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Abstract A piezoresistive sensor is composed of a piezore-
sistive membrane attached to a flexible plate. The piezore-
sistive material is anisotropic, and its electrical properties
change when subjected to mechanical stresses. In this work,
the topology design of a piezoresistive pressure sensor
is addressed. More specifically, an optimization technique
based on topological sensitivity analysis is proposed in
order to obtain the optimized distribution of piezoresis-
tive material over the plate. In most of the works regard-
ing topological sensitivity analysis, isotropic materials are
considered. However, the problem of conductivity in an
anisotropic non-homogeneous domain has been recently
addressed, and a closed form for the topological derivative
associated to the energy shape functional has been pre-
sented. In this work, on the other hand, a closed form for
the topological derivative associated with a multi-objective
shape functional related to the steady-state anisotropic cur-
rent density diffusion problem is presented. To illustrate
the applicability of the closed formula and the proposed
optimization procedure, numerical examples regarding the
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1 Introduction

A piezoresistive sensor is composed of a piezoresistive
membrane attached to a flexible plate (substrate), see Fig. 1.
This membrane is composed by a material whose electrical
properties change when subjected to mechanical stresses or
when internal damage initiates or propagates. In fact, when
an external load is applied over the plate, the strain over the
top (or bottom) face of the plate is induced to the piezoresis-
tive membrane. Under this applied strain the material reacts
developing a mechanical stress state and, as consequence,
a change in the conductivity property appears. Piezoresis-
tive sensor modeling has been extensively discussed in the
literature (see Sze (2000), Buchhold et al. (2000), Plaza
et al. (2000, 2002) Hsieh et al. (2001), for instance).
Piezoresistive sensors are used in several applications, such
as inclinometers (Mescheder and Majer 1997), pressure sen-
sors (Buchhold et al. 2000), accelerometers (Plaza et al.
2000; Amarasinghe et al. 2005), and atomic force micro-
scope probes (Pedersen 2004). In this work, the topology
design of a pressure sensor is addressed. More specifically,
we apply an optimization technique based on topologi-
cal sensitivity analysis in order to obtain the optimized
distribution of piezoresistive material over the plate.

According to the literature about topological sensitiv-
ity analysis, theoretical developments and its application
are oriented to study problems with isotropic constitutive
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Fig. 1 Schematics of a piezoresistive pressure sensor

behavior of the material. Only a few works discuss the
problem of non-isotropic constitutive behavior. In fact, the
problem of conductivity in an orthotropic domain is stud-
ied in the work by Sokołowski and Żochowski (1999)
and their presented result is extended by Giusti et al.
(2010a). The problem of conductivity in an anisotropic
non-homogeneous domain is treated recently by Giusti and
Novotny (2012), where a closed form for the topological
derivative associated to the energy shape functional is pre-
sented. In this work, we use a closed form for the topological
derivative associated to a multi-objective shape functional
in the conceptual design of piezoresistive pressure sensors.

The optimized design of piezoresistive sensors has been
discussed in the literature, see the works by Pedersen
(2004), Rubio et al. (2008) and Mello et al. (2012), for
instance. The approach proposed in this work belongs to
the methods based on the level-set domain representation
(Wang et al. 2003, 2011; Amstutz 2006).

This paper is organized as follows. Section 2 describes
the model associated to the anisotropic current density
diffusion problem. The mathematical concepts associated
to the topological sensitivity analysis and the topologi-
cal derivative are introduced in Section 3. The topological
optimization procedure associated to the problem under
consideration is presented in Section 4, where we present a
complete and detailed methodology for the topology design
of piezoresistive membranes attached to a flexible plate.
In Section 5, four numerical experiments concerning the
optimized design of piezoresistive pressure sensors are pre-
sented. The paper ends in Section 6 where concluding
remarks are presented.

2 Formulation of the piezoresistive problem

In this Section, the weak formulation regarding the dif-
ferential equations that govern the electrical behavior of a
piezoresistive membrane is provided, together with the con-
ductivity tensor of a piezoresistive material. In this work,
it is assumed that the flexible substrate is metallic and
that it is grounded, as carried out by Rubio et al. (2008)

and by Mello et al. (2012), and thus, only its struc-
tural response must be computed. As already mentioned, a
piezoresistive sensor consists of a piezoresistive membrane
deposited onto a flexible substrate. Therefore, we assume
that the structural model of the sensor is composed of a
Kirchhoff plate coupled to a two-dimensional piezoresistive
membrane. Piezoresistive sensor modeling has been exten-
sively discussed in the literature (see Buchhold et al. (2000),
Plaza et al. (2000, 2002), Hsieh et al. (2001), Pedersen
(2004), Rubio et al. (2008) and Mello et al. (2012), for
instance). Authors refer to the work by Mello et al. (2012)
for the constitutive equations regarding loaded and unloaded
piezoresistive sensors, and for the strong formulation of a
piezoresistive sensor, which encompasses differential equa-
tions for the structural and electrical behaviors.

For the unloaded sensor, ϕ is solution of the following
general variational problem: find the electric field ϕ ∈ U ,
such that

∫
�

K∇ϕ · ∇η d� = 0 ∀η ∈ V , (1)

where K is the symmetric second order conductivity tensor.
For the case of isotropic constitutive behavior, the second-
order conductivity tensor K admits the representation K =
kI , with k being the conductivity coefficient (scalar value)
and I is the identity tensor of second order. In the variational
problem (1) the set of admissible electric fields U , and the
space of admissible virtual electric fields V , are given by

U :=
{
ξ ∈ H 1(�) : ξ |�D = ϕ̄

}
and

V :=
{
ξ ∈ H 1(�) : ξ |�D = 0

}
. (2)

In addition, ∂� is used to denote the boundary of the
domain � and ∂� = �N ∪ �D with �N ∩ �D = ∅, where
�N and �D are Neumann and Dirichlet boundaries, respec-
tively. Thus, ϕ̄ is a Dirichlet data on �D that is assumed
to be smooth enough, see Fig. 2 (note that homogeneous
Neumann boundary conditions on �N are considered).

Fig. 2 Formulation of the piezoresistive problem
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When a system of external forces is applied to the plate
(or substrate) the conductivity of the piezoresistive mem-
brane changes with the mechanical stress acting over the
surface where the membrane is attached. Then, for the
loaded device, φ is the solution of the following variational
problem: find the electric field φ ∈ U , such that
∫
�

K̄∇φ · ∇η d� = 0 ∀η ∈ V , (3)

where K̄ = K̄(x) is a symmetric second order conductivity
tensor, given by

K̄ = k
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= K(I − πσ) , (4)

being π the piezoresistive constitutive property tensor and
σ = Cε is the stress tensor on the piezoresistive mem-
brane. Notice that the elasticity tensor C is an orthotropic
tensor in the case of piezoresistive materials and ε is strain
on the membrane, induced by the strain of the plate. For
a detailed explanation on the derivation of the constitutive
behavior, we refer the reader to the works by Xiao et al.
(1999), Buchhold et al. (2000) and Mello et al. (2012).

3 Topological derivative concept

The topological sensitivity analysis gives the topological
asymptotic expansion of a shape functional with respect
to an infinitesimal singular domain perturbation. The main
term of this expansion is a scalar field called topological
derivative. In order to introduce these concepts, let us con-
sider an open bounded domain � ⊂ R2, which is subjected
to a non-smooth perturbation in a small region Bρ(̂x) of size
ρ with center at an arbitrary point x̂ ∈ �. Thus, introducing
a characteristic function χ = 1�, associated to the unper-
turbed domain, it is possible to define the characteristic
function associated to the topological perturbed domain χρ .
Particularly, if the topological perturbation is a inclusion, we
have χρ(̂x) = 1� − (1 − γ )1Bρ (̂x)

, where γ ∈ R+ is the
contrast parameter in the material property of the medium,
see Fig. 3. Then we assume that a given shape functional
ψ(χρ (̂x)), associated to the topological perturbed domain,
admits the following topological asymptotic expansion

ψ(χρ (̂x)) = ψ(χ)+ f (ρ)TDψ(̂x)+ o(f (ρ)) , (5)

where ψ(χ) is the shape functional associated to the unper-
turbed domain, f (ρ) is a function such that f (ρ) → 0+,

Fig. 3 Topological derivative concept

with ρ → 0. A function x̂ 	→ TDψ(̂x) is the so-called topo-
logical derivative of ψ in the point x̂. Thus, the topological
derivative can be seen as a first order correction factor over
ψ(χ) to approximate ψ(χρ(̂x)). In fact, after rearranging
(5), we have

ψ(χρ (̂x))− ψ(χ)

f (ρ)
= TDψ(̂x)+ o(f (ρ))

f (ρ)
. (6)

Taking the limit ρ → 0+ in the above expression,

TDψ(̂x) = lim
ρ→0+

ψ(χρ(̂x))− ψ(χ)

f (ρ)
. (7)

Note that, the shape functionals ψ(χρ(̂x)) and ψ(χ) are
associated to domains with different topologies. Then, to
calculate the limit ρ → 0+ in (7) it is necessary to perform
an asymptotic expansion of the functional ψ(χρ(̂x)) with
respect to the parameter ρ.

Expression (7) represents the topological sensitivity of
the shape functionalψ(χ) due to the introduction of a singu-
lar perturbation in an arbitrary point x̂ ∈ �. Historically, the
topological derivative concept was rigorously introduced by
Sokołowski and Żochowski (1999). Since then this concept
has been widely used in several research areas and engineer-
ing applications, see for instance the works by Hintermüller
and Laurain (2009), Hintermüller et al. (2012), Amstutz
et al. (2012), Giusti et al. (2009, 2010b), Van Goethem
and Novotny (2010) and Allaire et al. (2011) and the book
by Novotny and Sokołowski (2013). In particular, for the
mathematical analysis related to the fully coupled piezo-
electric problem see Cardone et al. (2010). In particular,
in this work, the topological derivative (7) will be used
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where TDJ1χ and TDJ2χ are scalar values at point x̂ given
by:

TDJ1χ (̂x) = 2
1 − γ

1 + γ
K∇ϕ(̂x) · ∇p(̂x)

+2R�T R∇φ(̂x) · ∇q(̂x) , (13)

TDJ2χ (̂x) = −R�T R∇φ(̂x) · ∇φ(̂x) , (14)

where ϕ(̂x), φ(̂x) are the solutions of the problems (1) and
(3) in the unperturbed domain � at point x̂; and the matrix
T is given by:

T =
√

det(K̃(̂x))K̃(̂x)S(̂x), (15)

being K̃(̂x) the diagonal representation of the tensor K̄ at
the point x̂, with eigenvalues k1 and k2, the matrix S(̂x)

depending on the coefficients α = 1/
√
k1 and β = 1/

√
k2,

that is

S(̂x) = 1

2
(1 − γ )αβ

(
α+β
α+γβ

0

0 α+β
β+γ α

)
(16)

and R is the rotation matrix that diagonalizes the tensor K̄
at the point x̂. Finally, the functions p(̂x) and q(̂x) are the
solutions of the following problems at the point x̂: find the
functions (p, q) ∈ V × V , such that:∫
�

K∇p · ∇η d� = 2
∫
�

(ϕ − φ)η d� ∀η ∈ V , (17)
∫
�

K̄∇q · ∇η d� = −2
∫
�

(ϕ − φ)η d� ∀η ∈ V . (18)

Proof The reader interested in the proof of this result may
refer to Amstutz (2006), Giusti et al. (2010a) and Giusti and
Novotny (2012).

In this work, the topology of the substrate plate of the
piezoresistive device is kept fixed, and the objective is to
find the topology of the piezoresistive membrane (over the
plate) that minimizes the multi-objective cost function (8),
subjected to a volume constraint.

The optimization procedure is based on representing the
domain in a bi-material fashion. The topology is identified
by the strong material distribution (denoted as �h) and the
inclusions of weak material (denoted as �s ) are used to
mimic the holes. The constitutive properties of these regions
are characterized by the conductivity tensors K , K̄ and the
phase contrast γ ∗ so that, as in (11), we have

K(x) =
{

K ∀x ∈ �h

γ ∗K ∀x ∈ �s and

K̄(x) =
{

K(I − πσ) ∀x ∈ �h

γ ∗K(I − πσ) ∀x ∈ �s . (19)

Based on the approach presented above, note that the con-
stitutive properties of the domains �h and �s are correlated
with the contrast parameter γ ∗ (see Fig. 4).

as a feasible descent direction in a computational framework
for topology optimization.

4 Topology optimization problem formulation

In order to design the piezoresistive devices, we propose the
following multi-objective cost function:

ψ(χ) := Jχ (ϕ, φ) = (1−ω)J2χ (ϕ, φ)−ωJ1χ(ϕ, φ) , (8)

where ω is a weighting coefficient such that 0 ≤ ω ≤
1, which allows control of the contribution between the
functional J1χ (ϕ, φ) and J2χ(ϕ, φ); and the functional
J1χ (ϕ, φ) and J2χ(ϕ, φ) are given by:

J1χ (ϕ, φ) :=
∫
�

(ϕ − φ)2 d� , (9)

J2χ (ϕ, φ) := 1

2

∫
�

K̄∇φ · ∇φ d� . (10)

The functional J1χ (ϕ, φ) quantifies the sensitivity of the
sensor. In other words, it measures the difference between
the electric fields φ and ϕ on the piezoresistive membrane,
i.e., the fields obtained when some force system is applied
to the plate where the membrane is attached, and when no
force is applied, respectively. The objective here is to maxi-
mize the sensitivity of the sensor. The functional J2χ (ϕ, φ),
on the other hand, is the inner electric energy associated
to the piezoresistive problem (see (3)). This functional is
added to stabilize the global behavior of the algorithm that
minimizes the cost function Jχ (ϕ, φ).

In our particular case, we consider a singular perturbation
in the domain given by the nucleation of a small circu-
lar inclusion Bρ(x̂) (see Fig. 3) with electric conductivity
property γK . Here the parameter γ ∈ [0,∞) represents
the contrast in the material property. Then, the constitutive
properties in the perturbed configuration for problems (1)
and (3) are, respectively, given by
{

K if x ∈ � \ Bρ

γK if x ∈ Bρ
and

{
K̄ if x ∈ � \ Bρ

γ K̄ if x ∈ Bρ
. (11)

Now, for an explicit and analytical formula for the topo-
logical derivative of the functional (8), when a singular
perturbation as described above is inserted at an arbitrary
point x̂, we introduce the following result:

Theorem 1 For the shape functional stated in (8) and con-
sidering a disc of material characterized by the parameter
γ – as topological perturbation – the analytical expression
of the topological derivative (7) is given by:

TDJχ (̂x) = (1−ω) TDJ2χ (̂x)−ω TDJ1χ (̂x) ∀x̂ ∈ � ,

(12)
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Fig. 4 Bi-material distribution in the domain �

A general optimization problem with a volume constraint
can be stated as:{

Minimize ψ(χ) = Jχ ,

Subjected to |�h| = V ∗, (20)

where |�h| is the Lebesgue measure of the domain �h and
V ∗ is the required volume at the end of the optimization
process. In order to solve the above problem, we use an
exact quadratic penalization scheme. Thus, problem (20) is
re-written as following:

Minimize
�h⊂�

Fχ = Jχ + λ s2
χ , (21)

being λ > 0 a Lagrange multiplier and the function sχ is
defined as

sχ := 1 − |�h|
V ∗ . (22)

It should be stressed that the design variable in problem
(21) is the topology of the domain �h. Hence, by consid-
ering the exact topological sensitivity information provided
by the topological derivative (12) it is possible to construct a
numerical optimization procedure to tackle the problem. In
this context and by considering the linearity property of the
topological derivative operator, we see that the topological
derivative of the cost function Fχ presented in (21) is given
by,

TDFχ = TDJχ + λ TDsχ . (23)

where TDJχ is the topological derivative presented in (12)
and TDsχ is the topological derivative of the function associ-
ated to the volume constraint sχ , see Campeão et al. (2013),
given by

TDsχ =
{− 2

V ∗ sχ ∀x ∈ �h

+ 2
V ∗ sχ ∀x ∈ �s . (24)

Note that the value of the parameter λ remains fixed in the
optimization procedure, however the value of the function
sχ must be updated at each step.

From the definition of the conductivity piezoresistive ten-
sor (19), we remark that (23) always measures the sensitivity
of Fχ when the two materials are interchanged within the
domain. Then, the computation of (23) is carried out by
using the expressions (12)–(16) with γ = γ ∗ if x ∈ �h;

and γ = 1/γ ∗ if x ∈ �s . Having made the previous consid-
eration and in order to solve the optimization problem (21),
we use the topology optimization algorithm proposed by
Amstutz and Andrä (2006). The procedure relies on a level-
set domain representation (Osher and Sethian 1988) and the
approximation of the topological optimality conditions by a
fixed point iteration. The topological derivative (23) is used
as a feasible descent direction to minimize the cost func-
tion Fχ . This class of algorithm has been successfully used
in research areas related to topological optimization such
as: microstructure of materials (Amstutz et al. 2010), load
bearing structures and flow through porous media (Amstutz
and Andrä 2006), load bearing structures subjected to point-
wise stress constraint (Amstutz and Novotny 2010; Amstutz
et al. 2012) and thermal conductors in anisotropic medium
Giusti and Novotny (2012). For completeness, the algorithm
is outlined in the following. For further details we refer to
the work by Amstutz and Andrä (2006) and Amstutz et al.
(2012).

By considering the level-set domain representation, the
strong (or hard) material is characterized by a function � ∈
L2(�) such that

�h = {x ∈ �,�(x) < 0} , (25)

whereas the weak (or soft) material domain is defined by

�s = {x ∈ �,�(x) > 0} . (26)

Now, let us consider the topological derivative TDFχ .
According to Amstutz and Andrä (2006), a sufficient con-
dition of local optimality of problem (21) for the class of
perturbations consisting of circular inclusions is

TDFχ(x) > 0 ∀x ∈ � . (27)

To devise a level-set-based algorithm whose aim is to pro-
duce a topology that satisfies (27) it is convenient to define
the function

g(x) =
{−T h

DFχ (x) if x ∈ �h

T s
DFχ (x) if x ∈ �s . (28)

With the above definition and (25), (26) it can be easily
established that the sufficient condition (27) is satisfied if
the following equivalence relation between the functions g
and the level-set � holds

∃ τ > 0 s.t g = τ � , (29)

or, equivalently,

θ := arccos

[ 〈g,�〉L2(�)

‖g‖L2(�) ‖�‖L2(�)

]
= 0 , (30)

where θ is the angle between the vectors g and � in L2(�).
Starting from a given level-set function �0 ∈ L2(�) which
defines the chosen initial guess for the optimum topol-
ogy, the algorithm proposed by Amstutz and Andrä (2006)
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produces a sequence (�i)i∈N of level-set functions that pro-
vides successive approximations to the sufficient condition
for optimality (29). The sequence satisfies

�0 ∈ L2(�) ,

�i+1 ∈ co(�i, gi) ∀i ∈ N ,
(31)

where co(�i, gi) is the convex hull of {�i, gi}. In the cur-
rent algorithm the initial guess �0 is normalized. With S
denoting the unit sphere in L2(�), the algorithm is explicitly
given by

�0 ∈ S ,

�i+1 = 1

sin θi

[
sin((1 − κi)θi)�i + sin(κiθi)

gi

‖gi‖L2(�)

]
,

(32)

where κi ∈ [0, 1] is a step size determined by a line-search
in order to decrease the value of the cost functional Fχ .
The iterative process is stopped when for some iteration the
obtained decrease in Fχ is smaller than a given numeri-
cal tolerance. If, at this stage, the optimality condition (29),
(30) is not satisfied to the desired degree of accuracy, i.e.
if θi+1 > εθ , where εθ is a pre-specified convergence tol-
erance, then a uniform mesh refinement of the structure is
carried out and the procedure is continued.

Based on the above description, the main steps of the
algorithm can be summarized as following:

1. Choose an initial level-set function by defining the
initial guess for the design domain;

2. Define the domains �h and �s according to (25) and
(26);

3. Define the constitutive properties for the finite elements
in each domain �h and �s according to (19);

4. Obtain the discretized fields φ, ϕ, p and q by solving,
respectively, the problems (1) and (3); and the adjoint
equations (17) and (18) by using the standard FEM;

5. Compute the topological derivative field (12) at Gauss
point of the finite element and perform a standard nodal
averaging procedure;

6. Obtain the function g(x) according to (28) by using the
nodal values of the topological derivative and compute
the θ angle with (30);

7. Update the level-set function �i+1 according to (32)
and update the domains �h and �s by considering eqs.
(25) and (26);

8. Check convergence θi+1 ≤ εθ . If True: Exit. If False:
goto 3.

A general flowchart for the algorithm is shown in Fig. 5.

Fig. 5 Flowchart of the optimization algorithm

5 Numerical examples

To illustrate the applicability of expression (23) and the
optimization procedure presented in the previous Section,
we present four numerical examples considering different
volume constraint and distinct boundary conditions in the
conductivity problem. As mentioned before, the optimized
distribution of piezoresistive material over a base plate is
obtained. In the figures of results, the black part represents
the domain �h and the white part is �s .

In all examples, the base plate is given by a square
domain (0, 1.0)×(0, 1.0)m, whose boundaries remain fixed
(see Fig. 6, where the thick lines represent clamped bound-
ary conditions). The plate is submitted to an uniform pres-
sure of 10000N/m2, and it is made of aluminum, with
parameters Young’s modulus and Poisson’s ratio equal to
80GPa and 0.33, respectively. The plate problem is solved
using the DKT finite element (Discrete Kirchhoff Triangle),
see the work by Batoz (1982). The domain, load and bound-
ary condition for the plate (substrate) problem are depicted
in Fig. 6.

For computational implementation purpose, we adopt the
matrix representation of the fourth-order elasticity tensor C,
denoted as D (3 × 3 matrix in 2D). The constitutive prop-
erties of the piezoresistive material (n–Si) are presented in
Table 1, where Dij are the components of the elasticity
matrix D. For the computation of the topological deriva-
tive, we consider the value of the contrast parameter given
by γ ∗ = 10−4. The initial guess for the optimization of the
piezoresistive membrane (over the plate) is the fully covered
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Fig. 6 Numerical examples.
Domain, load and boundary
conditions for the substrate

domain. To ensure that the obtained results satisfy the opti-
mality condition (30), in all the examples it is considered a
convergence tolerance εθ = 3◦.

5.1 Example 1

For this first example, the boundary conditions are pre-
scribed in small regions �D1 and �D2 , where the values are
ϕ̄|�D1

= 50V and ϕ̄|�D2
= 0V , respectively. The domain

and boundary conditions for this example are shown in
Fig. 7, where a = 0.2m. The volume constraint is chosen
to be 30 % of the design domain. The optimized topologies
for the membrane, with different values of the weighting
coefficient ω, are shown in Fig. 8.

We are interested in studying the stability of this method-
ology with respect to the prescribed volume fraction. There-
fore, we repeat the optimization procedure described above
with different values of the parameter V ∗. In particular, we
set the volume constraint to 10 % and 5 % of the initial vol-
ume. The obtained results for the optimized topology of the
piezoresistive membrane are shown in Figs. 9 and 10, for
three different values of the weighting coefficient ω. These
results show that the proposed approach works even for such
a severe constraint.

For the volume fractions and the set of parametersω stud-
ied, the optimized topology is characterized by a strip of
piezoresistive material over the square plate. The strip con-
nects the Dirichlet data in the opposite sides of the plate, and
its width and shape depends on the required final volume
fraction V ∗ and weighting coefficient ω.

Table 1 Constitutive properties of n-Si

k π11 π12 π44

(�.m)−1 (10−11m2/N) (10−11m2/N) (10−11m2/N)

1/0.117 −102.2 53.4 −13.6

D11 D12 D44

(GPa) (GPa) (GPa)

165.7 63.9 79.6

Fig. 7 Example 1. Domain and boundary conditions for the
membrane

Fig. 8 Example 1. Results for 30 % of volume fraction
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Fig. 9 Example 1. Results for 10 % of volume fraction

In order to analyze the results from a quantitative point
of view, in Table 2 we present, for each set of parameters
V ∗ and ω, the obtained improvement in the sensor response
(functional J1χ ), i.e., the percentage difference between
the functional values for the initial guess and the obtained

Fig. 10 Example 1. Results for 5 % of volume fraction

Table 2 Example 1. Improvement in the sensor response

V ∗ 30 %

ω 0.00 0.50 1.00

J1χ 0.03148 0.03149 0.03189

J2χ 4.66 × 105 9.32 × 105 9.50 × 105

Imp. 75.9 % 76.0 % 78.2 %

αω 1.000 1.000 1.013

Iter. 63 90 125

V ∗ 10 %

ω 0.00 0.50 1.00

J1χ 0.0363 0.0367 0.0378

J2χ 2.44 × 105 2.59 × 105 2.68 × 105

Imp. 102 % 104 % 110 %

αω 1.000 1.009 1.041

Iter. 128 136 240

V ∗ 5 %

ω 0.00 0.50 1.00

J1χ 0.0359 0.0361 0.0362

J2χ 1.64 × 105 1.64 × 105 3.23 × 105

Imp. 100.01 % 100.66 % 101.69 %

αω 1.000 1.003 1.007

Iter. 240 240 290

result (Imp [%] := J1χ |opt
J1χ |ini − 1). These results show that

optimized topologies with a improvement value of the func-
tional J1χ equal to 106 % (mean value) can be obtained
with only 5 % of piezoresistive material. Moreover, for 30 %
of piezoresistive material, the improvement in the func-
tional J1χ is around to 77 % (mean value). In addition, to
establish a comparison of the obtained designs in relation
to each other, it is presented in Table 2 the ratio between
the normalized value of the functional J1χ and the same

value obtained for the case ω = 0, i.e. αω = J1χ
J1χ |ω=0

. The
results presented here, specially for the smaller volume frac-
tions, clearly show the stabilization effect of the functional
J2χ (see (8) and (10)), which favours smooth boundaries
and takes less iterations to converge without affecting sig-
nificatively the improvement in the sensor response. From
Table 2, it follows straightforward that it exists an optimized
volume whose improvement in the sensor response is better.
In Fig. 11 it is shown the improvement values vs. the vol-
ume constraint V ∗ for three different weighting coefficient
ω. From this figure it is clear that the optimized volume
constraint is close to 10 % of the initial volume.

5.2 Example 2

For this example the boundary conditions are prescribed in
three points namely �D1 , �D2 and �D3 , where the values are
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Fig. 11 Example 1. Optimized volume constraint value

ϕ̄|�D1
= 50V , ϕ̄|�D2

= 0V and ϕ̄|�D3
= 0V . The domain

and boundary conditions for this example are shown in
Fig. 12, where a = 0.25m. The volume constraint is chosen
to be 20 % of the initial volume. The optimized topolo-
gies for the piezoresistive material are shown in Fig. 13, for
different values of the weighting coefficient ω.

From these results, the optimized distribution of piezore-
sistive material over the substrate is a strip connecting the
three points where the Dirichlet data are prescribed. For
all values of the parameter ω studied in this example, the
topology is essentially the same. The influence of ω is only
manifested in the shape of the membrane. In the same way
as before, in Table 3, we present the improvement of the
sensor response w.r.t. the initial guess, the values of the
parameter αω defined earlier and the iterations needed to
converge. The obtained improvements in the value of the
cost functional J1χ , for this particular example, are about
106 % (average of values shown in Table 3).

5.3 Example 3

The Dirichlet boundary conditions for this example are pre-
scribed in four points, namely �D1 , �D2 , �D3 and �D4 ;
where the values are ϕ̄|�D1

= 50V , ϕ̄|�D2
= 0V , ϕ̄|�D3

=

Fig. 12 Example 2. Domain and boundary conditions for the
membrane

Fig. 13 Example 2. Results for 20 % of volume fraction

0V and ϕ̄|�D4
= 25V . The domain and boundary conditions

for this example are shown in Fig. 14, where a = 0.25m
and b = 0.125m. The volume constraint is chosen to be
30 % of the initial volume. The iterations needed to solve
this problem are presented in Table 4.

The optimized topologies for the piezoresistive mem-
brane are shown in Fig. 15, for different values of the
weighting coefficient ω. Once again, these results clearly
show the stabilization effect of the functional J2χ (see (8)
and (10)), which favours smooth boundaries. Also, the num-
ber of iteration needed by the algorithm to converge is
smaller for ω = 0.00.

Table 4 presents the percentage improvements of the
shape functional J1χ (ϕ, φ) (once again, optimized results
are compared against the initial guess). Also, the values of
the coefficient αω are shown in the same Table. Improve-
ments of up to 83 % are obtained (average of values shown
in Table 4).

Table 3 Example 2. Improvement in the sensor response

V ∗ 20%

ω 0.00 0.25 0.75 1.00

J1χ 0.0594 0.0605 0.0612 0.0615

J2χ 1.911 × 104 1.914 × 104 1.913 × 104 1.928 × 104

Imp. 102 % 106 % 108 % 109 %

αω 1.000 1.020 1.030 1.035

Iter. 50 40 44 90
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Fig. 14 Example 3. Domain and boundary conditions for the
membrane

On the other hand, it is interesting to note the change
in the final topology. In fact, the topologies for ω ∈
{0.00, 0.25} and ω ∈ {0.75, 1.00} are different, see Fig. 15.
The change appears for values of ω between 0.73 and 0.74,
as it can be seen in Fig. 16. However, the change in the
topology does not affect the behavior of the sensor signif-
icantly, see results from Table 4. This fact suggests that
the optimization problem for this example has local min-
ima. Finally, note that for values of ω greater than 0.74 the
results seem to indicate that the connection of the sensor in
the point 4 (�D4 ) is no more necessary, i.e. the maximiza-
tion of the potential difference is obtained only with three
connections.

5.4 Example 4

In this last example, we use a similar configuration to the
previous example for the points where the Dirichlet bound-
ary conditions are prescribed. In particular, we use four
points where the values are ϕ̄|�D1

= ϕ̄|�D2
= 50V and

ϕ̄|�D3
= ϕ̄|�D4

= 25V . The domain and boundary con-
ditions for this example are shown in Fig. 17, where a =

Table 4 Example 3. Improvement in the sensor response

V ∗ 30 %

ω 0.00 0.25 0.75 1.00

J1χ 0.0586 0.0597 0.0601 0.0604

J2χ 1.88 × 104 1.89 × 104 1.93 × 104 1.95 × 104

Imp. 80 % 84 % 85 % 86 %

αω 1.000 1.020 1.025 1.032

Iter. 40 57 47 72

V ∗ 30 %

ω 0.73 0.74

J1χ 0.0598 0.0598

J2χ 1.91 × 104 1.92 × 104

Imp. 84 % 84 %

αω 1.021 1.021

Fig. 15 Example 3. Results for 30 % of volume fraction

0.25m. The optimization procedure is applied for different
values of volume constraint V ∗. By considering the results
of the previous examples, here only the case ω = 1.00 is
considered. The obtained topologies are presented in Fig. 18
and the improvement values of the sensor are shown in
Table 5.

The optimized topology for the membrane is charac-
terized by two blocks of piezoresistive material, each one
connecting the two points �D in each side; and two strips
connecting both sides of the sensor. Initially, the algorithm
creates a hole in the center of the design domain and after
it develops the shapes of the strips. This configuration is
obtained independently of the volume constraint. For each
value of V ∗ the optimized topology is the same and only

Fig. 16 Example 3. Change in the final topology
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changes in the shapes are manifested, as it can be seen in
Fig. 18. By applying the technique described in Example
1, the optimized volume of the piezoresistive membrane
that maximizes the sensor response is close to the 40 %

Fig. 17 Example 4. Domain and boundary conditions for the
membrane

Fig. 18 Example 4. Results for ω = 1.00

Table 5 Example 4. Improvement in the sensor response

ω 1.00

V ∗ 30 % 40 % 50 % 60 %

J1χ 0.0145 0.0147 0.0140 0.0109

Imp. 170 % 173 % 160 % 102 %

αω 1.000 1.012 0.962 0.749

Iter. 150 81 91 86

Fig. 19 Example 4. Optimized volume constraint value

of the initial volume. In Fig. 19, the improvement values
of the optimized topologies vs. the volume constraint are
presented.

6 Conclusion and extension

In this work, the applicability of the topological derivative
concept to a piezoresistive sensor design has been suc-
cessfully presented. An analytical expression for the topo-
logical derivative has been implemented in a topological
design algorithm based on a level-set domain representa-
tion method. The final formula is a general simple analytical
expression in terms of the solution of the state equation
and the constitutive parameters evaluated at each point of
the domain. This derivative is used as a feasible descent
direction in a topology design algorithm. Four numerical
experiments associated to the topology optimization of the
piezoresistive membrane of a pressure sensor are presented.
The efficiency and stability of the methodology presented
in this work has been studied in the numerical examples.
The results show an improvement in the sensor response of
around 75 % to 110 % (depending on the boundary condi-
tion and volume constraint employed) in relation to a fully
covered sensor. Relative to the optimized volume, with this
methodology it is possible to find the optimized volume
after some realizations. This characteristic of the proposed
method is shown in the numerical examples, where it is
clear that exists a volume of piezoresistive material whose
improvement is better (see Examples 1 and 4). In general,
the influence of the weighting coefficient ω is manifested
in the shape of the optimized membrane. However, in one
example, the obtained topology depends on the value of
the weighting coefficient ω, see Figs. 15 and 16, with-
out affecting significatively the improvement of the sensor
response. The obtained results in the numerical examples
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clearly show the stabilization effect of the functional J2χ .
The addition of this functional to the objective functional
Jχ allow obtaining smooth shapes for the membrane, reduc-
ing the number of iterations to converge and requiring a
finite element mesh with less elements. However, the best
improvement value in each numerical example is obtained
for ω = 1.00. This indicates that exists a trade-off between
the best result and the computational cost to solve the opti-
mization problem by using the methodology presented in
this work. As an extension of this work, the authors intend
to compare the proposed approach with other approaches,
such as the described in Pedersen (2004), Rubio et al. (2008)
and Mello et al. (2012), for instance.
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