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Galectin-1: A Jack-of-All-Trades in the Resolution of
Acute and Chronic Inflammation
Victoria Sundblad,*,1 Luciano G. Morosi,*,†,1 Jorge R. Geffner,‡,x and
Gabriel A. Rabinovich*,†

Regulatory signals provide negative input to immuno-
logical networks promoting resolution of acute and
chronic inflammation. Galectin-1 (Gal-1), a member of a
family of evolutionarily conserved glycan-binding pro-
teins, displays broad anti-inflammatory and proresolving
activities by targeting multiple immune cell types. Within
the innate immune compartment, Gal-1 acts as a resolution-
associated molecular pattern by counteracting the syn-
thesis of proinflammatory cytokines, inhibiting neutrophil
trafficking, targeting eosinophil migration and survival,
and suppressing mast cell degranulation. Likewise, this
lectin controls T cell and B cell compartments by mod-
ulating receptor clustering and signaling, thus serving as
a negative-regulatory checkpoint that reprograms cellu-
lar activation, differentiation, and survival. In this re-
view, we discuss the central role of Gal-1 in regulatory
programs operating during acute inflammation, autoim-
mune diseases, allergic inflammation, pregnancy, cancer,
and infection. Therapeutic strategies aimed at targeting
Gal-1–glycan interactions will contribute to overcome
cancer immunosuppression and reinforce antimicrobial
immunity, whereas stimulation of Gal-1–driven immu-
noregulatory circuits will help to mitigate exuberant
inflammation. The Journal of Immunology, 2017,
199: 3721–3730.

R
esolution of immune responses involves the interplay
between anti-inflammatory and proresolving media-
tors that are rapidly released at times of cellular stress

and tissue injury to counterbalance exuberant inflammation,
mitigate collateral tissue damage, and orchestrate immune cell
homeostasis (1). These include immunosuppressive cytokines
(IL-10, TGF-b1, IL-35), anti-inflammatory neuropeptides
(vasoactive intestinal peptide, neuropeptide Y), bioactive lipid
molecules (lipoxins, resolvins, protectins), steroid hormones

(glucocorticoids), and resolution-associated molecular pat-
terns (RAMPs), including glucose-regulated protein 78, heat
shock protein 10, heat shock protein 27, and ab-crystallin,
which together counteract the proinflammatory effects trig-
gered by danger-associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns (2, 3).
Galectins, a family of soluble b-galactoside–binding pro-

teins widely expressed at sites of inflammation, infection, and
tumor growth, have emerged as a new class of DAMPs or
RAMPs that serve to amplify or resolve inflammatory re-
sponses (4, 5). Based on their architecture, galectins have been
grouped into three subfamilies: “proto-type” galectins, con-
sisting of a single polypeptide chain with one carbohydrate
recognition domain (CRD) that can dimerize (galectin-1
[Gal-1], -2, -5, -7, -10, -11, -13, -14, and 15); “tandem re-
peat-type” galectins composed of a single polypeptide chain
exhibiting two CRDs connected by a linker peptide (Gal-4, -6,
-8, -9, and -12); and the “chimera-type” Gal-3, which consists
of one C-terminal CRD domain linked to an N-terminal do-
main (6). Once synthesized, galectins may remain inside the
cell and control intracellular processes, or they may be released
to the extracellular space through a nonconventional pathway
that remains unknown (7–10). Whereas one-CRD galectins
can dimerize via the back sides of their CRDs, chimera-type
Gal-3 can pentamerize via its nonlectin N-terminal domain,
and tandem-repeat galectins can oligomerize (11). The for-
mation of multivalent galectin–glycan complexes contributes to
the assembly and organization of cell surface receptors, con-
trolling their segregation, internalization, and signaling (6). In
fact, galectins can interact with a wide range of glycosylated re-
ceptors and trigger distinct signaling programs, including im-
mune cell activation, differentiation, trafficking, and survival
(6). Although some members of the galectin family
act primarily as proinflammatory mediators, others display
broad anti-inflammatory activities; yet, in most circumstances,
stimulatory or inhibitory effects vary according to different
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tissue contexts, intracellular or extracellular localization of
these proteins, pathologic conditions, and spatiotemporal
expression of other regulatory programs (6, 11). Illustrating
this concept, Gal-3 and Gal-9 have been proposed to act as
alarmins or DAMPs that orchestrate inflammatory responses
during sepsis, parasite infection, and neuroinflammation (5,
12–14), yet these lectins may exhibit immune-inhibitory ac-
tivities in tumor microenvironments (15, 16).

Gal-1: a sweet checkpoint in the resolution of inflammatory responses

Gal-1, the first galectin identified, acts typically as a pro-
resolving mediator by repressing a number of innate and
adaptive immune programs (4). From a structural standpoint,
Gal-1 is composed of two subunits of 14.5 kDa (135 aa)
present in a dynamic dimerization equilibrium (4). Because of
an unusual number of six cysteine residues, this lectin is
highly sensitive to oxidative inactivation, which limits its bi-
ological activity (17). Although typically conceived as inde-
pendent processes, studies suggested that these mechanisms
could be interconnected as dimerization favors ligand bind-
ing, which protects Gal-1 from oxidative inactivation (18).
Gal-1 recognizes multiple galactose-b1-4–N-acetyl-glucos-

amine (N-acetyl-lactosamine [LacNAc]) units present on the
branches of N- or O-linked glycans on diverse cell surface re-
ceptors, including CD45, CD43, CD69, pre-BCR, and vas-
cular endothelial growth factor R2 (11, 19–21). Different
glycosyltransferases act in concert to create Gal-1–specific li-
gands, including N-acetylglucosaminyltransferase 5 (MGAT5),
an enzyme that generates b1,6-N-acetylglucosamine–branched
complex N-glycans and the core-2 b1-6–N-acetylglucosaminyl-
transferase 1 (C2GNT1), an enzyme that catalyzes branching of
core-2 O-glycans. Conversely, Gal-1 binding is thwarted when
LacNAc is modified by a2,6-linked sialic acid incorporated by
the a2,6 sialyltransferase 1 (ST6GAL1) (6). Thus, sensitivity to
Gal-1 is influenced by intrinsic and extrinsic factors, including
dimerization equilibrium, redox status, and the regulated ac-
tivity of glycosyltransferases responsible for creating or hindering
specific glycan structures on target cells (6).
Within the immune system, Gal-1 is synthesized and se-

creted by a wide range of cells, including activated T and B cells
(22, 23), macrophages (24), Foxp3+ regulatory T cells (Tregs)
(25, 26), tolerogenic dendritic cells (DCs) (27, 28), gd T cells
(29), microglia (30), and myeloid-derived suppressor cells
(29). Remarkably, Gal-1 expression is prominent in immune-
privileged sites, such as placenta (31, 32), testis (33, 34), and
the eye (35), and is significantly up- or downmodulated in
inflammatory conditions, including microbial infection (36–
38), autoimmunity (27, 39), allergy (40, 41), cancer (19, 29,
42–44), reproductive disorders (31, 32, 45, 46), neurode-
generative diseases (30), and myocardial infarction (47). In-
terestingly, in experimental models, Gal-1 expression peaks
during the recovery phase of autoimmune disease (27, 30),
indicating a major role for this lectin during resolution of
inflammation. In this article, we focus on the proresolving
roles of Gal-1 during acute and chronic inflammatory re-
sponses (Fig. 1) and discuss its therapeutic potential in a
broad range of physiologic and pathologic conditions.

Gal-1 in acute inflammation: portrait of a RAMP

Three major steps, namely initiation, amplification, and res-
olution, are involved in acute inflammation (48). Unresolved

inflammation may lead to several diseases, such as atheroscle-
rosis, asthma, fibrosis, and metabolic diseases (49). A large body
of evidence suggests that Gal-1 mediates anti-inflammatory
actions, as well as contributes to actively resolve acute inflam-
mation. Exogenous Gal-1 markedly inhibited acute inflamma-
tion induced by administration of phospholipase A2 or
carrageenan and attenuated neutrophil infiltration (50–53).
However, a low degree of inflammation and leukocyte infil-
tration was observed in Gal-1–deficient (Lgals12/2) mice in a
second phase (48–96 h), but not in the first phase (24 h), of
edema (53), suggesting distinct roles for endogenous versus
exogenous Gal-1 during different stages of the inflammatory
response. Mechanistically, exogenous Gal-1 inhibits activation,
chemotaxis, and extravasation of neutrophils induced by in-
flammatory stimuli (52, 53). Moreover, it also promotes cell
surface phosphatidylserine exposure, favoring phagocytic re-
moval of viable neutrophils (54). In contrast, this lectin stim-
ulates activation and migration of resting neutrophils (55).
Thus, the cellular activation status, which leads to different
glycosylation or signaling profiles, might dictate Gal-1 function.
With regard to macrophages, cooperative partners of neu-

trophils in innate immunity, numerous studies demonstrate
that Gal-1 promotes the acquisition of an anti-inflammatory
and proresolving profile. By controlling L-arginine meta-
bolism, either by reducing the production of NO or favoring
the arginase pathway, Gal-1 promotes differentiation of
macrophages into an M2 profile (56). In Trypanosoma cruzi–
infected macrophages, Gal-1 inhibited IL-12 and NO pro-
duction, favoring parasite replication (57). Moreover, through
inhibition of MHC class II and FcgR expression (58) and
stimulation of 12/15-lipoxygenase expression (59), this lectin
favors macrophage conversion into a proresolving phenotype.
In addition, Gal-1 stimulated monocyte chemotaxis (60),
suggesting that this lectin endows macrophages with a com-
bined proresolving and promigratory phenotype. Likewise,
this lectin may impart a distinctive immunoregulatory program
in DCs that is characterized by migratory and tolerogenic
profiles. Exogenous and endogenous Gal-1 contribute to dif-
ferentiation of tolerogenic DCs through mechanisms involv-
ing IL-27 and IL-10 (27). Accordingly, DCs lacking Gal-1
were consistently more immunogenic than wild-type (WT)
DCs, favored polarization toward Th1 and Th17 profiles, and
counteracted Treg responses (27, 37). In contrast, Gal-1 pro-
moted DC migration and maturation (61, 62) and inhibited
tissue emigration of immunogenic, but not tolerogenic, DCs
through mechanisms involving differential core 2 O-glycosyl-
ation of CD43 (63). This selective effect provides an addi-
tional mechanism for the unique anti-inflammatory function
of this lectin involving both tolerogenic and promigratory
profiles.

Taming T cell and B cell functions: adaptive immune programs
silenced by Gal-1

Mounting evidence highlights a major role for Gal-1–glycan
interactions in shaping the profile of individual T cell subsets
controlling their activation, differentiation, survival, and cy-
tokine production (64). Functional assays identified Gal-1 as
a novel CD69-binding partner that controls differentiation of
Th17 cells (20). Moreover, Gal-1 has been shown to control
T cell survival by interacting with different components of the
cell death machinery. Through binding to N- and O-glycans
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present in CD45, CD43, and CD7 (65), or by sensitizing
T cells to the Fas-mediated pathway (66), exogenous Gal-1
has been shown to engage cell death programs. Moreover,
recent studies showed that intracellular Gal-1 sensitizes T cells
to apoptosis induced by extracellular Gal-1, an effect that was
substantiated in cells from systemic lupus erythematosus patients,
which express lower Gal-1 levels and are less sensitive to exoge-
nous Gal-1 than T cells from healthy subjects (67). However,
other studies showed that recombinant Gal-1 does not promote
T cell death in the absence of DTT, a reducing agent used to

avoid oxidation of this lectin (68). Notwithstanding, experiments
aimed at exploring the relevance of endogenous Gal-1 in vivo
revealed changes in T cell viability when this lectin was knocked
down in tumor cells (42, 69) or when Lgals12/2 mice were
challenged with inflammatory stimuli (70), suggesting direct or
indirect roles for Gal-1 in controlling T cell fate. Using in vitro
and in vivo approaches, we found that Gal-1 selectively controls
the fate of fully activated Th1- and Th17-polarized cells, because
these cells express the repertoire of glycans that are critical for
Gal-1 binding, whereas Th2 cells are resistant to this lectin as a

FIGURE 1. Regulatory programs mediated by Gal-1 in innate and adaptive immunity. A dynamic glycosylation signature on target cells controls the im-

munoregulatory activities of Gal-1: although poly-LacNAc branching on core-2 O-glycans and complex N-glycans is critical for Gal-1 binding, a2,6-linked sialic

acid prevents Gal-1 function. By interacting with a variety of glycosylated receptors, this lectin translates glycan-containing information into regulatory programs

that control immune cell homeostasis. Gal-1 promotes resolution of acute inflammation by modulating the fate and function of innate immune cells, including

macrophages, DCs, mast cells, eosinophils, and neutrophils. In contrast, this lectin controls adaptive immune programs by modulating survival and differentiation

of Th1 and Th17 lymphocytes and facilitating tolerogenic circuits mediated by DCs, Foxp3+ Tregs, and Foxp32 regulatory T (Tr1) cells. In addition, Gal-1

shapes the B cell compartment by influencing pre-BCR signaling, and modulating transition toward plasma cell or memory B cell phenotypes. These glycan-

dependent regulatory programs may promote the resolution of autoimmune and allergic inflammation, favor fetomaternal tolerance, facilitate tumor-immune

escape, and compromise antimicrobial immune responses.

The Journal of Immunology 3723
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result of increased a2,6-sialylation of cell surface glycoproteins
(70). This mechanism may account for the enhanced frequency
of Th1 and Th17 cells in Ag-challenged Lgals12/2mice (70) and
may explain Th2-skewed responses induced by Gal-1 in models
of autoimmunity and cancer (71). Additionally, Gal-1 may im-
pair T cell function by antagonizing TCR signals (72) and fa-
voring IL-10 secretion (73–76), suggesting multiple pathways
used by this lectin to control T cell responses.
In addition to its inhibitory roles in effector T cells, Gal-1

may shape the function of Tregs by supporting their differ-
entiation, expansion, and immunosuppressive potential. In
models of pregnancy, parasite infection, autoimmunity, and
breast cancer, Gal-1 triggered the expansion and/or recruit-
ment of Tregs (26, 31, 37, 76). Moreover, Foxp3+ Tregs (25)
and regulatory gd T cells (29) express high amounts of Gal-1,
which contribute to the immunosuppressive function of these
cells. Although the precise role of Gal-1 in Treg-induced
immunosuppression is still poorly understood, Wang et al.
(77) reported a possible mechanism by which Tregs inhibit
effector T cells through a Gal-1–driven pathway involving the
GM1 ganglioside and the TRPC5 channel. Future studies
should be aimed at elucidating the biochemical nature and
functional relevance of these interactions in vivo.
With regard to the B cell compartment, Gal-1 was identified

as an essential component of the synapse established between
stromal bone marrow cells and pre-B cells (78). Ligand-induced
pre-BCR activation relied upon interactions among the pre-
BCR, Gal-1, and a4b1, a5b1, and a4b7 integrins, leading to
pre-BCR clustering and signaling, with the consequent gener-
ation of pre-BII/stromal cell niches (79). Notably, the l5
unique region of the pre-BCR represents an unusual example
of a nonglycosylated extracellular protein partner of Gal-1,
which docks onto a Gal-1 hydrophobic surface adjacent to its
CRD and reduces Gal-1 affinity for LacNAc epitopes (21, 80).
Within the mature B cell compartment, Gal-1 amplifies B cell
activation by augmenting the strength of BCR signaling (81,
82). In the presence of Gal-1, suboptimal concentrations of
anti-IgM triggered full BCR signals in leukemic B cells (81,
82), suggesting that Gal-1–glycan interactions act by decreasing
the threshold for B cell activation. Moreover, Gal-1 controls
transition of activated B cells toward memory B cell or plasma
cell phenotypes (83, 84). Thus, Gal-1 exerts broad influence
during the lifespan of immature and mature B cells by mod-
ulating immune synapses, signaling, and differentiation.

Gal-1 in autoimmune diseases: Resetting tolerogenic programs

Studies in different rodent models and human samples revealed
critical roles for Gal-1 in the resolution of autoimmune in-
flammation (64).

Autoimmune CNS inflammation. By controlling the fate and
signaling of T cells, DCs, and CNS immune populations,
including microglia, astrocytes, and oligodendrocytes, Gal-
1 influences the development, severity, and resolution of exper-
imental autoimmune encephalomyelitis (EAE), a rodent model
of multiple sclerosis (85). First reported in Lewis rats (86), Gal-1
reduced clinical signs of EAE through diverse mechanisms (85).
Endogenous Gal-1 was selectively upregulated by tolerogenic
stimuli, and its expression increased during the peak and
resolution phases of EAE (27, 30). Interestingly, Lgals12/2 mice
develop greater Th1 and Th17 responses, enhanced susceptibility
to autoimmune neuroinflammation, and greater disease severity

than their WT counterparts (70). At the mechanistic level, Gal-1
contributed to the resolution of EAE by selectively deleting Th1
and Th17 cells (70) or by inducing differentiation of tolerogenic
DCs, which favor induction of IL-10–producing Tr1 cells
through IL-27– and STAT3-dependent mechanisms (27). This
immunoregulatory circuit also provided an explanatory mech-
anism for the underlying i.v. tolerance induced by MOG 35–
55 administration (87).
Finally, in addition to its role within T cell and DC

compartments, Gal-1 controls microglia polarization and
function (30, 88, 89). We found that, in response to im-
munosuppressive stimuli, astrocytes may limit the activation
of classically activated M1 microglia by secreting Gal-1, which
hierarchically suppresses downstream proinflammatory me-
diators, such as inducible NO synthase, TNF, and CCL2, and
tempers inflammation-induced neurodegeneration (30). Mice
devoid of Gal-1 showed increased microglia activation,
astrogliosis, demyelination, and axonal regeneration (30, 88).

Rheumatoid arthritis. Encouraged by its ability to impair T cell
function and suppress proinflammatory cytokines (90, 91), the
effects of Gal-1 were assessed in a collagen-induced arthritis
model by gene and protein therapy strategies (92). Marked ame-
lioration of the disease, enhanced susceptibility to Ag-induced
T cell apoptosis, cytokine shift toward a Th2 response, and
overall reduction of anti-collagen type II Ab were typical
hallmarks of Gal-1–treated mice (92). Accordingly, Gal-1
expression decreased in synovial tissue from patients with
juvenile idiopathic arthritis (93) and in joints of arthritic rats
(94). These effects contrast with the broad proinflammatory
and profibrotic activities of Gal-3 (94, 95), confirming
different actions of individual members of the galectin family
during the arthritogenic process. Moreover, lack of endoge-
nous Gal-1 led to enhanced disease severity and a pronounced
proinflammatory phenotype in Lgals12/2 arthritic mice (96).

Ocular inflammation. Studies in different models revealed a critical
role for Gal-1 in the control of ocular inflammation. Systemic
administration of recombinant Gal-1 early or late during the
course of experimental autoimmune uveitis decreased leukocyte
infiltration, as well as promoted a shift toward Th2 and Treg
cytokine profiles, counteracting pathogenic Th1 cells and
ameliorating ocular pathology (76). More recently, in a model of
endotoxin-induced uveitis, Gal-1 treatment ameliorated clinical
manifestations of the disease by decreasing leukocyte infiltration
and release of proinflammatory cytokines (97). Likewise, Gal-1
suppressed Pseudomonas aeruginosa–induced corneal inflammation
by reducing leukocyte infiltration, inhibiting proinflammatory
responses, and favoring Th2- and IL-10–mediated anti-
inflammatory programs (36). Interestingly, in a model of ocular
immunopathology induced by HSV-1, Gal-1 reduced the severity
of keratitis lesions and the extent of corneal vascularization (98).
Endogenous Gal-1 is abundantly expressed in different eye

compartments, including cornea and retina (35, 99), and it mediates
inhibition of T cell activation induced by retinal pigment epithelial
cells (100), suggesting that it may prevent exuberant ocular in-
flammation. In this regard, increased frequency of neutralizing
anti–Gal-1 Ab has been documented in sera from patients with
autoimmune uveitis compared with healthy subjects (101). These
findings, together with the potent immunosuppressive activity of
this lectin, suggest a major role for the Gal-1–glycan axis in sus-
taining immune privilege and restraining ocular inflammation.
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Testicular inflammation. Expression of Gal-1 is prominent in
different cell types within the testis, including Sertoli cells and
germ cells (33, 34, 102). In vitro, Gal-1 synthesized by Sertoli
cells favored the differentiation of tolerogenic DCs (102),
suggesting its potential role in creating an immunosuppressive
testicular microenvironment. In contrast to other experimental
models, Lgals12/2 mice showed reduced incidence and severity
of experimental autoimmune orchitis compared with WT mice
(34). However, administration of recombinant Gal-1 attenuated
disease severity (34), suggesting different roles for endogenous
versus exogenous Gal-1 in the regulation of testicular inflam-
mation. Moreover, although a substantial increase in Gal-1 was
reported during the peak of inflammation in other models
(85), testis immunopathology was not associated with upreg-
ulation of this lectin (34). These results suggest context-
dependent regulation of Gal-1 expression and function in the
control of autoimmune inflammation.

Autoimmune diabetes. Given the ability of Gal-1 to target
activated T cells, this lectin became a promising tool to treat
type 1 diabetes (T1D) (103). In NOD mice, therapy with
soluble Gal-1 prevented the onset of the disease (103). The
preventive effect of Gal-1 on T1D was significantly associated
with a reduction in Th1 immunity and increased frequency
of IL-10– and IL-4–secreting CD4 T cells in response to
pancreatic b cell Ag. In accordance with previous studies (92),
this lectin induced apoptosis of pathogenic T cells (103).
In T1D, pancreatic b cell destruction results from activation

of Ag-specific effector T cells evading the protective roles of
Tregs (104). A primary defect in effector T cells that confers
resistance to Treg suppression was suggested in NOD mice and
subjects with T1D (104, 105). Notably, lack of GM1 expres-
sion by effector T cells preventing Gal-1 binding has been
proposed as a potential mechanism of resistance to Treg-
induced immunosuppression (77, 106). However, because
Gal-1 binds to a variety of glycoconjugates (11), further studies
are warranted to elucidate whether other galectin–receptor in-
teractions might take place under these circumstances. Finally,
in contrast to healthy pregnant women, patients with gesta-
tional diabetes mellitus did not show any significant changes in
Gal-1 levels during gestation (46). Of note, an immune-
endocrine circuit regulated during the resolution of T1D and
gestational diabetes mellitus may govern the broad immuno-
suppressive activities of Gal-1, leading to Th2 cytokine polar-
ization (70, 107) and Treg expansion (26, 31, 103).

Inflammatory bowel diseases. Inflammatory bowel diseases
(IBDs) are chronic relapsing inflammatory disorders that affect
the gastrointestinal tract. Crohn’s disease and ulcerative colitis
represent the two main forms of IBD, which differ in their
anatomical, histological, and immunological features. Although
Crohn’s disease patients exhibit pronounced Th1 and Th17
responses, T cells from ulcerative colitis patients typically display
a Th2 bias (108). Nevertheless, both pathologic conditions involve
an aberrant activation of mucosal T cells against commensal
microbiota, leading to inflammation and epithelial cell
deregulation (109).
Several members of the galectin family, including Gal-1, -2,

-3, and -4, play important roles in IBD (110–113). Treatment
with Gal-1 resulted in improvement of clinical, histopatho-
logical, and immunological manifestations of intestinal in-
flammation in the 2,4,6-trinitrobenzenesulfonic acid–induced

colitis model (39). In addition to normalization of mucosal
architecture, administration of exogenous Gal-1 induced ap-
optosis of activated CD4+ T cells in lamina propria and spleen
and diminished the levels of proinflammatory cytokines in
plasma and mucosal tissue (39). Interestingly, in human
samples, Gal-1, -3, -4, and -9 were found to be homoge-
neously expressed throughout the colon, and their expression
was higher in the colon than in the small intestine (114).
Notably, unlike Gal-3, -4, and -9, Gal-1 expression was up-
regulated in inflamed versus noninflamed areas of IBD pa-
tients. Using a multivariate-linear discriminant analysis, a
specific galectin signature could be identified that distin-
guished inflamed IBD from control tissue or from other in-
testinal inflammatory conditions (114). Inflammatory stimuli
controlled Gal-1 binding to epithelial cells, influencing epi-
thelial cell survival and production of tolerogenic cytokines
(IL-10, IL-25, and TGF-b1) (115, 116). Thus, either through
elimination of Ag-experienced T cells or through modulation
of inflammatory cytokines, Gal-1 promotes the resolution of
gut inflammation, acting as a RAMP in mucosal homeostasis.
These results integrate Gal-1 into the tolerogenic portfolio
that coordinates the interplay between intestinal epithelial
cells and the highly specialized gut immune system.

Gal-1 as a tuner of allergic inflammation and asthma

Allergic reactions occur clinically as anaphylaxis, urticaria,
angioedema, rhinitis, atopic dermatitis, and asthma. A major
breakthrough in understanding asthma pathogenesis was the
recent characterization of different endotypes on the basis of
distinct pathological mechanisms, such as Th2-high asthma
and Th2-low asthma (117). Recent observations suggest that
Gal-1 plays an important role in the control of airway infil-
tration by eosinophils. In a model of allergic asthma, allergen-
challenged Lgals12/2mice showed an increased airway infil-
tration by eosinophils and T lymphocytes, as well as higher
numbers of peripheral blood eosinophils, compared with WT
mice (40). Consistent with these observations, Lgals12/2 mice
showed more severe airway hyperresponsiveness associated
with higher levels of TNF in the lung. Through inhibition of
cell migration or induction of eosinophil apoptosis, Gal-1
reduced eosinophil recruitment to the airways (40). The
ability of Gal-1 to inhibit cell migration may not be restricted
to eosinophils, because this lectin also inhibits lymphocyte
trafficking in vitro and in vivo (118). Supporting the role
for Gal-1 in the pathogenesis of asthma, macrophages from
sputum samples of asthma patients expressed lower Gal-1
levels than those isolated from healthy donors (119). Inter-
estingly, corticosteroids, the first-line and most effective
treatment for asthma, induced a pronounced increase in Gal-1
expression in human nasal polyps, suggesting that glucocor-
ticoids’ action in asthmatic patients could be partially medi-
ated through an increased synthesis of Gal-1 in the airways
(120, 121). In a murine model of oral allergy syndrome,
administration of Gal-1 suppressed allergic reaction induced
by food allergens by inhibiting IL-4 production, recruitment
of mast cells and eosinophils, and synthesis of histamine (41).
More recently, Gal-1 has been shown to synergize with
allergen-specific immunotherapy, providing long-term bene-
fits in animal models by targeting mast cells and facilitating
Treg development (122). Overall, these reports suggest that
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Gal-1 influences the resolution of allergic reactions and might
represent a useful tool for the treatment of allergic diseases.

Gal-1 in pregnancy: the sweet privilege

Research over the past few years has identified essential roles for
galectins, particularly Gal-1, in tolerance mechanisms that
operate at the fetomaternal interface (123). Gal-1 is present in
the female reproductive tract and is significantly upregulated
during pregnancy (31, 32, 123, 124). In human placenta,
Gal-1 is expressed by various cell types primarily regulated by
progesterone and proinflammatory cytokines (32, 123).
In a model of stress-induced pregnancy failure (31), Lgals12/2

mice showed higher rates of fetal loss compared with their
WT counterparts in allogeneic, but not syngeneic, matings.
Administration of Gal-1 prevented fetal loss and restored
tolerance in vivo (31). Accordingly, human uterine NK cells
inhibited the viability of decidual T cells via glycosylation-
dependent Gal-1–mediated mechanisms (125). Moreover,
transcriptional activity of NF-kB was altered by Gal-1 in
human decidual cells, limiting the production of IL-6 (126).
Mechanistically, Gal-1 conferred immune privilege to human
trophoblast cells by limiting T cell viability, dampening Th1-
type cytokines, and favoring expansion of Tregs (32). In line
with these findings, patients with recurrent pregnancy loss had
considerably lower levels of circulating Gal-1 and a higher
frequency of anti–Gal-1 autoantibodies compared with sera
from fertile women (32). Finally, other studies suggested that
Gal-1 contributes to immunoregulation, placentation, and
fetal growth mediated by uterine mast cells (127). Altogether,
these findings support a protective role for Gal-1 in immune
tolerance at the fetomaternal interface.

Usurping the Gal-1 pathway to thwart antitumor immunity

Immunosuppressive pathways that promote resolution of in-
flammation may be co-opted by cancer cells or their adjoining
microenvironment to thwart antitumor responses (128). Using
mouse melanoma models and human patient samples, we
identified an essential role for Gal-1 as a mediator of tumor-
immune escape (42). This effect was confirmed by disruption
of Gal-1 ligands in vivo following administration of a meta-
bolic inhibitor of LacNAc biosynthesis, which restrained tu-
mor progression by stimulating antitumor immunity (129).
Further studies demonstrated that Gal-1 also confers immune
privilege to classical Hodgkin lymphoma by favoring a non-
productive immune infiltrate dominated by Th2 cells and
Foxp3+ Tregs (130). Interestingly, in classical Hodgkin lym-
phoma and posttransplant lymphoproliferative disorders, two
hematological malignancies associated with EBV infection,
Gal-1 expression was driven by an enhancer of the AP-1
transcription factor (130, 131), suggesting that oncogenic
viruses may usurp the Gal-1 pathway to promote immune
escape. Likewise, Kaposi’s sarcoma–associated herpes virus
induced Gal-1 expression, which coupled angiogenesis, in-
flammation, and tumorigenesis in Kaposi’s sarcoma (43).
Remarkably, co-option of the Gal-1–glycan pathway as a
major immune-evasive program was demonstrated in a
number of tumor models, including lung, breast, pancreatic,
and ovarian carcinoma, as well as glioblastoma, neuroblas-
toma, and T cell lymphoma (19, 26, 28, 29, 42–44, 69, 132–
136). The mechanisms underlying these immune-inhibitory
effects vary significantly among different tumor types and

include expansion of Tregs, differentiation of tolerogenic
DCs, induction of T cell apoptosis, promotion of a Th2 cy-
tokine profile, deactivation of macrophages, T cell exclusion,
and inhibition of NK cell function (4). Interestingly, rein-
vigoration of antitumor responses observed upon disruption
of galectin-specific ligands (i.e., complex branched N-glycans)
was even more impressive than that observed in response to
Gal-1 blockade (19), suggesting the contribution of other
members of the galectin family to tumor-driven immuno-
suppression. Accordingly, Gal-3 promotes T cell dysfunction
by directly interacting with LAG-3 or by distancing the TCR
from CD8 molecules (15, 137), whereas Gal-9 limited anti-
tumor immunity by engaging Dectin-1 on tumor-associated
macrophages (16).
Notably, although Gal-1 is typically upregulated in cancer

cells, in some tumor types, immune or stromal cells appear
to be the main Gal-1 source. Particularly in ovarian cancer
models, gd T lymphocytes and myeloid-derived suppressor
cells emerge as major Gal-1 producers, linking TLR5-
dependent inflammation, systemic immunosuppression, and
tumor progression (29). Moreover, this lectin is preferentially
expressed in a subset of Satb1-driven Zbtb46+ immunosup-
pressive DCs that infiltrate ovarian tumors (28). Furthermore,
in human chronic lymphocytic leukemia, Gal-1 is mainly se-
creted by nurse-like myeloid cells and macrophages, facilitating
establishment of appropriate tumorigenic niches (81). Finally,
Gal-1 expression, driven by hypoxic microenvironments, has
been established as a link between tumor angiogenesis and
immunosuppression (43) and as a key determinant of sensi-
tivity to different anticancer therapies, including those targeting
vascular endothelial growth factor (19, 138) and CD20 (139).
Thus, blockade of Gal-1 or disruption of its specific glycosy-
lated ligands may contribute to reduce tumor progression by
attenuating immunosuppression and counteracting aberrant
angiogenesis.

Subverting antimicrobial responses by co-opting the Gal-1 pathway

Mechanisms that promote resolution of inflammation may
hinder orchestration of antimicrobial responses, but they may
also counteract pathogen-induced immunopathology. More-
over, microbes may co-opt inhibitory pathways to subvert host
protective immunity (1). Recently we found that Gal-1–
driven tolerogenic circuits can repress protective immunity
during infection with Yersinia enterocolitica, an enteropatho-
genic bacterium, by targeting local immunity, including NO
production, NF-kB activation, and TNF synthesis, as well as
systemic Th1 and Th17 responses (38). Similarly, in a model
of Trypanosoma cruzi infection, Gal-1 fueled the activation of
immunoregulatory circuits that hindered antiparasite immu-
nity, particularly those involving differentiation of tolerogenic
DCs and Tregs (37). Moreover, in an in vitro model of
Trichomonas vaginalis infection, Gal-1 inhibited recruitment
of phagocytes by suppressing central chemokines, primarily
IL-8, MIP-3a, and RANTES (140). Thus, targeting the Gal-
1–glycan axis may contribute to reinforce host protective
immunity by counteracting local and systemic immunosup-
pressive programs. However, as mentioned above, adminis-
tration of Gal-1 ameliorated corneal immunopathology
induced by Pseudomonas aeruginosa by suppressing Th17 re-
sponses (36). Finally, Gal-1, as well as other galectins, have
been proposed to serve as pathogen-recognition receptors that
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could positively or negatively regulate inflammatory responses
by sensing glycans on the surface of pathogenic microbes (141).
Thus, Gal-1 may play multifaceted roles during infection by
subverting antimicrobial responses, orchestrating host immu-
nity, or curbing pathogen-driven immunopathology.

Conclusions
Excessive inflammation is widely appreciated as a critical com-
ponent in almost all diseases, including autoimmune, neurode-
generative, andmetabolic diseases, as well as infection, asthma, and
cancer (2). Gal-1 has emerged as a potent homeostatic signal that,
together with other anti-inflammatory mediators and RAMPS,
controls unresolved inflammation and limits immunopathology
while hindering antimicrobial and antitumor responses. The
mechanisms underlying these effects range from modulation of
macrophage polarization, inhibition of eosinophil and neutrophil
trafficking, induction of tolerogenic DCs, expansion of Tregs,
and modulation of T cell function to control of cytokine syn-
thesis (Fig. 1). These broad immunoregulatory activities open
novel therapeutic opportunities for reprogramming innate and
adaptive immunity in a wide range of inflammatory conditions.
Although Gal-1–targeted therapies, using neutralizing anti–Gal-1
mAb, glycoamines, or synthetic peptides, have been designed and
validated in preclinical models to reinforce antitumor and anti-
microbial immunity, Gal-1–agonistic drugs for limiting unre-
solved inflammation in diverse inflammation conditions are
anticipated to be released (6, 19, 43, 131, 142). However, before
Gal-1–based therapeutic agents will be embraced, several ques-
tions remain to be addressed: Do other members of the galectin
family play compensatory roles in response to Gal-1 blockade?
Why does Gal-1 bind to a preferential set of glycosylated re-
ceptors even though glycan ligands are ubiquitously expressed in
a wide range of receptors? Do protein–protein interactions play
any role in Gal-1 receptor association that could be targeted as an
alternative therapeutic approach? What is the therapeutic
advantage of blocking individual galectins instead of targeting a
set of galectins with similar or complementary regulatory activi-
ties? Thus, although evidence presented in this article supports
the multiple regulatory functions of Gal-1, its possible mecha-
nisms of action, and its broad therapeutic potential, progress
made thus far might represent only the “tip of an iceberg” within
the exciting field of glycoimmunology, with more mechanistic
insights and therapeutic approaches awaiting future discovery.
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N. Freitag, R. Mattar, M. L. Conrad, L. Unverdorben, G. Barrientos, J. Knabl,
et al. 2014. Getting too sweet: galectin-1 dysregulation in gestational diabetes
mellitus. Mol. Hum. Reprod. 20: 644–649.

47. Seropian, I. M., J. P. Cerliani, S. Toldo, B. W. Van Tassell, J. M. Ilarregui,
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