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Abstract We propose the construction of a network to study the correlation among price
indices of different commodities, by using the Multifractal Cross-Correlation method pro-
posed by Podobnik and Stanley. This estimator, based on the method Multifractal Detrended
Fluctuation Analysis, is effective for self-similar signals with characteristics such as those we
here analyze. We construct different networks for time periods between 1991 and 2012. Each
node represents a commodity group and the links are the cross-correlation between nodes.
We study the evolution of these networks from January 1991 to April 2012. The results show
that after 2007, high connectivity arises between the nodes of the matrix. We conjecture that
this is a consequence of the cash flow from equities and real estate markets to the commodity
market due to the subprime mortage crisis.

Keywords Econophisycs · Complex networks · Cross-correlation · Commodities ·
Multifractality

1 Introduction

Commodities are valuable goods produced in large quantities and with a very low level of
differentiation or specialization. Broadly speaking, we can say that commodities are equiva-
lent to rawmaterials, although this is not always true, especially in recent years: for example,
aspirin, which is a pharmaceutical product, is so undifferentiated, that today it is considered
as a commodity. One can also speak of financial commodities such as 10 years bonds, or
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currencies like the dollar or the euro. One of the characteristics of a commodity is that its price
is determined by a market. Well-established physical commodities have actively traded spot
and derivative markets. The economies of developing countries are often highly dependent
on them. We finally remark that, especially in times of crisis, commodities can be seen as a
refuge investment. On the other hand, most of these products are necessary for subsistence
and often require storage and transport. For this reason, these products have a slower response
to changes in demand. This last trait has consequences on the associated dynamics. Matias et
al. Matia et al. (2003) have conjectured that this feature is the main cause of its multifractal
behavior because they respond more slowly than common stock shares and their changes
usually present a higher degree of correlation.

There are many articles which study cross-correlation matrices of multivariate signals.
The idea behind this work is that there is a complex system whose internal structure is
manifested in the cross-correlations between their constituents. These interactions cause
collective modes and reveal the underlying dynamics (Gopikrishnan et al. (2001)). Taking
into account this idea together with the assumed multifractal nature of stock prices series, we
here build cross-correlation multifractal matrices, using a procedure proposed by Podobnik
and Stanley (2008).

We apply this methodology to the study of the evolution of daily price of 24 commodity
considered “classic” , i.e. raw products, organized in six groups, as defined by the Down
Jones: industrial metals, precious metals, livestock, grains, softs and energy.

2 Mathematical methods

2.1 The multifractal fluctuation analysis

We adopt the Multifractal Detrended Fluctuation Analysis (MFDFA) method, a general-
ization of the Detrended Fluctuation Analysis (DFA) method, that has been proved to be a
particularly flexible method, specially to deal with non-stationary series, (Kantelhardt et al.
2002; Serrano and Figliola 2009; LeiteSiqueira et al. 2010).

The MFDFA multifractal spectrum estimation of a one dimensional series {x(i), i =
1, · · ·, N }, is based on the construction and analysis of the fluctuation function, that is defined
in terms of the so called profile of the series: Y (k) = ∑k

i=1[x(i) − 〈x〉], where 〈x〉 is
the mean value of the series {x(i)}. The profile is then cut into Ns = N/s non overlapping
segments of equal length s. The detrended time series for segment ν, denoted by Yν(i), is
calculated as the difference between the original time series and a polynomial pν(i) that fits
the series in the ν-th segment.

Yν(i) = Y (i) − pν(i) (1)

The fluctuation function is defined as:

F2
s (ν) = 1

s

s∑

i=1

{Y [(ν − 1)s + i] − pν(i)}2. (2)

For simplicity we will use a polynomial fit of order 1, so that if we were to use the
usual notation our algorithm would strictly be the 1-MFDFA. In this paper we will instead
use the simpler notation MFDFA, though we should keep in mind that different degrees in
the polynomial would imply different elimination of trends in the data. For each of the Ns

segments, the variance of the detrended time series Yν(i) is evaluated by averaging over all
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the data points i in the ν-th segment. Then, averaging over all segments, it is possible to
obtain the q-th fluctuation function:

Fq(s) =
{

1

2Ns

2Ns∑

ν=1

[
F2
s (ν)

]q/2

}1/q

, (3)

where, in general, the index q can take any real value, and q works as a mathematical
microscope that amplifies different behaviors of the data series, as we will show. The scaling
behavior of the fluctuation function is determined by analyzing log–log plots Fq(s) versus s
for each value of q . If the series x(i) is long-range power-law correlated Fq(s) increases, for
large values of s, as a power-law:

Fq(s) ∼ sh(q) . (4)

For more details see Kantelhardt et al. (2002).
Following from Eqs. (3) and (4) and assuming that the length N of the series is an integer

multiple of the scale s,

N/s∑

ν=1

| Y (νs) − Y ((ν − 1)s) |q ∼ sqh(q)−1 . (5)

Kantelhardt and co-workers argued that this multifractal formalism corresponds to the
standard box counting theory and they relate both formalisms, it is obvious that the term
| Y (νs)−Y ((ν − 1)s) | is identical to the sum of the numbers x(i) whitin each segment ν of
size s. This sum is the box probability ps(ν) in the standard formalism for normalized series
x(i).

The scaling function η(q) is usually defined from last equation:

η(q) = q h(q) − 1 (6)

where q is a real parameter. The Hölder exponent α and the multifractal spectrum f (α) are
related to η(q) via a Legendre transform, in the case that η(q) is concave:

α = η′(q) (7)

and
f (α) = q h − η(q) . (8)

In this way, the MFDFA can be framed into a multifractal formalism. In multifractal
systems, the strength of multifractality can be described by the width of the spectrum �α.
It is easy to show that: αmax = h(−∞) and αmin = h(+∞). So, to estimate αmax and αmin

we can use the function h(q) with | q |>> 1.
For a stationary series like the fractional Gaussian noise (fGn), the profile is like the

fractional Brownian motion (fBm). For theses processes, 0 < h(q = 2) < 1 and h(q = 2)
is the Hurst exponent, H . In the case of monofractal signals with compact support, h(q) is
independent of q , because the scaling behavior of Fq(s) is the same for all segments. Only if
regions with large and small fluctuations scale differently in s, the function h(q) will depend
significantly on q .

2.2 The detrended cross-correlations analysis

We here follow Podobnik and Stanley (2008) proposal to evaluate the Cross-Correlation
Function. Let two series have the same length and sampled frequency ({s1(i), i = 1, · · ·, N }
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and {s2(i), i = 1, · · ·, N }). We evaluate a Multi-Fractal Detrended Cross-Correlation
(MDCC) function as follows Podobnik and Stanley (2008):

f 2MDCC (ν) = 1

r

r∑

i=1

{(Y1r [(ν − 1)r + i])(Y2r [(ν − 1)r + i])} (9)

where

Y1,2(k) =
k∑

i=1

[s1,2(i)− < s1,2 >]. (10)

The MDCC estimator is the q-norm of f 2MDCC (ν):

FMDCC (q, r) =
{

1

2Nr

2Nr∑

ν=1

[
f 2MDCC (ν)

]q/2

}1/q

. (11)

When the series are non-linearly cross correlated, they present a relation like:

FMDCC (q, r) ∝ rhMDCC (q). (12)

In a similar way to Eq. (4), the exponent hMDCC (q) can be obtained from the slope of the
log–log graph of FMDCC (q, r) versus r .

In the case q = 2 the cross correlation estimator hMDCC (q = 2) = hDCC is known as
Detrended Cross-Correlation. When i = j the fluctuation function FMDCC (q, r) becomes
the function Fs(q), hMDCC (q) the standard generalized Hurst exponent, h(q), and hDCC the
Hurst exponent H .

The notions of persistence and anti-persistence are relevant to analyse the behavior of
markets. These are used by market analysts to estimate future behavior and are related to
the Hurst exponent: H . When 0.5 < H < 1 the behavior is persistent: there is a higher
probability that a positive trend (rise) will follow a rise and a negative (low), another low. In
contrast, if 0 < H < 0.5, the behavior is anti-persistent: a rise will most likely be followed by
a decrease and vice-versa. When H = 0.5 future and past are uncorrelated: it is not possible
to anticipate any trend.

The concepts of persistence and anti-persistence can also be applied to the case of the
cross-correlations between two series: When 0 < hDCC < 0.5 or 0.5 < hDCC < 1 it is also
true that the past behaviour of the cross-correlation series can be used to estimate the future
trend. On the other hand if hCCD = 0.5 this is not possible because the past behaviour of
one series does not influence the future trend of the other.

3 Data

Daily price data were used in the series of 24 commodities. The data were obtained from the
website: www.djindexes.com and cover the period: from January 2, 1991 to April 23, 2012.
On the price series {x(i), i = 1, · · ·, N } the returns are defined as: {r(i) = log x(i)

x(i+1) , i =
1, · · ·, N − 1} . In this analysis we use the returns of 6 commodities indices defined by Dow
Jones as described in Table 1. Each one of them is built as a weighted average of the different
goods include in the table. Furthermore, as we wish to study the evolution of these groups,
the total series was divided into 8 overlapping periods. Table 2 shows the start and end of
each period.
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Table 1 Commodities grouped
according to the classification
given by the site’s Dow Jones

G1 G2 G3
Industrial metal Precious metal Grain

Aluminum Gold Corn

Copper Silver Soybeans

Lead Platinum Wheat

Nickel

Tin

Zinc

G4 G5 G6
Energy Softs Livestock

Brent Crude Cocoa Lean Hogs

Heating Oil Coffee Live Cattle

Natural Gas Cotton

Unleaded Gas Sugar

WTI Crude Oil

Table 2 The eight periods of
1186 data

Period 1 2 3 4

From 1/2/1991 5/17/1993 9/27/1995 2/11/1998

To 9/26/1995 2/10/1998 6/20/2000 11/7/2002

Period 5 6 7 8

From 6/21/2000 11/8/2002 3 /30/2005 8/9/2007

To 3/29/2005 8/8/2007 12/14/2009 4/23/2012

4 Methodology

The aim of this work is to study the evolution of the cross-correlation matrix of the six above
defined commodities indices. To this end, cross correlation matrices V p , {p = 1, · · ·, 6}
corresponding to each period p were built.

We first calculated the cross correlation estimator hMDCC (q = 2) = hDCC between all
pairs i, j of the commodities for each period, and named them Hi, j . In this way, we obtained
eight 6 × 6 matrices. In the diagonal are the Hurst coefficients of each group (H(i, i)).

In principle, we have an array with values in the range between 0 and 1. Aswe explained in
the previous section, if a cross-correlation is persistent, the value of H(i, j) lies between 0.5
and 1, if anti- persistent, between 0 and 0.5while when the value is equal to 0.5, the two series
i and j move independently in time. Then, in order to study the system as an unweighted
network, we considered that two nodes g and h are connected if |Hg,h − 0.5| > u where we
choose the threshold u to be u = 0.04. We chose this threshold, experimentally.

With this new matrix, we then studied the evolution of the network M of commodities, in
8 periods. The results are present in the Fig. 1.

5 Results and conclusions

As we can see in Fig. 1, the nodes of the network are in general weekly connected between
periods 1 to 6, that correspond from January 2, 1991 toAugust 8, 2007. In the first period some
cross-correlations appears between industrial metals and grains and grains and energy. In the
second period, there is correlation between grain and livestock, while softs and precious met-
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Fig. 1 Network for the six groups of commodities. (a) Correspond to period 1, (b) period 2, (c) period 3, (d)
period 4, (e) period 5, (f) period 6, (g) period 7 and (h) period 8

als are still uncorrelated. These two periods cover the 90’s. (it ends in 1997 approximately).
The subsequent periods 3 to 6 show total uncorrelation among the six indices. Finally periods
7 and 8 show a significant and remarkable large correlation between all nodes, the maximum
being reached reached in the 7 node.

These last two periods coincide with the international mortgage crisis. It is known that at
that time money escaped from equities and real estate markets to be invested in other funds,
particularly commodities.

These results suggest that the nonlinear correlation that we observed was a consequence
of an external shock and not an emergent consequence of a complex dynamic. It is worth
remarking that this is similar to what happens in the ARFIMA examples considered in
Podobnik and Stanley (2008), two series both of them showing persistent behaviour will
have a cross-correlation series with hDCC =.5 if the external driving noise acting in each of
them are statistically independent.
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