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Abstract

Full models of scalar modulation instability (MI) in optical fibers avail-
able in the literature usually involve complex formulations. In this paper,
we present a novel approach to the analysis of MI in optical fibers by means
of a simple geometrical description in the power vs. frequency plane. This
formulation allows to relate the shape of the MI gain to any arbitrary dis-
persion profile of the medium, thus providing a simple insight. As a result,
we derive a straightforward explanation of the non-trivial dependence of
the cutoff power on high-order dispersion and derive explicitly the power
that maximizes the gain. Our approach puts forth a tool to synthesize a
desired MI gain with the potential application to a number of parametric-
amplification and supercontinuum-generation devices whose initial-stage
dynamics rely upon modulation instability.

1 Introduction

The phenomenon of modulation instability (MI) has been known and thoroughly
studied for many years in a vast number of different areas of science. In the
realm of optical fibers [1, 2, 3, 4, 5, 6, 7], MI plays a fundamental role as it is inti-
mately connected to the appearance of optical solitons, which have had a strong
impact on applications to high-capacity fiber-optic communication, among other
areas. Modulation instability also is at the heart of the occurrence of efficient
parametric optical processes heavily relied upon to achieve bright and coherent
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light in various spectral ranges. These very same nonlinear processes are used
to provide optical amplification and wavelength conversion in the telecommuni-
cation band, maybe one day enabling complete photonic control of optical data
traffic. In recent years, nonlinear phenomena such as supercontinuum genera-
tion [8, 9, 10, 11, 12], rogue waves [13, 14, 15] have rekindled the interest in
MI.

Complete models of MI, for instance the one presented in [16] used to study
coherence in seeded MI, lead to somewhat intricate expressions. In the present
work, by turning our attention to the interplay between high-order dispersion
and self-steepening we find that, by analyzing the dependence of the MI gain
with pump power, a simple geometrical model can be formulated. This geomet-
rical model provides simple insight and proves to be useful as a straightforward
analytical and synthesis tool. The presence of self-steepening yields an opti-
mum power (in terms of maximizing the gain) and a cutoff power above which
the MI gain essentially vanishes, leaving behind only the Raman contribution.
These observations regarding the power cutoff and the optimum power were
first reported by Shukla and Rasmussen [17], and the role of self-steepening
was further analyzed by De Angelis et al. [18]. However, in both references the
effects of high-order dispersion and delayed Raman response were not consid-
ered. In this work, by using the aforementioned geometrical model, not only
we extend these results but put forth an analysis in the power-versus-frequency
plane that accounts for a quantitative characterization of the MI gain and its
relation to any dispersion profile by means of simple mathematical expressions,
thus underscoring the capability of the model as a useful synthesis tool.

The remaining of the paper is organized as follows: In Section 2, we briefly
review an expression for the MI gain that contemplates all relevant nonlinear
effects. Section 3 is devoted to the description of the modulation instability
gain in the pump-power-versus-frequency plane and introduces the geometrical
model. Analytical expressions for finding gain maxima and the influence of high-
order dispersion are presented in Section 4. Concluding remarks are presented
in Section 5.

2 Analytical expression of the MI gain

Scalar wave propagation in a lossless nonlinear medium can be described by the
generalized nonlinear Schrödinger equation [19],

∂A

∂z
− iβ̂A = iγ̂A(z, T )

+∞∫
−∞

R(T ′) |A(z, T − T ′)|2 dT ′, (1)

where A(z, T ) is the slowly-varying envelope, z is the spatial coordinate, and T

is the time coordinate in a comoving frame at the group velocity (= β−1
1 ). β̂

and γ̂ are operators related to the dispersion and nonlinearity, respectively, and
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are defined by

β̂ =
∑
m≥2

im

m!
βm

∂m

∂Tm
, γ̂ =

∑
n≥0

in

n!
γn

∂n

∂Tn
.

The βm’s are the coefficients of the Taylor expansion of the propagation constant
β(ω) around a central frequency ω0. In the convolution integral in the right hand
side of (1), R(T ) is the response function that includes both the instantaneous
(electronic) and delayed Raman response of the medium.

The MI gain is given by (see, e.g., [16])

g(Ω) = 2max{−Im{K1(Ω)},−Im{K2(Ω)}, 0}, (2)

where Ω = ω − ω0, and K1,2(Ω) are dispersion relations of small perturbations
a = D exp(iK1,2(Ω)z) to a continuous-wave (CW) pump of frequency ω0 and
power P0 such that

(√
P0 + a

)
eiγ0P0z is an approximate solution to (1) when

only linear terms on the perturbation are considered.
Then, the MI gain with all relevant nonlinear effects present in (1) can be

obtained (for more details, see Ref. [16]) by findingK1,2(Ω). In the vast majority
of the literature only up to γ1 is taken into account. As such, we focus on a
simple expression obtained by setting γn≥2 = 0 and γ1 = γ0τsh (accounting for
the effect of self-steepening). Then,

K1,2(Ω) =β̃o + P0γ0τshΩ
(
1 + R̃

)
±

±
√(

β̃e + 2γ0P0R̃
)
β̃e + P 2

0 γ
2
0τ

2
shΩ

2R̃2,
(3)

with R̃ the Fourier transform of R,

β̃e(Ω) =
∑
n≥1

β2n

(2n)!
Ω2n, and β̃o(Ω) =

∑
n≥1

β2n+1

(2n+ 1)!
Ω2n+1.

The analysis that follows, even though it is proposed for the case of scalar MI,
may be extended to multimode fibers. In recent years, intermodal-MI (IM-MI)
has gained considerable attention as it is related to wideband and multimode
fiber optical amplifiers [20] and it is one of the key issues in spatial-division
multiplexing [21]. Dispersion relations in this multimode context are given, in
the linear approximation, by a set of eigenvalues of a matrix describing mode
dynamics [20]. As such, the tools developed hereafter can be extended to the
case of IM-MI by straightforward application to these eigenvalues, putting forth
a simple yet powerful analytical tool in a context of inherent design complexity.

3 Geometry of the MI gain

Equations (2)-(3) exhibit some properties of the gain that have been thoroughly
studied in the literature, for instance, the fact that it does not depend on odd
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terms of the dispersion relation (e.g., β3) [4, 10]. However, the derived MI gain,
including the effects of self-steepening and Raman delayed response, reveals
novel aspects related to the self-steepening term γ0τsh. Indeed, it already has
been noted that this term enables a gain even in a zero-dispersion optical fiber
and that, in general, leads to a narrowing of the MI gain bandwidth [22, 23].
These observations are shown to be a straightforward consequence of the analysis
that follows.

It is widely known (see, e.g., Ref. [19]) that, for the simplified model that
only takes β2 and γ0 into account and neglects self-steepening, as the pump
power P0 increases the frequency Ωmax where the MI gain attains its maximum,
and the peak gain both increase as, respectively,

Ωmax = ±

√
2γ0P0

|β2|
, g(Ωmax) = 2γ0P0. (4)

Enter self-steepening and the relation between the pump power and the MI gain
changes drastically in a non-trivial way, since there appears an optimum pump
power level for which a peak gain is attained, and any further increase in pump
power makes the MI gain decline. This relevant observation was first made by
Shukla and Rasmussen [17] with a simplified model of dispersion expanded up
to the GVD parameter. In what follows, we find that this feature is retained
when considering an arbitrary number of dispersion terms. Moreover, we show
this to be a corollary of the geometrical properties of the region where MI gain
occurs, as defined over the pump-power-versus-frequency plane.

To this purpose, let us analyze the case of Eq. (3) where only the electronic
Raman response is taken into account (i.e., R̃(Ω) = 1). With the help of some
examples (cf. Fig. 2), this simplification is shown to be not too restrictive.
Thus, under this setting,

g(Ω, P0) =

{
2
√
∆(Ω, P0) for ∆(Ω, P0) > 0
0 otherwise,

(5)

where
∆(Ω, P0) := −P 2

0 γ
2
0τ

2
shΩ

2 − P02γ0β̃e − β̃2
e . (6)

Since there is MI gain if, and only if, ∆(Ω, P0) > 0, we may define the MI
gain region in the Ω− P0 plane as

RMI =
{
(Ω, P0) ∈ R× R+ : ∆(Ω, P0) > 0

}
. (7)

Notice that for τsh = 0, we get the usual textbook expression [19]

RMI|τsh=0 =

{
(Ω, P0) ∈ R× R+ : β̃e(Ω) < 0,

P0 > − β̃e(Ω)

2γ0

}
,
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though we are interested in the case where self-steepening is not neglected, i.e.,
τsh ̸= 0. Here, ∆(Ω, P0) = 0 defines the boundary of RMI and is either met
when Ω = 0 or whenever P0 is

P± = P̂ (Ω)×
(
1±

√
1− τ2shΩ

2

)
, (8)

where

P̂ (Ω) = − β̃e(Ω)

γ0τ2shΩ
2
. (9)

Since for each fixed frequency ∂2

∂P 2
0
∆(Ω, P0) < 0 , it is clear that ∆(Ω, P0) can

only be positive between P− and P+ when |Ω| < τ−1
sh . It is usual to use the

approximation τ−1
sh ≈ ω0, thus neglecting the frequency dependence of the mode

effective area [24]. In this case, Eq. (8) limits the frequency to lie in the range
Ω ∈ (−ω0, ω0), whereas by taking into account the frequency dependence leads
to a slightly increased value of τsh and, hence, to a narrower range of frequencies
where the MI gain exists (Ref. [25]).

From Eqs. (7)-(9), we can write

RMI =

 (Ω, P0) ∈ [−ω0, ω0]× R+ : β̃e(Ω) < 0,

(
P0

P̂ (Ω)
− 1

)2

+ (τshΩ)
2 < 1

 .

(10)

TheRMI of Eq. (10) has a direct geometrical interpretation: since 1±
√

1− τ2shΩ
2

defines an ellipse centered at (0, 1) with vertical axis of length 2 and horizontal
axis of length 2ω0, the MI gain region is given by the portion that lies above
the P0 = 0 axis of the aforementioned ellipse, bent and stretched along the
vertical axis by −β̃e(Ω)/(γ0τ

2
shΩ

2). To see this, in Fig. 1 we plot MI gain regions

in a plane of normalized power (P0γ0τ
2
sh) versus frequency (Ω) for β̃e(Ω) =

(β2/2)Ω
2+(β4/4!)Ω

4 with β2 = −1 ps2/km, β4 taking on the values -0.8, 0, +0.8
× 10-3 ps4/km, and γ0 = 100 (W-km)−1 with a pump centered at a wavelength of
5 μm. Self-steepening is considered by setting τsh = ω−1

0 . The curves β̃e(Ω)/Ω
2

are also plotted (dashed lines) as a reference.
With this interpretation in mind we can explain, for instance, the non-trivial

behavior of the power cutoff above which MI gain nearly vanishes (but for the
vestigial contribution due to the delayed Raman response.) Figure 2 shows the
MI gain in the Ω–P0 plane using the same parameters of Fig. 1 but for β4 = -1.6,
-0.8, +0.8, +1.6 × 10-3 ps4/km ((a)–(d), respectively) and with the addition of
the delayed Raman response to show its negligible contribution to the shape of
the MI gain region. The Raman response is R(T ) = (1 − fR)δ(T ) + fRhR(T ),
with

hR(T ) =
τ21 + τ22
τ1τ22

e−T/τ2 sin(T/τ1)u(T ), (11)
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Figure 1: MI gain regions in the plane of normalized pump power versus fre-
quency for β4 -0.8,0,+0.8 × 10-3 ps4/km. Dashed lines correspond to β̃e(Ω)/Ω

2

for the different values of β4.

where u(T ) is the Heaviside step function, fR = 0.031, τ1 = 15.5 fs, τ2 =
230.5 fs [26, 27, 28].

To see what happens with the power cutoff, Fig. 3 shows (blue line) the
pump power above which MI gain nearly vanishes as a function of β4 for 20
different values ranging from -1.6 to +1.6 × 10-3 ps4/km (the β4’s of Fig. 2 are
marked in red dots.) As it is readily seen, the cutoff power varies linearly with
β4 for β4 < 0 and exhibits a plateau when β4 contributes towards the normal
dispersion regime (that is, β4 > 0).

To explain the plateau, note that whenever β4 is positive the ellipse ’bends
down’, and therefore the power cutoff remains constant and equal to−β2/(γ0τ

2
sh)

(i.e., P+ for Ω → 0). When β4 is negative, if |β4| is not too small, the cutoff
power (upper limit of the region along the vertical axis) lies near the position of
the maxima of −β̃e(Ω)/Ω

2, and it is easily seen that these maxima vary linearly
with β4, explaining the approximately linear behavior seen in Fig. 3 for negative
β4’s.

All in all, the most obvious and important property that can be exploited
from the geometrical description of the MI region is that, since the horizontal
axis of the ellipse bends with −β̃e(Ω)/Ω

2, one is able to synthesize different MI
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Figure 2: MI gain versus pump power when considering dispersion up to β4 (β4

= -1.6 × 10-3 ps4/km (a), β4 = -0.8 × 10-3 ps4/km (b), β4 = +0.8 × 10-3 ps4/km
(c), β4 = +1.6 × 10-3 ps4/km (d)) including self-steepening. The corresponding
MI gain regions are plotted in dashed white.

gain regions by the arbitrary design of the dispersion profile of the medium in
a straightforward manner.

4 Location of the MI gain maxima

We may ask for the location of maxima within the MI gain region as it is
paramount to applications which rely upon MI, such as supercontinuum gener-
ation from CW lasers and parametric amplification in nonlinear media. In order
to do so, we find that

∂

∂P0
∆ = −2P0τ

2
shγ

2
0Ω

2 − 2γ0β̃e, (12)

∂2

∂P 2
0

∆ = −2τ2shγ
2
0Ω

2. (13)
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Figure 3: MI gain power cutoff versus β4 (blue line). Dots indicate the values
of β4 used in previous figure.

Since ∂2∆
∂P 2

0
is negative definite for Ω ̸= 0, by finding zeroes of Eq. (12) any

maximum inside the MI gain region must have P0 = −β̃e(Ω)/γ0τ
2
shΩ

2 = P̂ (Ω).
That is, maxima of the modulation instability gain must lie on the dashed lines
drawn in Fig. 1.

We may find the location of maxima by differentiating ∆(Ω, P0) with respect
to Ω and proceeding with usual calculus techniques. However, a more intuitive
understanding can be reached by defining

ĝ(Ω) := max
P0

g(Ω, P0) = g(Ω, P̂ (Ω))

= −2
β̃e(Ω)

τsh|Ω|

√
1− τ2shΩ

2

(14)

for β̃e(Ω) < 0. It is easy to see that maxima of g(Ω, P0) must also be maxima
of ĝ(Ω).

By using Eq. (14) it can be easily shown that the location of maxima is
Ωmax = ±1/2τsh and P0 = − β2

2γ0τ2
sh

for the simple case where only GVD is

considered. That is, a peak in the MI gain right in the middle of the power
range for which there is gain. This observation was first reported by Shukla and
Rasmuseen [17]. However, the analysis in Ref. [17] did not include higher-order
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dispersion terms. Thus, if we turn our attention to the influence of these terms,
finding MI gain maxima and their location in the Ω–P0 plane, which amounts

to a simple calculus problem by means of ∂
∂Ω ĝ and ∂2

∂Ω2 ĝ, gives us results which
depend parametrically on the dispersion coefficients, and render the analysis
(and synthesis) of extrema a straightforward numerical task.

As a simple example, we may consider analyzing the influence of β4 in MI
gain maxima. If we define ĝβ2

(Ω) to be that of Eq. (14) when only GVD is
considered, we have that

ĝ(Ωmax) = ĝβ2(Ωmax) +
∂

∂β4
ĝ(Ωmax) · β4

given that β̃e(Ω) < 0, βn = 0 for n ≥ 6, where ±Ωmax are the arguments
that maximize ĝ(Ω). In general, Ωmax depends on the particular dispersion
profile, but it can be shown that, for |β4| large enough, Ωmax remains nearly
constant and ∂

∂β4
ĝ(Ωmax) also varies little. In practical terms, this means that

the gain increase over ĝβ2
(Ωmax) is proportional to |β4|, thus pointing at the

strong influence of high-order dispersion (see Fig. 2(a)–(b) and note the different
scales.)

5 Conclusions

In conclusion, we presented a simple geometrical description of a full model of
scalar modulation instability. This novel approach allowed us to relate the
MI gain profile to any arbitrary dispersion of the medium, and provides a
straightforward explanation of the dependence of the cutoff power with high-
order dispersion. Further, we showed that the power level maximizing the MI
gain is greatly influenced by high-order dispersion and that it can be explic-
itly obtained. Finally, the geometrical model can be used as a tool to synthe-
size a desired MI gain shape, with the potential application to a number of
parametric-amplification and supercontinuum-generation devices that rely on a
precise knowledge of early-stage MI dynamics.
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