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Abstract— W-operators are nonlinear image operators that 

are translation invariant and locally defined inside a finite 

spatial window. In this work, we consider the problem of au-

tomatic design of W-operators for the segmentation of magnet-

ic resonance (MR) volumes as a problem of classifier design. 

We propose to segment the objects of interest in an MR vol-

ume by classifying each pixel of its slices as either part of the 

objects of interest or background. The classifiers used here are 

the artificial feed-forward neural networks. The proposed 

method is applied to the segmentation of the two main regions 

of the prostate gland: the peripheral zone and the central 

gland. Performance evaluation was carried out on the volumes 

of the Prostate-3T collection of the NCI-ISBI 2013 Challenge. 

The results obtained show the suitability of our approach as a 

marker detector of the prostate gland. 

Keywords— W-operator, segmentation, magnetic resonance, 

prostate gland, feed-forward neural network. 

I. INTRODUCTION  

Mathematical morphology is one of the most important 

techniques used to design nonlinear operators for image 

processing and image analysis. Based on this technique, we 

can design complex and powerful image analysis and pro-

cessing tools, called morphological operators, by combining 

two fundamental operators: erosions and dilations [1]. The 

most common approach used to design morphological oper-

ators is to combine these operators heuristically [1, 2]. One 

of the main issues with this approach is finding the appro-

priate number and the best sequence of operations to 

achieve good performance. A breakthrough in this area is 

shifting from the heuristic-based approach to the statistical 

design using training examples, pattern recognition theory, 

and machine learning systems [3, 4]. 

Under the statistical approach, the family of morphologi-

cal operators consists of those Window operators, or W-

operators, that are locally defined by a finite spatial window 

and invariant to translations. In this context, the problem of 

statistical design of W-operators using training examples is 

reduced to the problem of finding the optimal discrete clas-

sifier (or one close to the optimal) on a finite set of random 

variables [3-5]. The main characteristic of W-operators is to 

label a given pixel based only on the values observed within 

a given window neighborhood. The pixel to process is usu-

ally the center pixel of the window [5]. The training exam-

ples used to design W-operators are composed of pairs of 

observed and ideal images. Observed images are samples of 

the problem to solve; whereas, ideal images represent the 

desired output after processing [3]. 

The image segmentation problem consists of partitioning 

the set of pixels of a given image into two or more disjoint 

subsets [1, 2]. The similarities among pixels in the same 

subset are stronger than the similarities among pixels from 

different subsets. The segmentation problem of an image 

can be seen as a classification problem of its pixels in the 

field of pattern recognition [3, 5]. In this context, we label 

each pixel of a given image either as part of the object of 

interest or as background based on a window observation 

for that pixel. In this context, W-operators are well suited 

for image segmentation as long as enough discriminative 

information can be captured by a finite spatial window. The 

size and shape of the window are usually chosen a priori 

based on the characteristics of the objects to segment (e.g., 

size, shape, texture) [3]. 

The complexity of the design of W-operators depends 

mainly on three factors: the number of gray levels in the 

observed images l, the number of gray levels in the ideal 

images m, and the size of the window to be used n [3]. For a 

given problem, the search space for the best W-operator is 

composed of 
nlm hypotheses or possible operators. Thus, 

increasing the size of the window causes an exponential 

increase of the search space. For example, for binary seg-

mentation (m = 2) of grayscale images with l = 256 gray 

levels, using a small window of  3×3 pixels the search space 

has 
219 10*5.1256 102   hypotheses. For the segmentation of med-

ical images, which is the focus of this paper, we usually 

need larger windows (e.g., 15×15) [5, 6]. 

To overcome the high computational complexity of de-

signing W-operators, aperture filters are proposed [4]. The-

se filters constrain both the domain of the image to process 

and the range of the pixels of the window observation from 

l to 2k+1 gray levels, where kl. Even in these circum-

stances, finding the best filter is a very difficult task because 
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the search space is still huge [3]. In our example, if we set   

k = 5, the search space has 
99 10*35.211)12( 102  nkm possible 

filters. Several approaches have been proposed to design W-

operators based on aperture observations including the use 

of decision trees, multi-mask filters, and pyramidal 

multiresolution [3-5]. The main issue with these approaches 

is their high computational cost for searching and represent-

ing the best operators for problems with real data. 

To make feasible the design of W-operators for solving 

real problems, our approach is to constrain the search space 

to those operators that can be implemented by a well known 

machine learning system: artificial feed-forward neural 

networks (NNs) [7]. In this case, the search space is given 

by the set of functions that a given NN architecture can 

implement. The total number of filters we can implement is 

given by VCm , where VC denotes the Vapnik-Chervonenkis 

(VC) dimension that measures the diversity or richiness of a 

given set of functions [7]. 

Here, we propose to segment the prostate gland in T2-

weighted magnetic resonance images (MRIs) [6] based on 

ensembles of W-operators designed with feed-forward NNs. 

This segmentation task consists of detecting the two major 

parts of the prostate: the peripheral zone and the central 

gland. The prostate anatomy resembles an ice cream cone 

with a scoop of ice cream, where the cone is the peripheral 

zone and the ice cream is the central gland [8]. Some of the 

ultrasound-guided biopsies of the prostate return negative 

results despite the high levels of the prostate-specific anti-

gen (PSA) marker and the actual presence of cancer. The 

distinction between these two parts of the prostate is im-

portant because such failures have been attributed to lack of 

sampling the central gland [8], where about 30% of the 

adenocarcinomas arise [9]. 

The segmentation problem addressed here provides im-

portant information for several medical tasks: localization 

of the prostate boundaries both for radiotherapy treatment 

and to guide biopsy procedures; volume estimation for 

tracking the progress of prostate diseases; initialization of 

multimodal registration algorithms; and establishing regions 

of interest for automatic methods of detection and evalua-

tion of prostate cancer [8, 9]. Moreover, the automatic seg-

mentation of the prostate gland is important because its 

manual segmentation is a tedious and time-consuming task 

and requires medical expertise. 

When dealing with the automatic segmentation of the 

prostate gland in T2-weighted MRIs, we must be aware that 

the pixels/voxels belonging to the peripheral zone have high 

intensity values. The pixels/voxels belonging to the central 

gland usually have lower intensity values. However, the 

former characteristic can change with the presence of pros-

tate cancer or benign pathologies such as hemorrhages, 

prostatitis, hyperplastic nodules, and post-treatment seque-

lae of radiotherapy. The automatic segmentation of the 

prostate gland is a very challenging problem, not only be-

cause of the noise and inhomogeneities of the MRIs, but 

also because of the complex anatomical structures of the 

prostate and surrounding organs and glands. Following this 

introduction, in Section 2, we describe the source of images 

used in this work and the proposed methodology. In Section 

3, we present and analyze the results, and in Section 4, we 

draw some conclusions and outline future work. 

II. MATERIALS AND METHODOLOGY 

In this section, we briefly describe the source of images 

and the methodology used in this paper. 

 

A. Images 

The MRIs used in this work come from the Prostate-3T 

collection of the NCI-ISBI 2013 Challenge [10]. This col-

lection consists of 30 prostate transversal T2-weighted vol-

umes and their manual segmentations. The number of slices 

for each volume varies from 15 to 24. Each slice contains 

320×320 pixels, which take their values from the set 

{0,1,…,2965}. For this work, we randomly divided the 

dataset into two subsets: one for training and the other for 

testing, where each subset contains 15 volumes. 

 

B. Automatic design of W-operators 

Let a magnetic resonance (MR) volume be a function   

V: DL, where D is a subset of ℤ3
 and L = {0,1,…,l-1} is a 

set containing l gray levels. A voxel r = (x,y,z) is a 3D 

coordinate of V. An MR slice of V can be seen as a 

grayscale image O: EL, with E⊂ℤ2
, taken at a fixed value 

of z. A pixel t = (x,y) is a 2D coordinate of the slice O. We 

denote the set of all possible grayscale images by L
E
. We 

also define a spatial window W = {w1,…,(0,0),…,wn} as a 

small subset of ℤ2
 and a range window K = {-k,…,0,…,k} 

as a set of 2k + 1 gray levels with k∈ℤ+
 and kl. 

For the design of W-operators, we consider a pair of 

grayscale images (O,I), which is assumed to be generated 

by a random, stationary, joint process (O,I). O generates 

observed images (i.e., original image), and I generates ideal 

images (i.e., desired output). A W-operator is a function Ψ: 

L
E
L

E
 that maps grayscale to grayscale images. We define 

the W-operator Ψ by a classifier ψ: {1,…,c} that maps 

a feature vector X = (X1,…,X2n) to a label from the set 

{1,…,c}. Here, we consider c = 3, where the pixels of the 

background, the peripheral zone, and the central gland are 

labeled with 1, 2, and 3, respectively. 
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C. Feature extraction:  

The feature vector X is composed of a window observa-

tion and an aperture observation. For an arbitrary pixel t of 

the slice O, a window observation u is obtained by 

translating W by t: Wt = {wi + t: wi ∈W, i = 1,…,n}, and 

then copying into the vector u = (u1,…,un) the pixel values 

of O inside Wt. An aperture observation v = (v1,…,vn) is 

obtained by subtracting r = median(u1,…,un) from each 

component of the vector u. Then we constrain each ui - r, 

with i = 1,…,n, to have the domain K. For this we apply               

vi = min(max(-k, ui - r), k). Thus, for the vector X, we have 

(X1,…,Xn) = (u1,…,un) and (Xn+1,…,X2n) = (v1,…,vn). The 

label Y of X is I(t) [3]. In this work, we used a squared 

window W = A×A composed of 19×19 points, where           

A = {-18,-16,…,16,18} and k = 150. 

 

D. Classifier design 

For classifier design, in this work we use an artificial 

feed-forward NN of three layers. The input layer is com-

posed of 722 units, the hidden layer contains 100 neurons, 

and the output layer is composed of 3 neurons. For the neu-

rons of the hidden layer, we used sigmoid transfer functions 

f: [0,1] defined as f(a) = 1/(1 + exp(-a)). The output 

layer is a softmax classifier [7], where each neuron predicts 

the conditional probability (Y = i|X), with i = 1,…,c, and   

i = 1,…,c(Y = i|X) = 1. The network architecture was deter-

mined by using model selection with 5-fold cross-validation 

[4] based on the volumes of the training set. We used 

artificial feed-forward NNs because of their ability to 

implement complex decision boundaries [7]. 

We assign the label with maximum (Y = i|X) to X, 

with i = 1,…,c. For training the NN, we used the Newton 

gradient-descend method [7] to minimize -ln((|β). The 

function (|β) = i=1,..,Nj=1,…,c

)(

)|(
j

ia
ii jY X is the 

likelihood of the training set  given the parameters β of 

the NN. The set  = {( iX , )1(

ia ,…,
 

)(c

ia )}, with i = 1,…,N, 

contains the feature vectors and the frequencies )( j

ia with 

which Xi was observed having Yi = j in the training images, 

where j = 1,…,c, 
 

 

E. Artificial balancing of the frequencies of the training set 

Since the prostate gland occupies only a small region of 

each MRI volume, the training set  is composed mostly of 

feature vectors belonging to the background. If we trained 

the NN with this unbalanced set, new feature vectors would 

be classified as background most of the time, leading to a 

small training error but poor generalization. Therefore, 

artificial balancing of the training set is necessary. We bal-

anced the training set by replacing the values of 
)( j

ia with 

)()( j

i

j

i ax such that   Ni
k

i

k

iNi
j

i

j

i axax ,...,1
)()(

,...,1
)()( for all     

j,k = 1,…,c and i = 1,…,N. By doing so, we avoid subsam-

pling the feature vectors of the majority class or over-

sampling the feature vectors of the minority classes. Sub-

sampling methods discard information valuable for 

classifier training. Oversampling methods considerably 

increase the size of the training set, slowing down the train-

ing of classifiers [7]. 

III. RESULTS AND DISCUSSION 

In this section, we present the results of evaluating the 

performance of the proposed approach for segmentation of 

the prostate gland. The results shown below were computed 

using the 15 volumes in the testing subset described in Sec-

tion II. Table 1 shows the confusion matrix obtained by 

comparing the voxels of the processed and the ground truth 

volumes. Each value of this table is normalized to the total 

number of processed voxels (29237248). 

Table 1 Confusion matrix of the proposed method 

  Actual labels (%) 

  Background 
Peripheral 

zone 
Central 
gland 

Predicted 

labels 
(%) 

Background 93.7229  0.2264  0.7224  

Peripheral 

zone 
0.4112  0.9229  0.1299  

Central 
gland 

1.6098  0.0599  2.1947  

  

Table 2 shows the estimated values of precision and re-

call of the proposed method computed based on the values 

from Table 1. 

Table 2 Precision and recall values of the proposed method 

Metric Value (%) 

Precision (Predicted labels | Actual labels) 

Prostate gland | Prostate gland  77.7071 

Central gland | Central gland 72.0275 

Peripheral zone | Peripheral zone 76.3224 

Recall (Actual labels | Predicted labels) 

Prostate gland | Prostate gland  62.0712 

Central gland | Central gland 56.7926 

Peripheral zone | Peripheral zone 63.0397 
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Fig. 1 shows 4 examples of slices processed with the 

proposed approach. In the processed and ground truth imag-

es, the peripheral zone appears in green and the central 

gland appears in red. Both the images of Figure 1 and the 

results of Tables 1 and 2 evidence that the proposed method 

is able to detect most of the central gland and the peripheral 

zone. On the other hand, the values of recall indicate that 

our approach also detects spurious objects as either central 

gland or peripheral zone. 

The obtained results indicate that our method is not the 

final solution for the segmentation of the prostate gland in 

MRIs. However, it can be used as a part of a more sophisti-

cated method of segmentation, which should include prior 

information about the shape of the prostate and its position 

relative to the surrounding organs and glands. In fact, our 

method could be used as a marker detector of the peripheral 

zone and the central gland. This is one of the main ad-

vantages of the proposed method compared with other state-

of-the-art methods [11], most of which detect the prostate 

gland as a whole and cannot distinguish between the two 

regions considered here. 

 

 
 

 
  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Original Result Ground truth 

Fig. 1 Examples of original, results, and ground 

truth slices obtained applying the proposed method. 
Green = peripheral zone; Red = central gland 

IV. CONCLUDING REMARKS 

In this work, we have presented a new method for the 

segmentation of the two main parts of the prostate gland in 

MRI volumes, the peripheral zone and central gland. The 

proposed method is based on the automatic design of W-

operators for the segmentation of T2-weighted MRIs. The 

segmentation task of MRI volumes using W-operators is 

addressed as a classification task of the pixels belonging to 

each slice that compose a given volume. Therefore, W-

operator design for image segmentation consists of design-

ing a classifier that labels each pixel of the slice to be pro-

cessed as either part of the objects of interest or background.  

The family of classifiers considered in this work is artifi-

cial feed-forward NNs. Each pixel is classified using the 

one-versus-all approach based on a feature vector composed 

of a window observation and an aperture observation. Re-

sults show the suitability of the proposed approach as a 

marker detector for a more sophisticated segmentation 

method. 

Further work includes the development of a 

postprocessing method to filter spurious objects and to re-

fine the shape of the segmented prostate gland. Additionally, 

performance evaluation should include metrics that take 

into account the 2D and 3D shapes of the prostate. 
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