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In this work, a method based on pyrohydrolysis of airborne particulate matter (APM) collected on glass fiber filter
and subsequent determination of bromine and iodine by inductively coupled plasmamass spectrometry (ICP-MS)
was developed. Samples of APMcollected on glassfiberfilterwere ground using an agatemortar, homogenized and
placed on an alumina platform. Samples were mixed with solid V2O5 and introduced into the pyrohydrolysis sys-
tem. The main operational conditions of pyrohydrolysis (absorbing solution, heating time, sample mass and use
of an auxiliary reagent — V2O5) were evaluated. Using selected conditions, samples of APM collected on glass
fiber filter (300 mg, including the glass fiber filter) were mixed with 900 mg of V2O5 and heated at 950 °C during
15 min in a quartz tube under water vapor and air flow. The accuracy of the proposed method was evaluated by
analyte recovery tests and also by analysis of certified referencematerial (CRM)with a similar matrix composition
(NIST 2709 andNIST 1633b). Resultswere in agreement better than 104 and 95% for bromine and iodine, respec-
tively, with CRM values. The limits of quantification (LOQs) of bromine (0.05 μg g−1) and iodine (0.006 μg g−1)
were considered appropriate for APM analysis. The pyrohydrolysis sample preparation method was considered as
relatively suitable to be performed in routine analysis and provides a clean solution for analysis by ICP-MS, which is
very attractive for bromine and iodine determination in APM samples.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, the chemical characterization of airborne particulate
matter (APM) has been useful for the evaluation of environmental
pollution, especially in high populated areas. In general, several studies
have been done in order to determinemetals andmetalloids collected on
glass fiber filter [1–5]. On the other hand, even considering the relevance
of determining halogens, the studies related to APM samples and halogen
determination are relatively scarce [6–9]. This aspect is important be-
cause information about some halogens, especially bromine and iodine
concentrations, is strongly required once these elements generally are
present as trace contaminants in the atmosphere, participating in chem-
ical reactions with many environmental pollutants [10]. The main
source of atmospheric iodine and bromine is marine environment,
in addition to soil emissions from microbiological activity and
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biomass burning [11–14]. Inorganic bromine and iodine present in
the atmosphere can be considered as major contributors to the
chemical degradation of atmospheric O3 in open ocean waters and
thus to its oceanic dry deposition [15,16]. Furthermore, the inhalation
of APM containing bromine and iodine species can cause a significant
hazard to health including various respiratory symptoms, decreased
lung function and cardiovascular diseases [17].

Many analytical techniques including ion selective electrode (ISE)
[18–20], X-ray fluorescence spectrometry [21,22], ion chromatography
(IC) [23–26], inductively coupled plasma mass spectrometry (ICP-MS)
[27–31], inductively coupled plasma optical emission spectrometry
(ICP OES) [32,33], andmolecular absorption spectrometry [34] or atomic
emission spectrometry [35] have been currently used for bromine and
iodine determination inmanymatrices. However, the sample preparation
step is critical to achieve suitable results.

In spite of the high efficiency of methods based on closed-vessels
microwave-assisted acid digestion for a number of analytes, it can be
considered not suitable for further halogen determination due to ana-
lyte losses [36]. These losses can be attributed to the volatility of some
species (e.g. HI and HBr) that can be produced during sample digestion
using concentrated nitric acid [37–39]. Additionally, the residual carbon
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content (RCC) [40,41] and high acidity can also interfere during IC, ISE
and ICP-MS determination. Moreover, another well-known drawback
is the iodine memory effect caused by the adsorption of iodine vapors
on the walls of a nebulization chamber [42,43]. On the other hand, com-
bustionmethods using alkaline absorbing solutions have been used as an
appropriate sample preparation strategy for further halogen determina-
tion. Combustionmethods present the advantage to convert organic ma-
terials to the respective combustion products (e.g., CO2 and H2O) using
only oxygen, which minimizes the risk of contamination and reduce the
generation of laboratory residues [44–46]. However, thesemethods pres-
ent some limitations related to inorganic or non-combustible matrices
[47].

Pyrohydrolysis is a suitable sample preparation method for the
decomposition of organic [48–52] and mainly inorganic materials
[53–56], for subsequent halogen determination. Pyrohydrolysis consists
in pyrolysis of samples in the presence of water vapor, followed by
hydrolysis of halogens in their respective volatile halogen acids [48].
The generated volatile species can be simply condensed or collected in
diluted alkaline solutions (such as NH4OH, Na2CO3, Na2CO3/NaHCO3)
for subsequent determination. On this aspect, halogen absorption in di-
luted solutions is advantageous because these solutions can be directly
introduced in IC, ISE, ICP-MS and ICP OES equipments. For inorganic
matrices, especially, pyrohydrolysis method provides a convenient
separation of analyte from a solid sample that reduces eventual interfer-
ences during measurement. In addition, the whole pyrohydrolysis
system can be constructed with relatively simple and inexpensive ma-
terials resulting in a low cost sample preparation system and attractive
to routine analysis.

In this sense, themain purpose of the present workwas to develop a
method for bromine and iodine determination by ICP-MS in APM col-
lected on glass fiber filters using pyrohydrolysis for sample preparation.
Pyrohydrolysis was investigated in view of the difficulties associated
with bromine and iodine determination in such a complex matrix, as
glass fiber filter containing APM (inorganic solid content generally
N85%). In this study, maximum sample mass, use of auxiliary reagent,
concentration of absorbing solution and time of pyrohydrolysis reaction
were investigated. Accuracy was evaluated using certified reference
materials (CRMs) with similar matrix composition and also analyte re-
covery tests.
2. Experimental

2.1. Instrumentation

The pyrohydrolysis system used in this work was home-made using
an electrothermal furnace (Sanchis, Porto Alegre, Brazil) with an auto-
matic temperature control (maximum temperature of 1200 °C), a quartz
tube (45 cm length and 1.2 cm i.d.), an alumina platform (8 cm length
and 1 cm i.d.), a water vapor generation unit, a condenser and a vessel
for gaseous product retention. The reaction tube was constructed using
high purity quartz and it was positioned inside the electrothermal fur-
nace. A peristaltic pump (Minipuls, Gilson, Middleton, USA) equipped
with a Tygon tube (0.76 mm i.d.) was used to carry water to a ceramic
capillary (0.5 mm i.d.) that was connected to the inlet of the quartz
tube using a silicone stopper. The outlet of the ceramic capillary was po-
sitioned in the entrance of the furnace for in situ water vapor generation.
Air was used to transport the water vapor through the quartz tube
and the gaseous products to the condenser. Air flow rate was set at
200 mL min−1 [50]. The outlet of the quartz tube was connected to a
glass serpentine immersed into an ice bath in order to condense the
gaseous products frompyrohydrolysis reaction. The condensed solution
was collected in a polypropylene vessel containing 10 mL of absorbing
solution. A small portion of quartz wool was inserted in the outlet of
quartz tube to avoid that solid particles eventually released from
samples could be transported to the condenser.
In the present work, the determination of bromine and iodine in
absorbing solution obtained after pyrohydrolysis was performed using
an inductively coupled plasma mass spectrometer (Perkin-Elmer
Sciex,Model ElanDRC II, Thornhill, Canada), equippedwith a concentric
nebulizer (Meinhard Associates, Golden, USA), a cyclonic spray chamber
(Glass Expansion, Inc., West Merbourne, Australia) and a quartz torch
with a quartz injector tube (2 mm i.d.). Argon 99.996% (White Martins,
São Paulo, Brazil) was used for plasma generation, nebulization
and as auxiliary gas. The following operational conditions were
used: a RF power of 1400 W, a plasma gas flow rate of 15 L min−1, an
auxiliary gas flow rate of 1.2 L min−1 and a nebulizer gas flow rate of
1.08 L min−1. The isotopes monitored were 79 and 127 for bromine
and iodine, respectively. Platinum sampler and skimmer cones were
used throughout.

2.2. Samples, reagent and standards

Airborne particulate matter samples were collected in different
places of Buenos Aires city, Argentina, on ash-free glass-fiber filters
using a high-volume air sampler (SIBATA, HV 1000F, Japan) with a
PM-10 sampling head. The sampling flow rate was 1000 L min−1 and
the average total sampling time was 24 h, resulting in an average air
volume filtered during 24 h of 1440 m3. Filter containing the APM sam-
ples were ground in an agate mortar and further dried in an oven at
60 °C. Filter “A”was used for the evaluation of absorbing solution, sample
mass, V2O5 mass and time for pyrohydrolysis method development.

In viewof the lack of certified referencematerials of APM the accuracy
was evaluated using the following CRMswith a similar composition: NIST
2709 (San Joaquin soil, I = 5 μg g−1) and NIST 1633b (constituent
elements in coal fly ash, Br = 2.9 μg g−1). Moreover, recovery tests of
Br and I were also performed. In this test, solid sample “D” (300 mg)
was spiked with 10 μL of solution containing 60 mg L−1 of Br and
30 mg L−1 of I.

All the reagents used in this work were of analytical grade (Merck,
Darmstadt, Germany). Solutions were prepared using distilled and
deionized water that was further purified using a Milli-Q system
(18.2 MΩ cm, Millipore, Billerica, MA). Vanadium pentoxide (V2O5)
was used as auxiliary for pyrohydrolysis and it was obtained (and
simultaneously purified) by heating ammonium vanadate (NH4VO3)
in a platinum crucible during 4 h at 550 °C. Absorbing solutions were
prepared from concentrated ammonium hydroxide (28–30%). Working
analytical solutions for ICP-MS analysis were prepared before use by
serial dilution of solutions containing 1000mg L−1 bromine and iodine.
Iodine and bromine stock reference solutionswere prepared by the dis-
solution of potassium iodide and potassium bromide in water. Calibra-
tion curve for bromine was checked by serial dilution of solution
containing 10 mg kg−1 of multielement anion standard solution
(Fluka, Buchs, Switzerland) in water. A solution of 10% (v/v) nitric
acid (65%) from Merck (Darmstadt, Germany) was used for material
cleaning.

2.3. Pyrohydrolysis proposed method

Sample mass ranging from 50 to 300 mg was directly weighed in
alumina platform andmixed with V2O5 (300 to 1200mg). The platform
containing the sample or sample mixed with V2O5 was introduced into
the quartz reactor tube and the furnace was heated up to 950 °C.
Pyrohydrolysis heating time between 5 and 20 min was evaluated.
Water was pumped through the heated ceramic capillary (at a flow
rate of 0.5 mL min−1) for water vapor generation. The air flow-rate
(used as carrier gas) was set at 200mLmin−1 [50]. The gaseous products
of pyrohydrolysis were collected in a vessel containing 10 mL of absorp-
tion solution. The absorbing solutions investigated in this work were di-
luted with water up to 25 mL before bromine and iodine determination
by ICP-MS. After each run, the alumina platformwas soaked in a solution
of 10% HNO3 for 2 h.
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3. Results and discussion

Initial studies, using filter sample “A”, were performed in order to es-
tablish the pyrohydrolysis conditions used to digest glass fiber filter sam-
ples containing APM. Sample mass, the mass of V2O5, pyrohydrolysis
reaction time and concentration of absorption solution were evaluated.
3.1. Effect of V2O5 and sample mass

Auxiliary reagents are commonly used in pyrohydrolysis to help
halogen release from refractory matrices and one of the most used is
V2O5. This reagent has been used due to the relatively low melting
point, about 750 °C, and suitability for different matrices. Moreover, this
reagent can be produced in high purity from ammoniummetavanadate.
It results in lower blank values that are important to achieve low detec-
tion limits [57,58].

Initial studies for the digestion of APM collected on glass fiber filter
were performed using sample “A” (50 to 300 mg) without the use of
an auxiliary reagent. In this condition, evenwhen only 50mg of samples
were used the recoveries obtained for bromine and iodine were not
quantitative. The results obtained for bromine and iodine in this study
without using V2O5 were about 35% lower when compared with the
results obtained using this reagent.

In order to evaluate the effect of V2O5 in pyrohydrolysis of APM
samples for bromine and iodine determination, subsequent tests
were performed using 300 mg of sample “A” and increasing the
amount of V2O5 up to 1200 mg. For these experiments, temperature,
air flow rate, water flow rate, reaction time and NH4OH concentration
were selected as 950 °C, 200 mL min−1, 0.5 mL min−1, 30 min and
100 mmol L−1, respectively according to a previous work [50]. The re-
spective results are shown in Fig. 1.

A mixture of 300 mg of sample + 300 or 600 mg of V2O5, presented
recoveries lower than those obtained when 300 mg of sample was
mixed with 900 or 1200 mg (Fig. 1). It is important to mention that
the results obtained using 900 or 1200 mg V2O5 presented no statistical
difference (t-test, 95% of confidence level). Moreover, it was observed
that the RSDs were improved (b5%) with the increase of V2O5 amount.
Furthermore, 900mgof V2O5wasmixedwith 50, 100 or 200mgof APM
(sample “A”) sample and no statistical difference was observed. There-
fore, amixture of 300mg of sample+900mg of V2O5was used for sub-
sequent experiments. It is important tomention that the use of V2O5 did
not increase blank values for bromine and iodine, which is important to
assure low LODs. In addition, all blank tests were performed using the
same glass fiber filter used to collect APM samples and blank values ob-
tained for bromine and iodinewere negligible. Another important fact is
that even using V2O5, after pyrohydrolysis APM digestion, a residue of
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Fig. 1. Effect of V2O5 on bromine ( ) and iodine (□) release from APM collected on glass
fiber filter using 300mg of sample (filter “A”)+V2O5. Pyrohydrolysis conditions: temper-
ature of 950 °C, 100 mmol L−1 NH4OH as absorbing solution, reaction time: 30 min, air
flow rate: 200 mL min−1, and water flow rate: 0.5 mL min−1. Determination by ICP-MS
(error bars are the standard deviation; n = 3).
inorganic matrix was observed on the alumina platform and it was re-
moved during the cleaning step of the pyrohydrolysis system.

3.2. Evaluation of absorbing solution

It has been widely discussed in the literature that the choice of
absorbing solution in pyrohydrolysis is important to achieve suitable re-
coveries [23,59]. It is dependent on the nature of analytes and should be
compatible with the selected determination technique. Particularly, in
the case of halogen determination, absorbing solution should be care-
fully optimized due to the risk of analyte losses. In this sense, NH4OH
solution (10 to 100 mmol L−1) was evaluated.

In the present work, a systematic study using 10 mL of ammonium,
hydroxide (10, 25, 50 or 100 mol L−1) was carried out in order to evalu-
ate the suitability of absorbing solution for bromine and iodine after
pyrohydrolysis digestion. Ammonium hydroxide was evaluated in view
of its relatively high purity and suitability for bromine and iodine deter-
mination by ICP-MS. Spike recoveries in the APMsampleswere evaluated
for each absorbing solution. The results obtained in this study are shown
in Fig. 2.

With use of 10 mmol L−1 NH4OH solution, recoveries better than 93
and 71% were obtained for bromine and iodine, respectively. However,
the RSDs were of 20 and 25% for bromine and iodine, respectively. On
the other hand, when 25mmol L−1 NH4OH solutionwas used the recov-
eries were better than 99% for both analytes and RSDs were between 8
and 10% for bromine and iodine, respectively. Better results were obtain-
edwhen50or 100mmol L−1 NH4OHsolutionwas used (recoveries close
to 100% and RSD lower than 10% for both analytes). In this sense, a solu-
tion of 50mmol L−1 NH4OHwas chosen as absorbing solution for subse-
quent tests using pyrohydrolysis for the digestion of APM collected on
the glass fiber filter. It is important to point out that the use of diluted
alkaline solution (50 mmol L−1 NH4OH) reduces the memory effect on
ICP-MS determination step [60,61].

3.3. Evaluation of pyrohydrolysis time

Pyrohydrolysis reaction time must be enough for complete bromine
and iodine release from the sample matrix and to decrease memory
effects. Therefore, the time necessary for pyrohydrolysis can change
according to the sample matrix, chemical forms of analytes, analyte
concentration and also due to the characteristics of the pyrohydrolysis
system employed [54,55,62]. The time of pyrohydrolysis reaction was
evaluated in the range of 5 to 20 min using sample “B” (300 mg of
sample + 1200 mg of V2O5; 950 °C; 50 mmol L−1 NH4OH as absorbing
solution). The results are shown in Fig. 3.

In this study, it was observed that with 5min of heating, only 62 and
69% of bromine and iodine, respectively were released from the sample
0.00

0.50

1.00

1.50

2.00

10 25 50 100

C
on

ce
nt

ra
ti

on
, µ

g 
g-

1 

Absorbing solution NH4OH (mmol L-1)

Fig. 2. Influence of absorbing solutions for bromine ( ) and iodine (□) determination
in APM collected on glass fiber filter (sample “A”). Pyrohydrolysis temperature:
950 °C, reaction time: 30 min, air flow rate: 200 mL min−1, water flow
rate: 0.5 mL min−1, determination by ICP-MS (error bars are the standard deviation;
n = 3).
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Fig. 3. Effect of time of pyrohydrolysis on bromine ( ) and iodine (□) release from APM
collected on glass fiber filter. Pyrohydrolysis conditions: using 300 mg of sample (filter
“B”)+900mgofV2O5, temperature of 950 °C, 50mmol L−1 NH4OHas absorbing solution,
reaction time: 15 min, air flow rate: 200 mL min−1, and water flow rate: 0.5 mL min−1.
Determination by ICP-MS (error bars are the standard deviation; n = 3).
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(Fig. 3). Relative standard deviation was higher than 23 and 26% for
bromine and iodine, respectively. For 10 min of heating the recovery
was better than 95% but the RSDwas higher than 15% for both analytes.
On the other hand, 15 or 20 min of heating time allowed the quantita-
tive release of bromine and iodine from APMs collected on the glass
fiber filter. The results presented no statistical difference (t-test, 95%
of confidence level). Moreover, the RSD for 15 min of reaction was
around 8% for both analytes, and for 20 min of reaction, a RSD lower
than 7%was obtained for both elements. Therefore, 15minwas selected
for further studies. This time could be considered suitable for routine
analysis of APM collected on the glass fiber filter, considering that four
samples can be prepared in 1 h. It is important to mention that no
memory effects were observed using 15 min of pyrohydrolysis,
showing that the analytes were completely released from the sample
and carried to the collection flask.

3.4. Bromine and iodine determination by ICP-MS in APM collected on glass
fiber filter after pyrohydrolysis digestion

The proposed pyrohydrolysismethodwas applied to the digestion of
four samples of APM collected on a glass fiber filter. Bromine and iodine
were determined by ICP-MS. Pyrohydrolysis conditions were 300mg of
sample + 900 mg of V2O5, 10 mL of 50 mmol L−1 NH4OH, 15 min at
950 °C. The results are shown in Table 1.

According to the results showed in Table 1, the concentrations of
bromine and iodine in APM collected on glass fiber filter samples
digested by pyrohydrolysis were in the range of 2.17 to 3.51 μg g−1 of
bromine and 0.384 to 0.687 μg g−1 of iodine (determination by ICP-MS).

Accuracy of the proposed method also was evaluated by recovery
tests using the spike of bromine and iodine in sample “D” and subse-
quent analyte determination by ICP-MS.

Recovery tests for Br and I in APM samples were performed by the
addition of the equivalent of 2 μg g−1 for Br and 1 μg g−1 for I. Recoveries
obtained for both analytes using pyrohydrolysis were better than 97%.
Table 1
Concentration of bromine and iodine in APM collected on glass fiber filter. Determination
by ICP-MS after pyrohydrolysis method (μg g−1, n = 3).

Sample Concentration, μg g−1

Br I

A 2.03 ± 0.15 0.398 ± 0.028
B 1.08 ± 0.08 0.433 ± 0.035
C 1.60 ± 0.14 0.407 ± 0.027
D⁎ 3.51 ± 0.28 0.687 ± 0.051
NIST 2709 – 4.75 ± 0.26
NIST 1633b 3.02 ± 0.18 –

Informed values for CRMs: NIST 2709 (I: 5 μg g−1) and NIST 1633b (Br: 2.9 μg g−1).
⁎ Addition equivalent of 2 μg g−1 for Br and 1 μg g−1 for I.
Furthermore, the RSD was lower than 6% for bromine and lower than
5% for iodine.

In addition, the accuracy of the pyrohydrolysismethodwas evaluated
by performing the digestion of CRMs NIST 2709 and NIST 1633b and
further bromine and iodine determination by ICP-MS. The results for bro-
mine and iodine by ICP-MS were in agreement with informed values of
CRMs (agreement was better than 104 and 95% for bromine and iodine,
respectively), as shown in Table 1.

The limit of detection (LOD, 3σ, n = 10) by the proposed method
was 0.05 and 0.006 μg g−1 respectively for bromine and iodine. Low
blank levels, good precision, high sensitivity of ICP-MS and low dilution
factor were the key parameters to achieve low LODs for bromine and
iodine.

4. Conclusions

Pyrohydrolysis was used for the first time for sample preparation of
APM collected on glass fiber filter for bromine and iodine determination
by ICP-MS. The pyrohydrolysis system is relatively easy to be built in
laboratories and is feasible for routine analysis. Using the optimized
pyrohydrolysis conditions, quantitative recoveries of bromine and io-
dine were obtained after 15 min of pyrohydrolysis at 950 °C and using
a diluted solution (50mmol L−1 NH4OH) for analyte absorption. Digests
could be analyzed by techniques including ICP-MS, ICP-OES or IC. The
proposed pyrohydrolysis system allows the decomposition of up to
300mg of sample, combining safety, relatively high sample throughput,
matrix separation and low cost sample preparation step. A suitable LOD
was obtained for both analytes: 0.05 and 0.006 μg g−1 for Br and I, re-
spectively. Therefore, pyrohydrolysis can be recommended for bromine
and iodine determination by ICP-MS in APMs collected on a glass fiber
filter.
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