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Minireview

Galectin-1 as a potential cancer target

GA Rabinovich*,1
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Galectins are a family of structurally related carbohydrate-binding proteins, which are defined by their affinity for poly-N-
acetyllactosamine-enriched glycoconjugates and sequence similarities in the carbohydrate recognition domain. Galectin-1, a member
of this family, contributes to different events associated with cancer biology, including tumour transformation, cell cycle regulation,
apoptosis, cell adhesion, migration and inflammation. In addition, recent evidence indicates that galectin-1 contributes to tumour
evasion of immune responses. Given the increased interest of tumour biologists and clinical oncologists in this field and the potential
use of galectins as novel targets for anticancer drugs, we summarise here recent advances about the role of galectin-1 in different
events of tumour growth and metastasis.
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Classification and carbohydrate specificity

Galectins are animal lectins defined by shared consensus amino-
acid sequences and affinity for b-galactose-containing oligosac-
charides (Leffler et al, 2004). Members of the galectin family are
composed of one or two carbohydrate-recognition domains
(CRDs) of approximately 130 amino acids. Regarding the
biochemical structure, some galectins contain one CRD and exist
as monomers (galectin-5, -7 and -10) or dimers (galectin-1 ,-2, -11,
-13, -14 and -15), whereas other galectins such as galectin-4, -6, -8,
-9 and -12 contain two CRDs connected by a short linker region. In
contrast, galectin-3 uniquely occurs as a chimeric protein with one
CRD and an additional nonlectin domain, which is involved in the
oligomerisation of this protein. It has been suggested that
multivalency of individual members of the galectin family and
their crosslinking properties might determine different biological
responses by inducing aggregation of specific cell-surface glycor-
eceptors, which – in many cases – are associated with different
signal transduction events (reviewed in Rabinovich et al, 2002a).

The first discovered protein in the family was galectin-1, a
noncovalent dimer composed of subunits with one CRD. Although
this protein binds preferentially to glycoconjugates containing the
ubiquitous disaccharide N-acetyllactosamine (Gal b1-3/4 GlcNAc),
binding to individual lactosamine units is of relatively low affinity
and it is the arrangement of lactosamine disaccharides in repeating
chains (polylactosamine) that increases the binding avidity
(Schwarz et al, 1998; Ahmad et al, 2004).

Subcellular distribution

Galectin-1 lacks recognisable secretion signal sequences and does
not pass through the standard ER/Golgi pathway (Leffler et al,
2004). In addition, it shows characteristics of typical cytoplasmic
proteins, including acetylated N-terminus and lack of glycosyla-
tion. However, there is evidence that this protein, as well as other
members of the galectin family, is secreted by a novel mechanism
distinct from classical vesicle-mediated exocytosis.

Regulated expression of galectin-1 in tumours

Detailed description of the expression and functional status of
galectins in different tumour types has been recently provided
(Danguy et al, 2002; Nangia-Makker et al, 2002; van den Brüle
et al, 2003; Lahm et al, 2004; Liu and Rabinovich, 2005). Here we
will review the role of galectin-1 in different steps of tumour
progression to evaluate its potential use as a therapeutic target in
cancer.

Expression of galectin-1 has been well documented in many
different tumour types including astrocytoma, melanoma and
prostate, thyroid, colon, bladder and ovary carcinomas (reviewed
by Danguy et al, 2002). Interestingly, in most cases such
expression correlates with the aggressiveness of these tumours
and the acquisition of metastatic phenotype. Whether expression
of galectin-1 in tumour tissue or tumor-associated stroma may
actively influence disease outcome still remains to be elucidated.

GALECTIN-1 AND TUMOUR TRANSFORMATION

It has been recently demonstrated that intracellular galectin-1 may
play a key role in the initiation of transformed phenotype of
tumours. Kloog and colleagues have found that galectin-1 interacts
with oncogenic H-RAS and contribute to membrane anchorage of
H-RAS (Paz et al, 2001). Interestingly, overexpression of galectin-1
in tumour cells results in an increase in both the membrane
association of H-RAS and cell transformation.
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GALECTIN-1 IN TUMOUR GROWTH

Over the past few years, the perceived role of galectin-1 in tumour
growth has mirrored the story of Dr Jekyll and Mr Hide. While the
endogenous protein may function as a growth-promoting factor,
exogenously added galectin-1 specifically suppresses tumour cell
proliferation. In this sense, Yamaoka et al (2000) showed that
inhibition of gal-1 gene expression in a rat glioma cell line arrests
tumour growth, suggesting that endogenous galectin-1 has growth-
promoting activity. On the other hand, Kopitz et al (2001) showed
that exogenously added galectin-1 inhibits the growth of
neuroblastoma cells. Thus, the effects of galectin-1 appear to be
multifaceted. It can function in both carbohydrate-dependent and
independent manners and its effects can be either positive or
negative, depending on the responder cell types or its subcellular
localisation. Interestingly, it has been reported that galectin-1
exerts a biphasic modulation of cell growth. While high doses of
galectin-1 inhibit cell proliferation independent of its sugar-
binding activity, low doses of galectin-1 are mitogenic and are
susceptible to inhibition by lactose (Adams et al, 1996).
Furthermore, galectin-1 can also regulate cell cycle progression
in human tumour cells (Wells et al, 1999).

GALECTIN-1 AND THE TUMOUR MICROENVIRON-
MENT

Tumour metastasis is a multistep process that includes changes in
cell adhesion, increased invasiveness, angiogenesis and evasion of
the immune response. Galectin-1 has been shown to contribute to
all these processes (Figure 1).

Galectin-1 and cell adhesion

The metastatic cascade involves many changes in cell– cell and
cell–extracellular matrix (ECM) interactions, and these include the
detachment of cells from the primary tumour and their attachment
to ECM proteins at distal sites. As they can bind to extracellular
glycoconjugates, galectins might modulate the adhesion between
adjacent cancer cells or between cancer cells and ECM. It has been
shown that galectin-1 increases the adhesion of prostate and
ovarian cancer cell lines to the ECM (Ellerhorst et al, 1999; van den
Brüle et al, 2003). In addition, galectin-1 can also mediate
homotypic cell aggregation of human melanoma cells in a
carbohydrate-dependent manner (Tinari et al, 2001).

Galectin-1 and the control of cell migration

Galectin-1 has been shown to affect cell migration of tumours and
influence their invasiveness. In fact, exogenously added galectin-1
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Figure 1 Contribution of galectin-1 to tumour progression. Galectin-1 interacts with oncogenic H-RAS and contributes to membrane anchorage of H-
RAS and tumour transformation. In addition, this protein modulates cell growth, cell adhesion and cell migration, thereby affecting the process of tumour
metastasis. Furthermore, recent evidence indicates that tumour cells secrete substantial levels of galectin-1 to evade T-cell-mediated responses.
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causes increased motility of glioblastoma cells in vitro (Camby
et al, 2002). Although the precise mechanisms have not yet been
elucidated, it is possible that galectin-1 may engage cell surface
glycocoproteins involved in cell motility. In addition, Clausse et al
(1999) showed that this protein is upregulated in capillaries
associated with carcinoma cells and can mediate interactions
between tumours and endothelial cells in vitro, suggesting a
potential role for galectin-1 in modulating angiogenesis.

GALECTIN-1, INFLAMMATION AND ANTITUMOUR
RESPONSES

Chronic inflammation is considered to be one of the most
important factors contributing to tumour progression. Although
the immune system can reduce tumour incidence through
immune-surveillance mechanisms (Dunn et al, 2004), it can also
promote tumour progression through inflammation-dependent
mechanisms (Lin and Pollard, 2004). Galectins are expressed by
many different inflammatory cells and regulate the function of
these cells (Rabinovich et al, 2002a). In addition, galectins are
released by tumours and can positively or negatively influence a
variety of inflammatory responses.

Galectin-1 and the inflammatory response

Undoubtedly, the most studied function for galectin-1 is related to
the regulation of the inflammatory response. In recent years, it has
become increasingly clear that galectin-1 can function as a
homeostatic agent by modulating innate and adaptive immune
responses. Galectin-1 induces cell growth inhibition, inhibits T-cell
activation and promotes apoptosis of activated T cells (Perillo et al,
1995; Blaser et al, 1998; Rabinovich et al, 1998; Chung et al, 2000).
Furthermore, we have recently shown that galectin-1 sensitises
resting T cells to CD95/Fas-mediated cell death (Matarrese et al,
2004).

One concern regarding the proapoptotic activity of galectin-1 is
that this effect has been demonstrated in most cases at relatively
high concentrations (micromolar range) and it is uncertain
whether high levels of soluble protein can be achieved in vivo.
Interestingly, recent evidence indicates that the amount of
galectin-1 secreted by different cell types is sufficient to kill T
cells, when galectin-1 is presented in the context of the ECM (He
and Baum, 2004).

Different cell surface glycoconjugates on the surface of activated
T cells appear to be primary receptors for galectin-1, including
CD45, CD43 and CD7 (Pace et al, 1999). Interestingly, galectin-1
binding to T cells results in marked redistribution of many of these
glycoreceptors into segregated membrane microdomains. It has
been demonstrated that the regulated expression of glycosyltrans-
ferases during development and activation, creating N-acetyllacto-
samine ligands, may determine T-cell susceptibility to galectin-1-
induced cell death (Galvan et al, 2000; Amano et al, 2003).

As previously mentioned, CD7 has been identified as a critical
receptor for galectin-1-induced apoptosis, and it has been recently
demonstrated, that CD7� T cells from patients with mycosis
fungoides/Sezari syndrome are protected from galectin-1-mediated
apoptosis (Rappl et al, 2002; Roberts et al, 2003).

The signal transduction events leading to galectin-1-induced
apoptosis involve several intracellular mediators of apoptosis in
primary T lymphocytes, including the induction of specific
transcription factors, activation of caspases, cytochrome c release
and participation of the ceramide pathway (Rabinovich et al,
2000a; Matarrese et al, 2004). However, a recent study showed that
apoptosis induced by galectin-1 in a T-cell line is not dependent on
the activation of caspase-3 or on cytochrome c release (Hahn et al,
2004). Furthermore, Dias-Baruffi et al (2003) reported that
galectin-1 can induce the exposure of phosphatidylserine (an early

apoptotic marker involved in the phagocytosis of apoptotic cells)
on the plasma membrane of human T leukaemia cells and
neutrophils, but this event does not result in DNA fragmentation.
Thus, galectin-1 might activate different death pathways or
different apoptosis end points in different cell types.

The pathophysiological relevance of galectin-1-induced cell
death has been demonstrated in experimental models of chronic
inflammation, including collagen-induced arthritis (Rabinovich
et al, 1999b), inflammatory bowel disease (Santucci et al, 2003) and
graft-versus-host disease (Baum et al, 2003). Interestingly, admin-
istration of galectin-1 in vivo suppresses Th1-dependent responses
in these murine models and increases T-cell susceptibility to
activation-induced cell death.

While relatively high concentrations of galectin-1 are required to
promote T-cell apoptosis, we have demonstrated that galectin-1 at
low concentrations (nanomolar range) provides a stop signal for
T-cell adhesion to ECM and abrogates the production of
proinflammatory cytokines, such as tumour necrosis factor-a
(TNF-a) and interferon-g (IFN-g) by activated T cells, with no
evidence of T-cell apoptosis (Rabinovich et al, 1999a). This
observation supports the concept that this protein might also exert
its anti-inflammatory effects through alternative nonapoptotic
mechanisms. In addition, galectin-1 can also modulate acute
inflammatory processes (Rabinovich et al, 2000b; Almkvist et al,
2002).

Galectin-1 and tumour-immune escape

Despite the existence of specific T lymphocytes recognising
tumour cells, the impact of these cells in tumour growth has been
so far elusive. In contrast, several mechanisms have been described
that potentially contribute to tumour cell evasion of the immune
response (Dunn et al, 2004). These include the production of
immunosuppressive cytokines and other soluble factors, including
transforming growth factor-b (TGF-b), interleukin 10 (IL-10) and
vascular endothelial growth factor (VEGF).

The immunoregulatory effects of galectin-1 and the correlation
between galectin-1 expression in cancer cells and the aggressive-
ness of these tumours prompted us to investigate the role of
galectin-1 in tumor-immune escape. We hypothesised that tumour
cells may impair T-cell effector functions through secretion of
galectin-1 and that this mechanism may contribute in tilting the
balance towards an immunosuppressive environment at the
tumour site. By a combination of in vitro and in vivo experiments
using knockdown transfectants, we established a link between
galectin-1-mediated immunoregulation and its contribution to
tumour-immune escape (Rubinstein et al, 2004). Blockade of the
inhibitory effects of galectin-1 within tumour tissue resulted in
reduced tumour mass (an effect which required intact CD4þ and
CD8þ T-cell responses) and stimulated the generation of a
tumour-specific T-cell response in vivo. Our observations support
the idea that galectin-1 may contribute to immune privilege of
tumours by modulating survival or polarisation of effector T cells,
and suggest a potential molecular target for manipulation of T-cell
apoptosis with potential implications in immunotherapy.

GALECTIN-1 AS A TARGET FOR ANTICANCER
AGENTS: CONCLUSIONS AND PERSPECTIVES

Given the contribution of galectin-1 to tumour growth and
metastasis, it is predicted that inhibitors of galectin-1 will find
their way into cancer clinical trials, leading to delays in tumour
progression and improvements in overall survival. Challenges for
the future will be to employ potent and selective small inhibitors of
galectin-1 and, in fact, molecules with such properties have already
been developed for galectin-1 or other galectins (Andre et al, 2001;
Sorme et al, 2002). Furthermore, galectin-1 expression can be
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modulated by chemotherapeutic and antimetastatic agents (Lu
et al, 2000; Rabinovich et al, 2002b). A current challenge is the
design of more specific and potent galectin-1 inhibitors for
therapeutic purposes with no or minimal adverse effects. Although
galectin-1 still remains elusive in terms of our understanding of its
multifunctional modes of action, we are moving ever closer to
unravelling this mystery at a molecular level and to design new
therapeutic approaches directed toward modulating its activities.
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