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H I G H L I G H T S

� A model for the transient effectiveness factor TEF is shown in gradientless reactors.
� The TEF depends not only on the Thiele modulus but also on operational variables.
� The TEF is larger than the steady state effectiveness factor SSEF in pulse injections.
� The SSEF can be corrected by means of two correction factors to yield the TEF.
� This approach is general and embraces the case of the usual steady state assumptions.
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a b s t r a c t

A model to calculate the actual transient effectiveness factor in spherical porous catalyst particles in
gradientless reactors, where a first order reaction takes place under isothermal conditions, linear
equilibrium adsorption and intraparticle diffusion control, was developed. After a certain time has
elapsed following a change in the feed's reactant concentration, the transient effectiveness factor can be
approximated as a linear combination of the steady state effectiveness factor and the relative rate of
change of the concentration in the fluid phase. Oppositely to the well-known steady state effectiveness
factor, which depends only on the Thiele modulus ϕ, related to intrinsic properties of the catalysts, the
transient effectiveness factor also depends on other two dimensionless numbers: α, the relationship
between the capacity of accumulation of reactant in the fluid and solid phases, and ϕf , a relationship
between the convective flow and the intraparticle diffusion rate. In this way, the catalyst load, the reactor
volume and the volumetric flow do impact on the effectiveness factor. The coefficients defined as Ia and
If are the Diffusion–Adsorption–Reaction Factor and the Flow Factor, respectively, which are complex
functions of the Thiele modulus, the convective modulus ϕf and the system's adsorption capacity α, and
which can be used to correct the steady state effectiveness factor to yield the approximated transient
effectiveness factor, which is more exact. In the case of a pulse perturbation in the reactant's
concentration, the transient effectiveness factor reaches a constant value which is larger than that from
the steady state effectiveness factor and, the larger the catalyst mass and the flow, the larger the
difference. Results show the existence of a pseudo-equilibrium state in gradientless reactors.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In order to simplify the analysis of chemical reaction systems in
heterogeneous reactors with porous catalyst particles, the linear-
ization of adsorption isotherms, the lumping of chemical species
and the assumption of steady state for the concentration profiles

in the inner surface of the solid catalyst particles are assumed
(Aris, 1975). The immediate consequence is that the steady state
effectiveness factor ηss, which is defined as the relationship
between the actual chemical reaction rate taking place at the
inner pore surface and that at the external particle surface,
depends only on the dimensionless Thiele modulus (Thiele,
1939). Moreover, the need of solving the partial differential
equations (PDEs) of the mass balances in the particle, which are
coupled to the corresponding mass balances in the fluid phase, can
be avoided since pseudo homogeneous systems outcomes. An
important number of works exists where the effectiveness factor is
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studied and approximate expressions are developed to obtain fast
estimations, or to extend the approach to different particle
geometries or chemical reaction kinetics (Bischoff, 1965; Gonzo
et al., 1988; Gottifredi et al., 1981; Gottifredi and Gonzo, 2005;
Haynes, 1986; Lee and Kim, 2006; Szukiewicz and Petrus, 2004).

Another option to simplify the mathematical treatment is to
apply the concept of linear driving force (LDF), an approximation
which transforms the partial differential equations (PDEs) in the
particle into ordinary differential equations (ODEs) (Álvarez-
Ramírez et al., 2005, Glueckauf, 1955; Goto and Hirose, 1993;
Kim, 1989, 2008, 2009; Kim and Lee, 2012; Lee and Kim, 2011,
2013; Szukiewicz, 2000, 2002). Even though the LDF concept
produces simpler calculations, the total number of dynamic
equations does not reduce and, then, most of the studies devoted
to non-linear or complex kinetics, even in cases where the
balances are simple (e.g. case of gradientless reactors) use the
steady state assumption for the reactants' concentrations in the
particle (Al-Sabawi and de Lasa, 2010; Gomez Carrasco et al., 2011;
Kim et al., 2013; Wang et al., 2011). It is to be mentioned that the
simultaneous solution of the coupled transient mass balances for a
reactant in the catalyst particles and the fluid phase has been
solved by some authors following different aims (e.g. Frost, 1981;
Marroquin de la Rosa et al., 2002; Miró et al., 1986; Oberoi et al.,
1980; Schobert and Ma, 1981a, 1981b).

Besides the widespread use of steady state effectiveness factors,
and even though evidences exist about their limitations, the
confirmation of the applicability of the steady state assumption
in the catalyst particles is very unusual. However, it is true that the
concentration profiles inside the particles can be similar to the
steady state ones only in cases of moderate changes of the
concentration in the fluid phase. Nevertheless, in batch systems
with high adsorption capacity, the changes in the concentration of

the reactant are significant and the exact solution of the equations
which describe mass transport and chemical reaction simulta-
neously shows that the steady state assumption for the particle is
not always appropriate (Bidabehere and Sedran, 2006). Similar
conclusions can be obtained through the observation of the
changes of reactant concentration in the fluid phase and averaged
in the particle when they are calculated for the transient operation
of continuous reactors under high flow conditions (Marroquin de
la Rosa et al., 2002).

Since the substitution of the reaction term in the reactor's mass
balance by the product between the actual effectiveness factor and
the chemical reaction evaluated at the external catalyst surface is
attractive and easy to use, it is the objective of this work to provide
a simple view of this transient effectiveness factor, aimed at
maintaining the classic approach. Moreover, it is shown that it is
possible to develop an approximate solution in order to represent
such a effectiveness factor directly in terms of physical system
parameters and truly measurable macroscopic variables, such as
reactor volume, catalyst load, volumetric flow and fluid phase
concentration, as applied to gradientless reactors with porous
particles. The influence of these parameters, as well as the
relationship between the steady state and the transient effective-
ness factors, is analyzed in batch and continuous operations.

2. Theoretical model

The system under study is a heterogeneous stirred chemical
reactor where solid, porous catalyst particles are used. Assump-
tions in the model are that an isothermal regime occurs, that an
adsorption equilibrium of the reactant is reached in the pores,
which is linear (Q ¼ KC), that the chemical reaction is first order

Notation

Symbols

C reactant concentration (gmol/m3)
D diffusivity (m2/s)
Da Damköhler number for first order reaction in a flow

reactor (dimensionless)
F volumetric flow (m3/s)
f perturbation at the inlet concentration in a well

stirred flow reactor (gmol/m3)
I correction factors in Eq. (27) (dimensionless)
K Henry's constant (dimensionless).
k reaction rate constant (s�1)
Q concentration in the solid phase, adsorbed compounds

(gmol/m3)
R catalyst particle radius (m)
r radial distance (m)
s coefficients of expansion in Eq. (22), defined in Eq.

(23) (dimensionless)
t time (s)
V volume (m3)

Greek symbols

α relationship between fluid and solid phase capacities
(dimensionless)

χ dimensionless concentration in the fluid phase
δ Dirac delta function
ε porosity (dimensionless)

ϕ Thiele modulus (dimensionless)
ϕf convective modulus (dimensionless)
η effectiveness factor (dimensionless)
λ eigenvalues in Eq. (22), defined in Eq. (23)

(dimensionless)
ρ dimensionless radial distance
τ dimensionless time
ξ dimensionless concentration in solid phase

Subscripts

a adsorption
e equivalent or effective
f fluid phase, Flow
i order of coefficients Si in Eq. (23)
k refers to the second term in the right hand side in Eq.

(28)
n order of the eigenvalues in Eq. (22)
obs observed
p particle
s solid phase

Superscripts

volume averaged variable
in inlet
o initial
ss steady state
ts transient state
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on the reactant, that the diffusion into the pores obeys Fick's law,
and that the mass transfer resistance in the external film of the
spherical catalyst particles, which have uniform size, is negligible.
In this way, the mass balance for the reactant in the catalyst
particles can be written as

εp
∂C
∂t

¼ εpD∇2C� 1�εp
� �∂Q

∂t
� 1�εp
� �

ksQ ð1Þ

which, if expressed in terms of the concentration in the fluid
phase, is

∂C
∂t

¼De∇2C�keC ð2Þ

subjected to the following initial and boundary conditions:

Cðr;0Þ ¼ 0 ð3Þ

∂C
∂r

����
r ¼ 0

¼ 0 ð4Þ

CðR;tÞ ¼ Cf ðtÞ ð5Þ

where

De ¼
εpD

εpþð1�εpÞK
; ke ¼

ð1�εpÞKks
εpþð1�εpÞK

ð6Þ

ks is the reaction rate constant and D is the diffusivity, which can
be evaluated from the estimation of the tortuosity and the
molecular and Knudsen diffusion coefficients (Satterfield, 1981).

The mass balance in the reactor is

Vf
dCf

dt
¼ FCin

f �FCf �Vp
3
R
εpD

∂C
∂r

����
r ¼ R

ð7Þ

where Cin
f is an arbitrary function of time

Cin
f ¼ f ðtÞ ð8Þ

subjected to the following initial condition:

Cf ðt ¼ 0Þ ¼ 0: ð9Þ

If dimensionless variables are introduced according to

τ¼ tDe

R2 ; ρ¼ r
R
; ξ¼ C

Co
f
; χ ¼ Cf

Co
f
; ð10Þ

where Co
f is a characteristic concentration, the following para-

meters can be defined:

ϕ¼ R

ffiffiffiffiffiffi
ke
De

s
; ϕf ¼ R

ffiffiffiffiffiffiffiffiffiffiffi
F=Vf

De

s
¼ ϕffiffiffiffiffiffi

Da
p ; α¼ Vp εpþð1�εpÞK

� �
Vf

: ð11Þ

The parameter ϕ is the well-known Thiele modulus, while the
convective modulus ϕf , which is analogous to the Thiele modulus,
is a relationship between the convective flow and the diffusion
rate. Da is the Damköhler number for first order reactions
occurring in a continuous reactor. The parameter α relates the
solid and fluid phase volumes and can be considered an indication
of the system's adsorption capacity. Then, the mass balances can
be rewritten as

dχ
dτ

¼ ϕ2
f χin�χ
� 	

�3α
∂ξ
∂ρ

����
ρ ¼ 1

ð12Þ

∂ξ
∂τ

¼∇2ξ�ϕ2ξ ð13Þ

subjected to the initial and boundary conditions

χðτ ¼ 0Þ ¼ 0 ð14Þ

ξðρ;0Þ ¼ 0 ð15Þ

∂ξ
∂ρ

����
ρ ¼ 0

¼ 0 ð16Þ

ξð1;τÞ ¼ χ τð Þ: ð17Þ

It is shown in Appendix A that

3
∂ξ
∂ρ

����
ρ ¼ 1

¼ dξ
dτ

þϕ2ξ ð18Þ

where ξ is the volume average reactant concentration in the
particle, defined according to

ξ¼ 3
Z 1

0
ρ2ξ dρ: ð19Þ

Finally, by introducing Eq. (18) into Eq. (12), the mass balance
for the reactant in the reactor can be written

dχ
dτ

¼ ϕ2
f χin�χ
� 	

�α
dξ
dτ

�αϕ2ξ ð20Þ

with the initial conditions (14) and

ξðτ ¼ 0Þ ¼ 0: ð21Þ

On the other hand, the exact solution for the reactant's volume
average concentration in the particle, ξ (Eq. (19)), from the solution
of Eq. (13), is given by Kim (1989)

ξ¼ s1χ�s2
dχ
dτ

þs3
d2χ
dτ2

�…þ
X1
n ¼ 1

e� λnτ

λn


 �
�χ τ ¼ 0ð Þ þ

1
λn

dχ
dτ

����
τ ¼ 0ð Þ

� 1
λn

2

d2χ
dτ2

�����
τ ¼ 0ð Þ

þ…

0
@

1
A

ð22Þ
where

si ¼
X1
n ¼ 1

6
λin
; λn ¼ ϕ2þn2π2: ð23Þ

The transient effectiveness factor is the relationship between
the chemical reaction evaluated throughout the particle and the
chemical reaction evaluated at the external particle surface, that is

ηtsτð Þ ¼
R 1
0 4πρ2keξ ρ;τð Þ dρ

4
3π ke χ τð Þ

¼ ξ τð Þ
χ τð Þ

: ð24Þ

The averaged particle concentration in Eq. (24) can be replaced
by the solution given by Eq. (22).

Approximations to the exact solution for the dimensionless
average concentration in the particle (Eq. (22)), and consequently
for the transient effectiveness factor, can be defined. Moreover,
they can be studied about their quality in determining the value of
the transient effectiveness factor for a given situation. For exam-
ple, when the product λnτ in Eq. (22) is large, the exponential
factor tends to be nil. Then, an approximation excluding the
summation can be accepted after a certain minimum time (Kim,
1989). This minimum time can be calculated considering the most
restrictive condition, that is, the lowest λn (λ1 ¼ π2), which is
obtained with n¼ 1 and ϕ¼ 0, that is, when no chemical reaction
occurs; then, the exponential factor could be considered extremely
small if τ41=π2ffi0:1. This value is coincident with the limits of
applicability of Glueckauf's approximation formulas for diffusion
in adsorbents (Glueckauf, 1955). Nevertheless, this condition is
unnecessarily severe when chemical reaction occurs, particularly
in highly reactive, diffusion controlled systems such as zeolites,
where it would be acceptable to consider τ41=ðπ2þϕ2Þ as the
limiting condition. It can be shown that the si coefficients decrease
more than one order of magnitude with the order of their
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derivatives which, in general, also become less important as their
order increase (Kim, 1989). Then, a proper approximation for the
relationship between the dimensionless average concentration in
the particle and that in the fluid phase, that is, the transient
effectiveness factor, can be obtained if the series in Eq. (22) is
truncated at the second term

ηts ¼ s1 1�s2
s1

1
χ

dχ
dτ


 �
; valid for τ4

1
π2þϕ2: ð25Þ

Eq. (25) is an approximation to the actual effectiveness factor
which is more exact than that provided by the steady state
effectiveness factor, which can be obtained from Eq. (24) if all
the time derivatives in Eq. (22) are nil, thus yielding ηss ¼ s1. The
reason for this higher accuracy is that the relative changes in the
concentration of the reactant in the fluid phase, ð1=χÞðdχ=dτÞ, are
affected by the proportionality factor τp ¼ ðs2=s1Þ. The meaning of
s2=s1 can be understood from the linear driving force (LDF)
formulae derived by Kim (1989) in extending the pioneering work
by Glueckauf (1955), which has been extensively used in chroma-
tography and adsorption systems without chemical reactions.
Starting from a refinement of Eq. (22), the simplest formula
obtained by Kim for diffusion–adsorption–reaction systems in
porous media shows that the rate of accumulation of the reactant
in the particles is proportional to the difference between the mean
concentration and that obtained at the surface of the particle,

dC
dt

¼ s1
s2

De

R2 s1Cf �C
� 	

: ð26Þ

The value of s1=s2 can be calculated from Eq. (23). It is 15 if
ϕ¼ 0 and increases with increasing ϕ. This increase can be
explained considering that the proportionality constant in the
LDF approximation is the mass transfer coefficient (Kim, 1989). At
large ϕ values, the concentration profiles in the particle fall
abruptly near the external surface, resulting in a fast mass transfer
rate, a fact which is reflected in a high LDF coefficient. The inverse
of this coefficient is the time constant associated to the overall
diffusion, adsorption and reaction process tp ¼ ðs2=s1ÞðR2=DeÞ. Then
the relationship τp ¼ ðs2=s1Þ is the dimensionless time constant for
diffusion–adsorption–reaction in the particles.

It is interesting to note that Eq. (25) also shows that the
transient effectiveness factor can be equal, larger or smaller than
the steady state effectiveness factor, according to different
situations:

� ηts-ηss if dχ=dτ-0, or, more appropriately,
ðs2=s1Þð1=χÞðdχ=dτÞoo1 (which corresponds to a low relation-
ship between the relative change in the concentration of
reactant in the fluid phase, ð1=χÞðdχ=dτÞ, and the rate for
diffusion–adsorption–reaction in the particles, s1=s2).

� ηts4ηss if dχ=dτo0 (which corresponds, for example, to the
response of a batch system, particularly with high adsorption
capacity, after the injection of a pulse of reactant).

� ηtsoηss if dχ=dτ40 (which corresponds, for example, to the
initial stages of the response to step changes in the concentra-
tion of the feed to continuous reactors).

Eq. (25) can be used in Eq. (20) and, moreover, considering that
the accumulation term dξ=dτ can be approximated by s1ðdχ=dτÞ if
the derivatives of order higher than one are neglected and the
time elapsed is sufficiently long, then (refer to Appendix B)

ηts ¼ ηss Iaþ If
� �� If

χin

χ

� 

valid for τ4

1
π2þϕ2 ð27Þ

where

Ia ¼ 1þ αs1 s2=s1
� �

ϕ2

1þαs1 1� s2=s1
� �

ϕ2� � ð28Þ

and

If ¼
s2=s1
� �

ϕ2
f

1þαs1 1� s2=s1
� �

ϕ2� �: ð29Þ

Ia is the Diffusion–Adsorption–Reaction Factor and If is the
Flow Factor for the reaction system, which are complex functions
of the Thiele modulus and the system's adsorption capacity α. The
Diffusion–Adsorption–Reaction Factor Ia ¼ 1þ Ik is a correction
factor to the steady state effectiveness factor, which is equal to
the ratio ηts=ηss when ϕf ¼ 0 (batch reactor). It is also an increasing
function of the parameter α, which is proportional to the amount
of reactant adsorbed on the catalyst particles. On the other hand,
the Flow Factor If is a correction factor which is an increasing
function of ϕ2

f , resulting proportional to the convective flow.
It can be shown that the use of Eqs. (27)–(29) leads to a pseudo

homogeneous model which avoids solving the partial differential
equations (PDEs) of the mass balances in the particle (Eq. (13)),
which are coupled to the corresponding mass balances in the fluid
phase (Eq. (12)).

3. Discussion

Fig. 1 shows the Ia factor as a function of the Thiele modulus. It
can be seen that the correction factor is always larger than one, a
fact which makes the transient effectiveness factor to be larger
than the steady state effectiveness factor in batch reactors (If ¼ 0).
Moreover, the higher the system's adsorption capacity α, the
higher the correction factor, which in all the cases passes through
a maximum value. The fact that the transient effectiveness factor
depends on the amount of catalyst in the system (refer to the
definition of α, Eq. (11)) in a non-uniform mode (Eqs. (27)–(29))
implies that errors can be introduced in the assessment of the
kinetic or adsorption parameters if steady state approximations
are assumed.

Fig. 2 shows how the product If ðϕ2=ϕ2
f Þ ¼ If Da changes as a

function of the Thiele modulus for different values of the para-
meter α in a stirred flow reactor, thus impacting on the value of the
transient effectiveness factor and on its relationship with the
steady state effectiveness factor (see Eq. (27)). As seen in Eq.

Fig. 1. Diffusion-Adsorption-Reaction Factor Ia as a function of the Thiele modulus.
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(29), for given values of α and ϕ, If increases with ϕ2
f , which is

proportional to the flow F and inversely proportional to the
reactor's volume. The fact that the transient effectiveness factor
depends on both the flow and the reactor's volume in a non-
uniform mode implies that errors can be introduced in the
assessment of the kinetic or adsorption parameters if steady state
approximations are assumed. Moreover, it can be seen in Fig. 2
that, for given values of α and ϕ, the value of the Flow Factor If is
inversely proportional to the Damköhler number Da¼ keðVf =FÞ.
Then, the transient effectiveness factor could increase indefinitely
in certain cases (e.g. for pulse injection, see Eq. (27) and discussion
below) and values higher than one could be reached, even for
isothermal particles, if the flow is sufficiently high. However, this
may be not completely convenient in the operation of stirred flow
reactors.

Steady state effectiveness factors higher than one could be
observed in highly exothermic reactions. Weisz and Hicks (1962)
demonstrated that in such a case the increases in the value of the
rate constant, would more than offset the decrease in reactant
concentration, so that the reaction rate averaged over the particle
exceeds that at surface conditions.

4. Analysis of particular cases: pulse perturbation

In order to analyze the meaning of the correction factors Ia and
If and the issues impacting on them, a perturbation with a pulse of
reactant (Dirac delta function) is to be produced, will be consid-
ered. In the case of χ in ¼ δðτÞ it can be seen from Eq. (27) that the
transient effectiveness factor becomes

ηts ¼ ηss Iaþ If
� �

valid for τ4
1

π2þϕ2: ð30Þ

It is important to see in Eq. (30) that, for a pulse perturbation, a
state exists when the transient effectiveness factor becomes
constant, in accordance with the results from a pseudo equilibrium
model applied to dynamic techniques in stirred reactors
(Bidabehere and Sedran, 2006). The pseudo equilibrium state can
be easily observed in Fig. 3 after a certain time has evolved. Eqs.
(28)–(30) allow estimating the effectiveness factor of that pseudo
equilibrium state. Since the transient effectiveness factor does not
change after a certain time has elapsed, the changes in the fluid
and particle concentrations after the injection of a pulse can be

obtained easily by replacing the average particle concentration in
the reactor mass balance by the product between the approximate
transient effectiveness factor and the fluid phase concentration. As
a consequence, the evolution of the dimensionless concentration
in the fluid phase as a function of the dimensionless time τ in
semi-log coordinates is a line, whose slope is the inverse of the
observed dimensionless time constant ð1=χÞðdχ=dτÞ ¼ �ð1=τobsÞ

� �
.

This characteristic behavior takes place in various dynamic tech-
niques and, in these cases Eq. (25) can be written as

ηts ¼ ηss 1þ τp
τobs


 �
ð31Þ

and then, by comparing Eqs. (30) and (31),

Iaþ If ¼ 1þ τp
τobs

: ð32Þ

Both Eqs. (31) and (32) show that the larger the relationship
between the dimensionless time constant for diffusion–adsorp-
tion-reaction in the particles (τp) and the dimensionless time
constant in the system (τobs), the larger the correction to the
steady state effectiveness factor.

Fig. 2. Product If ðϕ2=ϕ2
f Þ ¼ If Da as a function of the Thiele modulus. Stirred flow

reactor.

Fig. 3. Transient responses of the fluid (χ) and average particle (ξ) dimensionless
reactant concentrations and the transient (ηts) and steady state (ηss) effectiveness
factors for a pulse injection in a well stirred batch reactor. (a) ϕ¼ 5; α¼ 0:1; (b)
ϕ¼ 5; α¼ 1. Lines: , χ; , ξ; , Exact ηts (Eq. 24); short dot, ηss;

, ηts (Eq. 30).
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4.1. Batch reactors

The case of the injection of a pulse of reactant to a well stirred
batch reactor will be considered to further demonstrate how the
transient and the steady state effectiveness factors differ. Fig. 3
shows the evolution of the dimensionless fluid and average solid
reactant concentrations as a function of time for two different
values of the system's capacity α, as obtained from Eqs. (12)–(17)
and (19) for ϕf ¼ 0 and by considering that χð0Þ ¼ 1. The time
evolutions of the concentration profiles and the apparent adsorp-
tion constant were studied extensively by Bidabehere and Sedran
(2006). The exact transient effectiveness factor ηts ¼ ðξ=χÞ (Eq.
(24)), the steady state effectiveness factor ηss ¼ s1 and the approx-
imation to the transient effectiveness factor given by Eq. (30) are
also included. It is clear that the transient effectiveness factor,
which can be calculated from the exact solution provided α and ϕ
are known, becomes larger than the steady state effectiveness
factor after a certain time has elapsed, and finally reaches an
asymptotic value; the larger the system's adsorption capacity, the
larger the asymptotic value of the transient effectiveness factor.

Moreover, the approximation to the transient effectiveness
factor calculated from Eq. (30) is closer to the exact solution (Eq.
24) than that from the steady state in the particle (ηss ¼ s1).

As it is shown in Eq. (31) the correction factor Ia, that is,
1þðτp=τobsÞ
� �

, leads to transient effectiveness factors larger than
the steady state effectiveness factors when the dimensionless time
constant for diffusion-adsorption-reaction in the particles is not
negligible in comparison to the overall time scale of the process. α
values are much smaller than one make Ia to be close to one (see
Eq. 28), and finally the effectiveness factors become similar
(alternatively, the changes of concentration in the particle are so
slow that it behaves essentially in a steady state). For certain
particle size and reaction temperature, however, the system's
adsorption capacity increases if the mass of catalyst is larger, a
fact which does not modify neither the Thiele modulus nor the
value of τp, but makes the concentration of reactant in the fluid
phase to decrease faster (that is, τobs is smaller), thus increasing
the difference between transient and steady state effectiveness
factors.

Additionally, the difference between effectiveness factors as a
function of both α and ϕ can be observed in Fig. 4, which shows
the typical logarithmic representation of the effectiveness factors

as a function of the Thiele modulus. Fig. 4 was constructed with
the help of Eqs. (12), (13) and (24) (asymptotic values). Note that
the transient effectiveness factor tends to the steady state effec-
tiveness factor when the system's adsorption capacity tends to
zero (α-0) as can be observed in Eqs. (27)–(29). It can be seen
that the very well known shape of the relationship between
effectiveness factor and Thiele modulus is maintained but, in the
full range of the modulus, the larger the system's adsorption
capacity, the larger the differences between the effectiveness
factors.

Fig. 4 shows that the same effectiveness factor can be achieved
in catalyst particles with very different sizes. For example, if α¼ 1
and ϕ¼ 1 the effectiveness factor is 0.95, the same value for a
particle which is two times larger (ϕ¼ 2) when α¼ 5. Moreover,
for a given value of the Thiele modulus, the effectiveness factor can
be significantly higher provided the mass of catalyst per unit
reactor volume, that is, α, is higher. For example, if ϕ¼ 3, the
effectiveness factor is 0.67 when α¼ 1 and 0.91 when α¼ 5. The
previous discussion and Fig. 4 demonstrate that the inappropriate
selection of the mass of catalyst in experiments aimed at deter-
mining diffusion limitations or kinetics parameters, can lead to
erroneous conclusions.

4.2. Gradientless continuous reactors

As previously shown, If is a correction to the steady state
effectiveness factor which considers the influence of the convec-
tive flow. Systems with low adsorption capacity clearly demon-
strate this influence. For example, if α⪡1, Ia-1, and the Flow
Factor If-ðs2=s1Þϕ2

f (refer to Eq. (29)). Thus, the relative relation-
ship between the effectiveness factors (see Eqs. (27)–(29)) is

If ¼
ηts�ηss

ηss
¼ s2
s1
ϕ2
f :

The correction factor If increases if the flow increases at a given
reactor volume, temperature and catalyst particle size. Moreover,
under these conditions (very small α), it is equal to the product
ðs2=s1Þϕ2

f ¼ ðs2=s1ÞðR2=DeÞ
� 	

=ðF=Vf Þ, that is, the relationship
between the rates of change of the concentration of the reactant
in the fluid phase due to the mass transfer to the particles and the
convective flow.

It can be seen in Fig. 2 that the smaller the system's adsorption
capacity α, the larger the Flow Factor If and, consequently, the
more important its impact on the transient effectiveness factor.
This (a more significant impact of the flow on the transient
effectiveness factor when the system's adsorption capacity is
smaller) is an expected behavior, since the transient effectiveness
factor is proportional to the rate of consumption of the reactant in
the fluid phase, subjected to two simultaneous processes which
are competitors: the mass transfer to the solid catalyst particles,
equal to the adsorption and reaction rates which is proportional to
the adsorption capacity, and the convective mass transfer, which is
proportional to the flow. If α is larger, the rate of mass transfer to
the solid increases, thus governing the overall process and making
the impact of the convective mass transfer to be less significant.

Fig. 5 shows the evolution of the dimensionless fluid and
average particle reactant concentrations as a function of time in
a stirred flow reactor, for the same pair of α and ϕ values and
different convective modulii ϕf , as obtained from Eqs. (12), (13)
and (19), and their relationship, which is the transient effective-
ness factor ηts ¼ ðξ=χÞ (Eq. 24). The steady state effectiveness factor
ηss ¼ s1 and the approximation to the transient effectiveness factor
given by Eq. (30) are also included. It is clear that the transient
effectiveness factor (both from Eqs. (24) (exact, asymptotic value)
and (30) (approximated)) are larger than the steady state effec-
tiveness factor. It can be seen that, as already discussed, for given α

Fig. 4. Asymptotic values of the effectiveness factor (Eq. (24)) as a function of the
Thiele modulus. Batch reactor with pulse injection of reactant.
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and ϕ, the larger ϕf , the larger the transient effectiveness factor.
Moreover, the approximation to the transient effectiveness factor
calculated from Eq. (30) is closer to the exact solution (Eq. 24) than
that from the steady state in the particle (ηss ¼ s1).

It can be shown that the approach can be applied to the study
of not only stirred reactors, but also other configurations such as
fluidized and fixed bed reactors. Moreover, Eq. (27) is also applic-
able to different perturbations on the reactor's operation.

5. Conclusions

It is possible to develop exact or approximate expressions
which describe the actual transient effectiveness factor in systems
where a chemical reaction proceeds catalyzed by porous catalysts
particles, subjected to diffusive restrictions. The usual approach,
that is, considering a steady state for the concentration profiles in
the catalyst particles, is not always appropriate, because the
solution of the mass balances in gradientless reactors show that
the transient effectiveness factor also depends on measurable
parameters such as catalyst load, reactor volume and flow of
reactant. These dependencies are established through two

dimensionless parameters besides the Thiele modulus: the sys-
tem's adsorption capacity α, which is proportional to the relation-
ship between the capacities of adsorption in the particle and the
amount of reactant in the fluid phase, and the convective modulus
ϕf , analogous to the Thiele modulus, which is proportional to the
relationship between the convective and diffusive transports.

It can be shown that the transient effectiveness factor can be
smaller, equal or larger than the steady state effectiveness factor,
depending on the rate of change of the reactant concentration in
the fluid phase. Moreover, the differences between the effective-
ness factors can be adjusted by means of two correction factors
(the Adsorption factor and the Flow factor) to the steady state
effectiveness factor.

Pulse injections of the reactant to both gradientless batch and
continuous reactors showed that a constant relationship between
the average solid and fluid phase reactant concentrations is
reached after a certain time has elapsed, thus defining a pseudo
equilibrium state. This relationship is the same than that expected
when steady state conditions are assumed in the catalyst particles
only if the flow and the adsorption capacity are extremely small.

When the transient effectiveness factor is represented against
the Thiele modulus, it is clear that the consequences of the mass
transfer limitations on the overall rate of the diffusion–adsorption-
reaction process can be different from those predicted from the
typical steady state assumptions, and experimental parameters
such as the catalyst load and the reactor volume become relevant.

The use of transient effectiveness factors leads to pseudo
homogeneous models which avoid solving the partial differential
equations of the mass balances in the particle, and the solutions
using approximate expressions are more precise than those
produced when the steady state assumptions for the effectiveness
factors are used.
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Appendix A

If Eq. (2) is averaged in the volume of the particle

dC
dt

¼ 1
Vp

Z
Vp

De∇: ∇Cð Þ dV�keC: ðA:1Þ

By applying Gauss' theorem on the first term in the right hand
side of Eq. (A.1),

1
Vp

Z
Vp

De∇: ∇Cð Þ dV ¼ 3
R
De

∂C
∂r

����
r ¼ R

ðA:2Þ

and then

3
R
De

∂C
∂r

����
r ¼ R

¼ dC
dt

þkeC ðA:3Þ

If dimensionless variables as defined by Eq. (10) are used, Eq.
(A.3) is equivalent to Eq. (18).

Fig. 5. Transient responses of the fluid (χ) and average particle (ξ) dimensionless
reactant concentrations and the transient (ηts) and steady state (ηss) effectiveness
factors for a pulse injection in a well stirred flow reactor. ϕ¼ 10; α¼ 1. (a) ϕf ¼ 1;
(b) ϕf ¼ 5. Lines: , χ; , ξ; , Exact ηts (Eq. 24); short dot, ηss; ,
ηts (Eq. 30).
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Appendix B

If time is long enough, the exponential term in Eq. (22) can be
considered negligible and it becomes

ξ¼ s1χ�s2
dχ
dτ

þs3
d2χ
dτ2

�… ðB:1Þ

If Eq. (B.1) is truncated in the second term

dχ
dτ

ffi 1
s2

s1χ�ξ
� �

: ðB:2Þ

The time derivative of Eq. (B.1) is

dξ
dτ

¼ s1
dχ
dτ

�s2
d2χ
dτ2

þs3
d3χ
dτ3

�… ðB:3Þ

and, neglecting the terms corresponding to the second and higher
order derivatives,

dξ
dτ

ffis1
dχ
dτ

: ðB:4Þ

If Eqs. (B.2) and (B.4) are introduced in the mass balance for the
reactant in the reactor (Eq. (20)), the dimensionless average
reactant concentration in the particle can be obtained,

ξ¼
ϕ2
f s2 χ in�χ

� �þs1 1þα s1ð Þ χ
1þα s1�α s2 ϕ2 : ðB:5Þ

Alternatively Eq. (B.5) can be written as

where the definitions of the correction factors Ia and If (Eqs. 28
and 29) can be considered to finally yield

ξ¼ ηss Iaþ If
� �

χ�ηssIf χ
in ðB:7Þ

The relationship between Eq. (B.7) and χ, the dimensionless
reactant concentration in the fluid phase, leads to Eq. (27).
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