectively, through,

DH

A ¼
kBTf0

NcA
ðLAA þ LABÞ: ð35Þ

Then, bAH is obtained by equating the expressions (31) and (35) for
DH

A hence,

kBT
NcA

LAA þ LASð Þ ¼ z
s2

6
x0cV ð1þ bH

A � cSÞ: ð36Þ

Also, Belova and Murch [28] have address the problem of the
enhancement of the solvent in diluted alloys giving an expression
for bAH in terms of f0 and the ratio x2=x0, up to third order in the
solute concentration. The authors [28] have then obtained an
excellent agreement with the theory of Moleko et al. [29].

In more concentrated alloys the understanding of the diffusion
behavior requires a significantly different approach as the one
developed by Van der Ven et al. in Refs. [30,31]. Recently, Van
der Ven et al. [32], gave another point of view of the same transport
phenomena, describing a formalism to predict diffusion coeffi-
cients of substitutional alloys from first principles restricted to
vacancy mediated diffusion mechanism. This approach relies on
the evaluation of Kubo–Green expressions of kinetic transport
coefficients using Monte Carlo simulations.

5. Results

We present our numerical results, using a classical molecular
static technique (CMST) coupled to the Monomer method [16],
applied to Ni—Al and Al—U diluted alloys. In the case of the
Ni—Al system, for the pure elements Ni and Al, as well as, for the
cross Ni—Al term, the atomic interaction are represented by EAM
potentials, developed by Mishin et al. [33], where the cross term,
was fitted taking into account the available first principles data.
For the Al—U system concerning to the pure elements, we use
the potential developed by Zope and Mishin [34] for Al, while for
U and the cross term we use the potentials reported in Ref. [35].
In this case, lattice parameters, formation energies and bulk mod-
ulus for each intermetallic compound are well reproduced. The
cross potential in Ref. [35], has been fitted taking into account
the available first principles data [36]. We obtain the equilibrium
positions of the atoms by relaxing the structure via the conjugate
gradients technique. The lattice parameters that minimize the
crystal structure energy are aNi ¼ 3:52 Å for Ni and aAl ¼ 4:05 Å
for Al. For all calculations we use a christallyte of 8� 8� 8 of
2048 atoms, with periodic boundary conditions.

Impurity and defect relaxation, includes one substitutional Al
atom in Ni or one substitutional U atom in Al, as well as, a single
vacancy. Current calculations have been performed at T ¼ 0 K. In
this case, the entropic barrier is ignored. Our calculations are car-
ried out at constant volume, and therefore the enthalpic barrier
DH ¼ DU þ pDV is equal to the internal energy barrier DU.

In Table 3, we present our results for the vacancy formation
energy (EV

f ) in pure Ni and Al calculated as EV
f ¼ EðN � 1Þþ

Ec � EðNÞ, where EðNÞ is the energy of the perfect lattice of N atoms,
EðN � 1Þ is the energy of the defective system, and Ec the cohesion
energy. The vacancy migration barrier in perfect lattice, EV

m, is cal-
culated with the Monomer method [16], and the activation energy,
EQ , is then obtained as, EQ ¼ EV

f þ EV
m.

For the case of a diluted alloy, we consider the presence of sol-
ute vacancy complexes, Cn ¼ Sþ Vn, in which n ¼ 1st;2nd;3rd; . . .

(see the insets in Table 4) indicates that the vacancy is a n�nearest
neighbors of the solute atom S. The binding energy between the
solute and the vacancy for the complex Cn ¼ Sþ Vn in a matrix of
N atomic sites is obtained as,

Eb ¼ EðN � 2;CnÞ þ EðNÞf g � EðN � 1;VÞ þ EðN � 1; SÞf g; ð37Þ

where EðN � 1;VÞ and EðN � 1; SÞ are the energies of a crystallite
containing (N � 1) atoms of solvent A plus one vacancy V, and one
solute atom S respectively, while EðN � 2;CnÞ is the energy of the
crystallite containing (N � 2) atoms of A plus one solute vacancy
complex Cn ¼ Sþ Vn. With the sign convention used here Eb < 0
means attractive solute-vacancy interaction, and Eb > 0 indicates
repulsion.

For the alloys, we calculate the migration energies Em using also
the Monomer Method [16], a static technique to search the poten-
tial energy surface for saddle configurations, thus providing
detailed information on transition events. The Monomer computes
the least local curvature of the potential energy surface using only
forces. The force component along the corresponding eigenvector
is then reversed (pointing ‘‘up hill’’), thus defining a pseudo force
that drives the system towards saddles. Both, local curvature and
configuration displacement stages are performed within indepen-
dent conjugate gradients loops. The method is akin to the Dimer
one from the literature [42], but roughly employs half the number
of force evaluations which is a great advantage in ab initio
calculations.

Tables 4 and 5 display, respectively for Ni—Al and Al—U, the dif-
ferent type of solute vacancy complexes Cn ¼ Sþ Vn with its bind-
ing energies Eb and with the corresponding jump frequencies. Also,
the same tables, depict the possible configurations and jumps
involved.

For Ni—Al, a weak binding energy, Eb, can be observed for almost
all the solute-vacancy complexes, Cn, being attractive for C1 and C4

and repulsive for the rest of the pairs. The same behavior is
observed in Al—U, although for this case, the binding energy, Eb,
for the C1 complex is strongly attractive.

Concerning with the migration barriers, summarized in Table 4,
our results show that for Ni—Al, the migration barriers E m are close
to the perfect lattice value (0:98eV).

For Al—U, as can be seen in Table 5, the migration barriers are
quite different from 0:65eV , the value in perfect lattice, except
for the transition C4 ! C6. In comparison with the Ni—Al case,

the jump C1 ¢
x003

x004
C4, involves more than one atom, as indicated in

the figure inserted in Table 5, and shown in more detail in
Fig. 3. In Fig. 3, we show both, direct and indirect jumps involving



Table 3
Energies and lattice parameters for the pure f.c.c. Al and Ni and aU lattices. The first column specifies the metal, vacancy formation energy EV

f (eV) are shown in the second column.
The third column displays the migration energies EV

m , calculated from the Monomer method [16]. In the forth column we show the lattice parameter aA (Å). The last column
displays the activation energy EQ (eV).

Reference Latt. Ec (eV) EV
f (eV) EV

m (eV) aA (Å) EQ (eV)

Ni–Al
Present work Ni �4.45 1.56 0.98 3.52 2.54
Voter and Chen [37] Ni �4.45 1.56 0.98 3.52 2.54
Ref. [33] using CMST Ni �4.45 1.60 1.29 3.52 2.89
Ref. [18] using VASP Ni �4.45 1.40 1.28 3.52 2.65
Experimental/ab initio Ni �4.45 [38] 1.60 [39] 1.30 [40] 3.52 [40] 2.90
Present work Al �3.36 0.68 0.65 4.05 1.33
Voter and Chen [37] Al �3.36 0.63 0.30 4.05 0.93
Ref. [33] using CMST Al �3.36 0.68 0.64 4.05 1.32
Experimental/ab initio Al �3.36 [38] 0.68 [39] 0.65 [40] 4.05 [41] 1.33

Al–U
Present work Al �3.36 0.65 0.65 4.05 1.30
Ref. [34] using CMST Al �3.36 0.68 0.63 4.05 1.31
Present work aU �5.77 1.36 0.23 aU ¼ 2:77 1.59

bU ¼ 6:07
cU ¼ 4:94

Table 4
Jumps and frequencies in Ni—Al. The first column denotes Cn ¼ Sþ Vn where Vn means that the vacancy is n nearest neighbor of the solute. Binding energy Eb is shown in the
second column. The jumps are depicted in the third column, while the forth column describes the jump frequency xi and the configurations involved in each jump. Migration
energies Em for direct and reversed jumps are written in the fifth and sixth column respectively.

Cn ¼ Sþ Vn Eb (eV) Config. (Fn) xi E!m (eV) E m (eV)

C1 �0.06 C1 ¢
x1

x1

C1
1.09 1.09

C1S �0.06 C1S ¢
x2

x2

C1S
0.97 0.97

C2 0.03 C1 ¢
x3

x4

C2
0.98 0.89

C3 0.03
C1 ¢

x03

x04
C3

0.99 0.91

C4 �0.001
C1 ¢

x003

x004
C4

0.96 0.90

C5 0:034
C2 ¢

xH

0

xH

0

C5
0.89 0.98

C6 0:031
C4 ¢

xH

0

xH

0

C6
0.98 0.98

C7 �0:001 C2 ¢
x43

x34

C5
1.01 0.98
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Table 5
Jumps and frequencies in Al—U. The columns description is the same as in Table 4.

Cn ¼ Sþ Vn Eb (eV) Config. (Fn) xi E!m (eV) E m (eV)

C1 �0.139 C1 ¢
x1

x1
C1

0.81 0.81

C1S �0.139 C1S ¢
x2

x2
C1S

0.48 0.48

C2 0.004 C1 ¢
x3

x4

C2
0.61 0.47

C3 0.037
C1 ¢

x03

x04
C3

0.65 0.48

C4 0.019
C1 ¢

x003

x004
C4

0.73 0.58

C5 0.015
C2 ¢

xH

0

xH

0

C5
0.59 0.58

C6 �0.003
C4 ¢

xH

0

xH

0

C6
0.63 0.65

Fig. 3. Single jump involving two atoms in Al–U. In jump (1) the atom labeled 1
takes the place of atom 3, which is dragged by the atom 1 towards the vacancy V.
Jump (2) is the reverse of jump (1). We also depict a direct jump (3) which is a high
energy jump involving only the atom 1.
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respectively one or two atoms. For the jump (1), the atom labeled 3
is dragged by the atom labeled 1 to the vacancy site. The jump (2)
is the reverse of jump (1). While for the direct jump (3), the atom 1
jumps towards the vacancy, although, it is a high energy jump (see
Fig. 4).

As the direct jump (3) has lower probability of occurrence than
the indirect jump (1), then present calculations of frequencies are
performed using the values corresponding to this last one, that is
0.73 eV and 0.58 eV, to compute x003 and x004, respectively, and using
mH from Table 7.

Although the jump C1 ! C4 in Al—U involves two atoms it is not
a successive jump. It is indeed a single jump which involves two
atoms, that is, there is a single saddle point for the whole jump.
The monomer method here employed is able to find both saddle
point energy and configuration.

In Table 6, we show the migration barriers for more distant
neighbors pairs than the forth. As can be seen, the values obtained
are close to 0:65 eV, the migration barrier in the perfect crystal.

In order to compute xi, we use the conventional treatment for-
mulated by Vineyard [11], that corresponds to the classical limit,
where the vibrational prefactors, mH, do not depend on the temper-
ature, that is



Fig. 4. Vacancy jumps beyond the second coordinated shell. The superscripts ð?;	Þ

on x0 implies vacancy jumps perpendicular to, backward or forward 	x̂
respectively.
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xi ¼ mH expð�Ei
m=kBTÞ; ð38Þ

with

mH ¼
Q3N

i¼1mI
iQ3N�1

i¼1 mS
i

; ð39Þ

and Ei
m is the migration barrier. In (39), mI

i and mS
i are the frequencies

of the normal vibrational modes at the initial and saddle points,
respectively. That is, mI

i refers to the vibrational frequencies of the
nearest neighbors X—V pair (X = Ni, Al, U) and mS

i refers to the saddle
configuration for the S-vacancy exchange, the product does not
include the unstable mode. Note that, Eq. (39) is based on calcula-
tion of the frequencies of the normal vibrational modes. This normal
modes can involve only one atom or being collective modes. Hence
it is also applicable to the single jump C1 ! C4 in Al—U involving
two atoms.

In Table 7 we report the calculated attempt frequencies.
Once the jump frequencies in the five-frequency model have

been computed, the diffusion coefficients are calculated using ana-
lytical expressions in terms of the temperature. It is important to
note the discrepancy between the classical and the quantum
description concerning to the evaluation of xi [43]. Although these
discrepancies are large in the low-temperature range the quantum
value gradually converges to the classical one at temperatures
higher than room temperature [43]. Hence, here we employ a clas-
sical description.

Table 8 presents the calculated frequencies (38) for two differ-
ent temperatures with the migration energies taken from Tables 4
and 5. Using a different approach based on the Wert and Zener
model [45], Zacherl et al. [18,46], have studied diffusion in Ni based
diluted alloys using a temperature dependent frequency prefactor.
Table 6
Jumps beyond the second coordinated shell. The binding energies are shown in the
second column. The third column denoted the frequency rate, where the superscripts
ð?;	Þ on x0 implies vacancy jumps perpendicular ? , backward � or forward þ in respect
to the x̂ direction. Migration energies are shown in column four and five.

Cn ¼ Sþ Vn Eb (eV) xi E!m (eV) E m (eV)

C7 0.002
C7!

x?0 C10
0.61 0.64

C8 0.015 C8!
x�0 C11

0.64 0.61

C9 0.002
C12!

xþ0 C12
0.61 0.64
From the calculated jump frequencies, then the tracer correla-
tion factors fS and the solvent enhancement factors bAH can be
obtained from (20) and (36), respectively. They are shown in
Table 9, together with the jump frequencies ratios calculated
according to the five-frequency model.

The solute correlation factor, fS, obtained from (20), is also
shown in Figs. 5 and 6 in terms of the inverse of the absolute tem-
perature, respectively for Ni—Al and Al—U, together with the F fac-
tor from (21).

In Table 9, the solvent-enhancement factors, bAH , is obtained
from (36) and depicted in Figs. 7 and 8, respectively for Ni—Al
and Al—U, as a function of the temperature. It must be taken into
account that the effect of bAH on the tracer self-diffusion coefficient
DH

A ðcSÞ, must be multiplied by the solute concentration cS, which is
low for diluted alloys, hence DH

A ðcSÞ is similar to DH

A ð0Þ.
The Onsager and diffusion coefficients were calculated for a

solute molar fraction cS ¼ 4:9� 10�4, for both alloys, which corre-
sponds to nAl ¼ 4:53� 1019 cm�3 at:=cm3 for Ni—Al and nU ¼
3:01� 1019 cm�3 at:=cm3 for Al—U.

From LAS and LSS, we also calculate the vacancy wind coefficient
G as in Ref. [15]. The LVS coefficient, which provides essential infor-
mation about the flux of S atoms induced by the vacancy flow can
be defined in terms of the Onsager coefficients LSS and LAS, respec-
tively in (17) and (22) as,

LVS ¼ �ðLSS þ LSAÞ ¼ �LSSðGþ 1Þ; ð40Þ

where G is defined as the vacancy wind coefficient. The final expres-
sion is given by,

G ¼ LAS

LSS

¼ 1
ð2x1 þ 7xH

3 FÞ 6xH

3 � 4x1 þ 14xH

3 ð1� FÞ x0 �xH

4

xH

4

� �� �
:

ð41Þ

The G parameter in (41) accounts for the coupling between the
flux of species JA and JS, through the vacancy flux, JV [47]. The
results are presented in Figs. 9 and 10, for Ni—Al and Al—U systems
respectively. In Fig. 9, the vacancy wind parameter verifies G > �1
for Ni—Al in the full range of temperatures considered, while for
Al—U, Fig. 10 shows that G > �1 only above 550K.

In the case where G < �1; LVS is positive, then the vacancy and
the solute diffuse in the same direction as a complex specie [15].
This transport phenomena could occur in Al—U at lower tempera-
tures, due to the strong binding of the C1 pair, while is unlikely to
occur for Al in Ni by the opposite argument.

The full set of L-coefficients, are displayed in Figs. 11 and 12,
against the inverse of the temperature for the Ni� Al and Al—U,
respectively. We see that for the Ni—Al case the L-coefficients fol-
low an Arrhenius behavior, which implies a linear relation between
the logarithm of L-coefficients against the inverse of the tempera-
ture (see Fig. 11). For Al� U we can appreciate a deviation of the
LAlU coefficient from the Arrhenius law at high temperatures (see
Fig. 12).

In Fig. 12, the cross LAlU ¼ LUAl coefficient is negative in all the
temperature range considered.

Now, we are in position to obtain the tracer diffusion coeffi-
cients DH

A and DH

B . First, we present the ratio of the calculated tracer
diffusion coefficients DH

S =DH

A as a function of the inverse of the tem-
perature for the Ni� Al and Al� U in Figs. 13 and 14, respectively.

In Figs. 13 and 14, we also show the ratio between the intrinsic
diffusion coefficients, DS=DA (in stars symbols) calculated from (7)
and (8).

The tracer diffusion coefficients DH

S and DH

A , calculated from (30)
and (31), are shown in Figs. 15 and 16 respectively for Ni� Al and
Al� U. It is important to perform a comparison between



Table 7
Attempt frequencies mH in (38) in THz unit. We compare present calculations with results using the density functional theory (DFT) respectively in the local density (LDA) and
generalized gradient (GGA) approximations, and from Monte Carlo (MC) simulations.

Ref. Ni! V in Ni Al! V in Ni Ref. Al! V in Al U ! V in Al

Present work 23.7 30.8 Present work 19.56 8.25
[26] DFT 4.48 – [14] DFT (LDA) 20.79 –
[27] B2-NiAl MC 50.7 47.7 [14] DFT (GGA) 22.51 –

[44] CMST 22.60 –

Table 8
Vacancy jump frequencies xi calculated from (38) using the description of vineyard.
The symbol (H) indicates effective frequencies.

Ni—Al Al—U

T1 ¼ 800 K T2 ¼ 1700 K T1 ¼ 300 K T2 ¼ 600 K

x0 1:6� 107 2:9� 1010 2:9� 102 7:6� 107

x1 3:2� 106 1:4� 1010 4:8� 10�1 3:1� 106

x2 2:4� 107 4:1� 1011 7:1� 104 7:7� 108

xH

3 1:6� 107 2:9� 1011 4:5� 102 8:3� 107

xH

4 4:9� 108 5:0� 1011 1:7� 105 1:7� 109

Table 9
Solvent enhancement and solute correlated factors for Ni—Al and Al—U at different
temperatures. The first two columns describe the alloy and the temperature range
considered. For the solvent enhancement factor bAH (column three), and for the solute
correlated factor fS (column four). The last tree columns describe the jump frequency
ratios of the solute-vacancy interaction.

Alloy T=K bNiH fAlH x2=x1 xH

3 =x1 xH

4 =x0

Ni—Al 700 �23.4 0.61 7.9 5.6 3.6
800 �19.0 0.62 7.4 4.9 3.1
900 �14.2 0.63 6.1 4.1 2.7
1000 �10.9 0.64 5.2 3.6 2.5
1100 �8.7 0.65 4.6 3.2 2.3
1200 �7.2 0.66 4.1 2.9 2.1
1300 �5.9 0.67 3.8 2.7 2.0
1400 �5.1 0.67 3.5 2.5 1.9
1500 �4.4 0.68 3.3 2.3 1.8
1600 �3.8 0.68 3.1 2.2 1.8
1700 �3.3 0.69 2.9 2.1 1.7

Alloy T=K bAlH f H

U x2=x1 xH

3 =x1 xH

4 =x0

Al—U 300 �6:7� 103 6:4� 10�3 147589:5 936:2 151:5

350 �2:9� 103 1:4� 10�2 23826:5 333:8 72:2

400 �1:6� 103 2:7� 10�2 6068:2 155:3 41:4

450 �1:0� 103 4:5� 10�2 2094:4 86:2 26:9

500 �6:7� 102 6:8� 10�2 894:3 53:9 19:0

550 �4:8� 102 9:6� 10�2 445:7 36:9 14:4

600 �3:6� 102 0:13 249:5 26:9 11:3

650 �2:8� 102 0:16 152:7 20:7 9:3

700 �2:2� 102 0:20 100:2 16:5 7:8

750 �1:8� 102 0:24 69:6 13:6 6:8

800 �1:4� 102 0:28 50:6 11:5 5:9

850 �1:2� 102 0:32 38:2 9:9 5:3

900 �1:0� 102 0:35 29:7 8:9 4:8

Fig. 5. Solute correlation factor fAlH , obtained from (20), in the Ni–Al system as a
function of the temperature in filled squares. The F factor in (21), is denoted with
filled circles.

Fig. 6. Same as Fig. 5 for Al–U.
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theoretical results obtained in present work with reliable experi-
mental data. We have verified that the tracer self diffusion coeffi-
cient DH

A ðcSÞ for a diluted alloy is practically equal to that for the
pure solvent DH

A ð0Þ (i.e., DH

A ðcSÞ ’ DH

A ð0Þ).
Hence, we can test our results for DH

A ðcSÞ with available experi-
mental data in pure solvents.

In this respect, Campbell et al. [48], from a statistical analysis
performed using weighted mean statistic, have determined a con-
sensus estimators which best represents all known self diffusion
available experimental data for pure solvent, DH;Exp

A .
The estimator DH;Exp

A corresponds to the experimental self-
diffusivity of species A in pure A and is expressed in the form [48],
DH;Exp
A ¼ D0

A expð�Q A=RTÞ; ð42Þ
where R is the ideal gas constant, T is the absolute temperature,
while the values for D0

A and QA in pure Ni and Al, are taken from
Ref. [48], and are displayed in Table 10.

In order to perform a comparison of our results for DH

A ðcSÞ with
available experimental data in pure solvents, in Figs. 15 and 16, we
display the calculated Ni and Al tracer self-diffusion coefficients (in
filled circles and dashed lines), together with the consensus esti-
mator DH;Exp

A represented by solid lines. As can be observed, DH;Exp
A

fits well with the values of DH

A calculated in the present work.
For the Ni—Al system, Fig. 15 also displays the tracer solute dif-

fusion coefficient, our calculations (in open squares) are displayed
together with experimental data for T ¼ ½914—1212� �C [49] and



Fig. 7. Solvent-enhancement factor bNi obtained from (36), for the Ni–Al system as a
function of the temperature.

Fig. 8. Solvent-enhancement factor bAl obtained from (36), for the Al–U system as a
function of the temperature.

Fig. 9. The vacancy wind parameter G in (41): Ratio of the Onsager phenomeno-
logical coefficients of Al in Ni calculated from (17) and (22) vs 1=T.

Fig. 10. The vacancy wind parameter G in (41): Ratio of the Onsager phenomeno-
logical coefficients of U in Al calculated from (17) and (22) vs 1=T.

Fig. 11. Onsager phenomenological coefficients vs 1=T for the Ni—Al system.
Squares denote LAlAl , empty circles denote LNiNi while LNiAl is described with filled
circles. The coefficients were calculated from (17), (22) and (23).

Fig. 12. Onsager phenomenological coefficients vs 1=T for the Al—U system. Squares
denote LUU , empty circles denote LAlAl while jLUAlj is described with filled circles. The
coefficients were calculated from (17), (22) and (23).
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T ¼ ½1372—1553� �C [50] with stars and cruxes respectively. In
open triangles, we also show the experimental results obtained
by Yamamoto et al. for inter-diffusion in a f� 12% mass Al—Ni
alloy in the temperature range of T ¼ ½1273—1573� �C.
With respect to the Al—U system, experimental values for the U
diffusion coefficient in Al [4] at infinite dilution have been obtained
by Housseau et al. [4]. In Ref. [4], the authors have obtained the



Fig. 13. Ratio of the tracer diffusion coefficient DH

Ni=DH

Al in Ni—Al vs 1=T . The ratio
between the intrinsic diffusion coefficients, DS=DA calculated from (7) and (8), is
also shown with symbols in asterisk and dashed line.

Fig. 14. Ratio of the tracer diffusion coefficient DH

U =DH

Al in Al—U) vs 1=T . The ratio
between the intrinsic diffusion coefficients, DS=DA calculated from (7) and (8), is
also shown in stars.

Fig. 15. Tracer diffusion coefficients of Al (DH

Al in open squares) and Ni (DH

Ni in filled
circles) in the alloy, calculated from (30) and (31), respectively. Solid line represents
the best estimative of the pure Ni self-diffusion coefficient DH;Exp

Ni , taken from
Campbell work [48]. Available experimental data, for the Al diffusion coefficient in
the alloy, are displayed with stars [49] and cruxes [50]. In open triangles results
from Ref. [51] for the solute tracer diffusion coefficient in a f� 12% mass NiAl
compound in the temperature range of T ¼ ½1273—1573� �C.

Fig. 16. Tracer diffusion coefficients of U (DH

U in open squares) and Al (DH

Al in filled
circles) in the alloy, calculated from (30) and (31), respectively. Solid line represents
the best estimative of the pure Al self-diffusion coefficient DH;Exp

Al , taken from
Campbell work [48]. Available experimental data, for the U diffusion coefficient in
the alloy [4], are displayed with filled stars.

Table 10
Parameters involved in the expression for the self-diffusion consensus fit DH;Exp

A ,
where the parameter A indicates Ni or Al hosts. The first column denotes the reference
where the values were taken from. The solvent lattice is indicated in the second
column. The third and fourth columns denote the pre-exponential factor, D0

A , and the
activation energy, QA , for Eq. (42) respectively. The range of temperatures of the
description is referred in column five. The values were taken from Campbell work
[48].

Ref. Lattice D0
A ðcm2 s�1Þ QA ðkJ=molÞ T ð�CÞ

[48] Ni 1:1 279:35 ½769� 1667�
[48] Al 0:292 129:7 ½357� 833�

122 V.P. Ramunni / Computational Materials Science 93 (2014) 112–124
diffusion parameters from the fit of their experimental permeation
curves with the solution of the diffusion equation,

@Cðx; tÞ
@t

¼ DU
@2Cðx; tÞ
@x2 ; ð43Þ

with boundary condition x ¼ 0; Cð0; tÞ ¼ S0, where S0 is the maxi-
mum solubility of the diffusing specie in the alloy. They have pro-
posed a solution for Eq. (43) as,

Cðx; tÞ ¼ S0½1� erf ðx=2
ffiffiffiffiffiffiffiffi
DUt

p
�: ð44Þ

Then the values of DU and S0 are obtained by fitting the experimen-
tal permeation curves with an expression of the form (44).

The obtained diffusion parameters, taken from Ref. [4], are
shown in Table 11, for different temperatures and U concentra-
tions, cU . In their work [4], the authors have concluded that, at infi-
nite dilution, the dissolution of precipitates do not disturb the U
process diffusion in Al.

In Fig. 16, we establish a comparison of our calculations for DH

U

with the experimental data in Table 11, for a molar Uranium con-
centrations cU ¼ 2� 10�4. We see that, experimental values (filled
stars) in the temperature range of ½560—620� �C are in perfect
agreement with DH

U obtained with the here described procedure.
In the temperature range where there are available experimental
data, the U mobility is mainly due to direct interchange between
the U atom and the vacancy.

On the other hand, the diffusion of U in Al was also calculated in
a study of the maximum rate of penetration of U into Al, in the tem-
perature range ½473—663� �C [5]. The maximum penetration coeffi-
cient values in Ref. [5] were, KT ¼ x2=t ¼ 1:3� 10�4;8:8� 10�5 and
1:1� 10�8 cm2=s for 473 �C;523 �C and 663 �C, respectively. From



Table 11
Diffusion of U in Al, for different temperatures (1st column) and U molar concentrations cU .

T ð�CÞ Uranium diffusion coefficient DU (�108 cm2 s�1)

cU ¼ 2� 10�3 cU ¼ 9� 10�4 cU ¼ 2� 10�4 cU ¼ 6� 10�7

620 1:60
 0:20 1:5
 0:15 1:56
 0:15 1:62
 0:16
600 0:78
 0:08 0:68
 0:07 0:70
 0:15 0:65
 0:07
580 0:55
 0:12 0:70
 0:12 0:44
 0:15 0:67
 0:10
560 0:40
 0:10 0:35
 0:10 0:31
 0:10 0:33
 0:10
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the expression K ¼ K0exp�Q=RT , the activation energy Q was
Q ¼ 14:300 in cal per mole in the temperature range of
½473—663� �C, where R is expressed in calories per 1=�C per mole,
and K0 is a proportionality constant. The plot ln K vs 1=T provides
a convenient basis for expressing and comparing penetration
coefficients.

As a final comment, a recent work by Leenaers et al. [52], pre-
sents a great quantity of experimental findings for a real system,
where the present model can also be applied.

Also performed but not shown here, for the Ni—Al, we have
reproduced all the microscopical parameters with 100 atoms using
the classical molecular static technique and the SIESTA code cou-
pled to the Monomer method [17].

In the literature several researchers have studied the solvent
atom-vacancy exchange in terms of the jump frequencies xi and
f0, in the framework of the random alloy model, as for example
in Ref. [53]. The authors have performed an extensive Monte Carlo
study of the tracer correlation factors in simple cubic, b.c.c. and
f.c.c. binary random alloys. On the other hand, the kinetic formal-
ism of Moleko et al. [29], also describes the behavior of the tracer
correlation factors for slow and faster diffusers.
6. Concluding remarks

In summary, in this work we present the general mechanism
based on non-equilibrium thermodynamics and the kinetic theory,
to describe the diffusion behavior in f.c.c diluted alloys.

Non equilibrium thermodynamic, through the flux equations,
relates the diffusion coefficients with the Onsager tensor, while
the Kinetic Theory relates the Onsager coefficients in terms of
microscopical magnitudes. In this way we are able to write expres-
sions for the diffusion coefficients only in terms of microscopic
magnitudes, i.e. the jump frequencies.

The five frequency model has also been of great utility in order
to discriminate the relevant jump frequencies, evaluated from the
migration barriers under the harmonic approximation in the con-
text of the conventional treatment by Vineyard corresponding to
the classical limit. Hence, we have calculated the full set of phe-
nomenological coefficients from which the full set of diffusion
coefficients are obtained through the flux equation.

In this respect, the jump frequencies have been calculated from
the migration barriers which are obtained with an economic static
molecular techniques (CMST) namely the monomer method, that
searches saddle configurations efficiently.

Although in this work we have performed the treatment for the
case of f.c.c. latices where the diffusion is mediated by vacancy
mechanism, a similar procedure can be adopted for other crystal-
line structures or different diffusion mechanism (for example,
interstitials).

We have exemplified our calculations for the particular cases of
diluted Ni—Al and Al—U f.c.c. binary alloys. We have found that the
tracer diffusion coefficient are in very good agreement with the
available experimental data, for both alloys.

Present calculations show that qualitatively a vacancy drag
mechanism is unlikely to occur for the Ni—Al system. In the case
of Al—U, a vacancy drag mechanism could occur at temperatures
below 550 K, while above this temperature the solute migrates
by a direct interchange mechanism with the vacancy, such as
was corroborated in the comparison with the available experimen-
tal data.

We have demonstrated that, the CMST is appropriate in order to
describe the impurity diffusion behavior mediated by a vacancy
mechanism in f.c.c. alloys. This opens the door for future works
in the same direction where a similar procedure will be used that
includes interstitial defects.
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