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Abstract— Accurate harmonics estimation has become a key
issue in power quality assessment. This paper deals with a
discrete Fourier transform (DFT)-based measurement technique,
which can be easily employed to accurately determine the
harmonic components of a distorted signal, i.e., voltage or
current. The proposed method is based on a modulated sliding
DFT algorithm, which is unconditionally stable and does not
accumulate errors due to finite precision representation, and
a variable sampling period technique (VSPT) to achieve a
frequency adaptive mechanism. It is worth noting that the
VSPT changes the sampling period for a variable grid frequency
condition, leading to a constant sampling frequency under steady-
state conditions. The proposed method provides: 1) high degree of
accuracy; 2) structural/performance robustness; and 3) frequency
adaptability. Given the modular nature of the method, it is
implemented on a field programmable gate array. Simulations
and experimental tests are shown to verify the performance of
the proposed method.

Index Terms— DFT, FPGA, harmonics measurement, power
quality, signal processing, variable sampling period.

I. INTRODUCTION

W ITH the widespread applications of advanced power
electric technologies, such as switching power supplies

and adjustable speed motor drives, among others, harmonic
currents are increasingly being injected into power systems
causing power quality degradation. Harmonics increase power
system losses, damages sensitive loads, causes excessive heat-
ing in rotating machinery, creates significant interference on
communication systems, and generates noise in regulating
devices and control systems. In addition, the system frequency
may deviate from its nominal value due to power imbalance
between generation and load demand. Therefore, measuring
grid harmonics, in an accurate and efficient manner, has turned
into a major challenge [1]–[3].

Discrete Fourier transform (DFT) is the most widely used
algorithm for harmonics measurement. DFT is widely applied
for its simplicity, and it can be efficiently calculated using
fast Fourier transform (FFT). By transforming the measured
signal from the time domain to the frequency domain, FFT can
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precisely track harmonic components. However, the harmonic
level and the fundamental frequency in the power system is
usually time varying; especially, in long weak distribution
lines, the direct application of the FFT technique for spectral
analysis may lead to inaccuracies due to the leakage and
picket–fence effects [4]. The leakage error is categorized
into two components: short range and long range leakage
errors [5], [6]. Despite the fact that several techniques can be
adopted to resolve the pitfalls of FFT applications, additional
computational burden could be introduced and accuracy is
compromised [7]–[11].

Regarding power quality measurement, the IEC electromag-
netic compatibility standard limits the number of harmonics
to be considered [12], [13]. The standard requires spectrum
analysis only for the first 40 harmonics, so other algorithms
can be used, like the recursive algorithms of DFT [14], so-
called sliding DFT (SDFT), the Goertzel transform (GT) and
the sliding GT (SGT) [14], [15]. These methods detect the
desired harmonics in an efficient way, save computational
effort, and simplify implementation complexity. As attractive
as these techniques may seem, they suffer from stability prob-
lems given the finite word length precision along with the pit-
falls related to the time-varying nature of the processed signal.

Techniques for measuring harmonics are not limited to
those based on Fourier analysis. Several other approaches are
also effective to carry out said study. The Kalman filter, for
instance, is a recursive estimation method, based on a state-
space model for each new input signal sample, making it
suitable for real time processing. In addition, Kalman filters are
suitable for nonstationary signal analysis [16]–[18]. However,
a clear disadvantage of the Kalman filter is that it requires
that the information about the frequency of the power signal
be specified in advance [1], [19]. Thus, a large variation in the
power signal frequency could limit the use of Kalman filters.
In addition, issues concerning stability and convergence are
associated with the technique.

The recursive least squares (RLS) is an algorithm which
recursively finds the coefficients that minimize a weighted
linear least squares cost function relating to the input signals.
This stands in opposition to other algorithms, such as the
least mean squares (LMS) that aim to reduce the mean
square error. For RLS algorithm, input signals are considered
deterministic, while for LMS and similar algorithms, they
are considered stochastic. RLS algorithms are widely used to
accurately estimate the amplitude and phase of fundamental
and harmonics components of a signal, provided that the
fundamental frequency is known a priori. When compared
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with most of its competitors, RLS exhibits extremely fast
convergence. However, this benefit comes at the expense of
high computational complexity [20], [21].

More advanced control and signal-processing techniques,
including fuzzy-logic control [22], neural-network theory [23],
[24], rotational invariance technique (ESPRIT) [25], [26], and
adaptive signal processing [27], have also been applied. Most
of these algorithms are accurate and feature a good dynamic
response, still they require large amount of calculation; and,
under frequency varying environments, performance gets com-
promised.

This paper presents a new harmonic measurement method
which employs the mSDFT algorithm to attain measurement
accuracy and overcome finite word length precision prob-
lems. The mSDFT algorithm uses DFT modulation proper-
ties to eliminate problems arising from finite word length
precision [28]. Given the spectral leakage and picket–fence
effects associated with the fundamental frequency variation
and improperly selected sampling time window, a frequency
adaptive mechanism is adopted. The variable sampling period
technique (VSPT), postulated by the authors in previous
works, is adapted to dynamically adjust the sampling period to
exactly N times the fundamental frequency, and; hence, avoid
the above-mentioned problems. Even though the technique is
named as variable, the sampling frequency varies only during
transients due to the variation of the grid frequency. Once
a steady state is reached, the sampling rate remains fixed.
The structural and mathematical simplicity of the mSDFT
algorithm and VSPT renders it suitable for its implementation
in a hardware programmable platform.

II. MSDFT ALGORITHM

This section provides a brief summary of the SDFT proper-
ties necessary to derive mSDFT. SDFT is a recursive algorithm
implemented as an IIR filter that calculates a single value of
DFT, in other words, the term k of an N-points DFT.

Let us consider a time signal x(t) that is sampled at the rate
fs = N× fL [where fL is the frequency of x(t)] to produce the
time sequence x(n), such that x(n) = 0 for n < 0. A recursive
formula for computing the DFT of the kth-bin coefficient in
the time window of length N sliding along the last values of
the signal x(n) can be written as [14], [29], [30]

Xk(n) = W k
N [Xk(n − 1)− x(n − N) + x(n)] (1)

where Xk(n) is the current value of the desired spectral
component, Xk(n−1) is the previous value, x(n) and x(n−N)
are samples of the input signal in the nth and (n − N)th
time instant respectively, and WN = e j2π/N is known as
the complex twiddle factor. In this notation, the superscript
k refers to the desired DFT frequency index (kth-bin), and n
is a time index. Notice that (1) must be normalized by N to
obtain a proper representation of the kth-bin.

The principle used for SDFT is known as the DFT shifting
theorem, or the circular shift property. The value of this
process in computing real time spectra is that the calculation
of Xk(n) is done by phase shifting the sum of the previous
Xk(n − 1) with the difference between the x(n) and x(n − N)

Fig. 1. (a) SDFT structure in (1). (b) Modulated SDFT structure in (4).
(c) Modulated SDFT structure in (12). SW: sliding window. R: resonator.

samples. SDFT is computationally efficient since a sliding
window (SW) is used to compute a new DFT bin from the
results of the previous DFT. So that, after obtaining the value
of coefficient Xk(n − 1), the calculations necessary to obtain
Xk(n) are constant and do not depend on N .

Fig. 1(a) shows the single-bin SDFT algorithm implemented
as an IIR filter. Two parts can be differentiated: the SW and the
complex resonator (R) which provides the current coefficient
of the kth component of the signal spectrum. The z-domain
transfer function for the kth-bin of the SDFT is

HSDFT(z) = Xk(z)

x(z)
= W k

N

(
1 − z−N

)

1 − W k
N z−1

. (2)

SDFT decreases the computational complexity of each
successive N-point output on a sample-by-sample basis, if
compared to DFT or FFT, but it suffers from accumulated
errors and potential instabilities. The nonideal numerical pre-
cision of the coefficient W k

N places the singularities (i.e., the
poles and zeros of the transfer function) either slightly inside
or slightly outside the unit circle [31]. To achieve stability,
a damping factor must be included [30]. Even though this
damping factor allows to achieve stability, a small error is
induced in an Xk output sample, which accumulates with each
new spectral component computation.

For the special case when k = 0 (dc component estimation),
(1) takes the following form:

X0(n) = [X0(n − 1)− x(n − N) + x(n)]. (3)

The computation of successive values of X0(n) requires simple
additions of the input samples in the sliding time window of
length N . Owing to the absence of the typically imprecise W k

N
coefficient, the recurrence in (3) is unconditionally stable and
does not accumulate errors. The modulated SDFT (mSDFT) is
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Fig. 2. Frequency response of the digital notch filter in (6), tuned with
N = 128 for a fL = 50 Hz.

an algorithm which exploits the advantages of this particular
case for any k-bin [28].

The modulated SDFT is a DFT-based algorithm guaranteed
to be stable without sacrificing accuracy. This algorithm uses
the DFT modulation property for the chosen DFT bin with
index k to effectively shift that bin to the position k = 0. This
approach allows excluding the complex twiddle factor from
the feedback loop (or resonator) and avoids accumulated errors
and potential instabilities. The Xk DFT bin may be shifted to
the index k = 0 by the multiplication of the input signal x(n)
by the modulation sequence W−kn

N

X̃k(n) = X̃k(n − 1)− x(n − N)W−k(n−N)
N + x(n)W−kn

N . (4)

There is a phase difference, equal to W−k
N , between the DFT

bin calculated by (1) and the one obtained from (4) (X̃k(n)).
In [28] is shown how this difference can be corrected, but
since in spectrum analysis applications only the results of the
DFT magnitude are required, the correction is not needed.

The structure of the mSDFT in (4) is shown in Fig. 1(b).
As there is no complex twiddle factor in the resonator,
the singularities of mSDFT are located exactly (with no
finite-precision numerical error) on the unit circle. Therefore,
the accumulated errors and potential instabilities inherent of
traditional SDFT algorithms are drastically reduced in the
mSDFT. In addition, the finite precision of the twiddle factor
representation is no longer a problem due to its removal from
the feedback loop (R).

A z-domain transfer function for the kth-bin can be obtained
by separating the effects of the modulation property in an
auxiliary complex variable (x∗(n))

x∗(n) = x(n)W−kn
N . (5)

In (5), the chosen DFT bin with index k is shifted to the
position k = 0. Once this takes place, the transfer function
from x∗ to Xk becomes

HDNF(z) = X̃k(z)

x∗(z)
= 1 − z−N

1 − z−1 . (6)

Equation (6) corresponds to a digital notch filter that rejects
all the frequency multiples of fs/N . Since fs = N × fL ,
the resulting transfer function has zeros in all multiples of the
input frequency (Fig. 2).

To compute the mSDFT algorithm, it is necessary to use the
Euler relation to transform the twiddle factor in (5) into its real
and imaginary components. By so doing, the complex twiddle
factor is transformed into a periodic modulated sequence of
N values

x∗(n) = x(n) cos(ϕm(n))− j x(n) sin(ϕm(n)) (7)

TABLE I

SINGLE-BIN DFT COMPARISON

where the phase of the modulated sequence is

ϕm(n) = 2πnk

N
. (8)

Therefore, the real and imaginary components of the mSDFT
for the kth-bin take the following form:
Re

{
X̃k(n)

}=Re
{

X̃k(n − 1)
} + Re

{
x∗(n)

}− Re
{
x∗(n − N)

}

(9)

Im
{

X̃k(n)
}=Im

{
X̃k(n − 1)

} + Im
{
x∗(n)

}− Im
{
x∗(n − N)

}

(10)

and the expression of the magnitude is as follows:

Vk(n) = 1

N

√
Re [Xk (n)]2 + Im [Xk (n)]2 (11)

where Vk is the amplitude of the kth-bin. Notice normalization
by N due to the low-frequency gain of the transfer function
shown in Fig. 2.

If multiple DFT frequency bins have to be computed,
one length-N delay buffer is needed for each frequency bin.
However, due to the periodicity of W−kn

N , as shown in [28],
(4) can be rewritten as:

X̃k(n) = X̃k(n − 1)+ W−kn
N [−x(n − N) + x(n)]. (12)

Irrespective of multiple DFT frequency bins are to be
computed, (12) turns into a more efficient approach as only
one length-N delay buffer is needed [Fig. 1(c)]. Also, in this
case, SW processes real values (x(n)) rather than complex
ones (x∗(n)) as in the filter implementation of (4) shown
in Fig. 1(b). These two characteristics explain the significant
reduction obtained in the computational complexity when
mSDFT is implemented in this manner.

Another advantage of mSDFT is the reduced number of
operations needed to calculate the desired bin. A single-
bin DFT computational comparison, for real only inputs, is
provided in Table I. Once the first N data set are computed,
the computational effort in the mSDFT algorithm is signif-
icantly reduced. When compared with other techniques for
real time processing, mSDFT requires fewer multiplications
and additions than SDFT, the traditional GT, and SGT do.

The mSDFT algorithm allows to measure the desired k-bin
of an N sample DFT with no stability problems and accu-
mulated errors, given its finite word length precision. Nev-
ertheless, mSDFT faces some of the typical problems DFT
does. Considering the spectral leakage and picket–fence effects
related to the system fundamental frequency variation and
improperly selected sampling time window, a direct appli-
cation of the DFT algorithm with a constant sampling rate
may lead to inaccurate results for continuously measuring
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Fig. 3. (a) Variable sampling period technique (VSPT) scheme. (b) Phase
error and period adjustment.

harmonics. To overcome this drawback, this paper proposes
the application of a VSPT, to dynamically adjust the sampling
frequency to be equal to N × fL .

III. VARIABLE SAMPLING PERIOD TECHNIQUE

Previous works by the authors have proposed some syn-
chronization methods based on a VSPT, which allows to
adapt the sampling frequency to be N times the grid
frequency [32]–[34]. This technique has been proven to be
efficient in three-phase as well as in single-phase applications
to obtain a robust synchronization mechanism, where its effec-
tiveness was tested under different conditions and scenarios,
yielding great results.

Fig. 3(a) illustrates the basic scheme for VSPT imple-
mentation. Provided the phase detector can be modeled as
a transformation without dynamic, this scheme is valid both
for three-phase and single-phase applications. The operating
principle is based on the dynamic adjustment of the sampling
frequency. The input signal is sampled and the input phase
(ϕu(n)) is extracted by the phase detector. Concomitantly
with the input sampling, a signal termed reference phase, is
generated

ϕref(n) = 2πn

N
. (13)

The method relies on sampling period modification, so as to
achieve a null error signal (eϕ(n)) between ϕref(n) and ϕu(n).
This is achieved by varying the sampling period Ts(n) as a
function of the phase error.

Fig. 3(b) shows ϕref (n) and ϕu (n) during consecutive
sampling instants. To attain synchronization, the sampling
period Ts (n) should be varied until the difference between the
phases becomes null. Any change in the phase or frequency of
the grid is reflected in ϕu (n), and, therefore, the error between
ϕref (n) and ϕu (n) is different from zero. As illustrated in the
figure, the phase error in n is reduced in n+1 by the sampling

Fig. 4. Generic scheme of the proposed method (where “SG” stands for
sampling generator).

frequency variation. In this way, the method automatically
adjusts the sampling frequency to a new value, so as to
maintain a null error between ϕref (n) and ϕu (n).

Notice that the sampling frequency varies only during tran-
sients produced by changes in the grid frequency. Hence, for
steady-state conditions (eϕ(n) = 0), the sampling frequency
remains constant ( fs = N × fL).

In the particular case of this paper, the VSPT technique is
used to dynamically adjust the sampling frequency to N times
the grid frequency. This adjustment allows to avoid the spec-
tral leakage and picket–fence effects, well known problems
confronted by DFT-based algorithms, such as mSDFT.

IV. PROPOSED METHOD

This section presents a novel harmonics measurement
method for applications in power systems, based on the
mSDFT algorithm and VSPT. The mSDFT algorithm allows in
implementing an efficient and precise harmonics measurement
system, without finite word length or stability issues. VSPT
is used to dynamically adjust the sampling frequency to N
times the grid frequency. Such adjustment allows in avoiding
the typical problems encountered by DFT-based algorithms,
such as spectral leakage and picket–fence effects.

A generic layout for the proposed method is shown in
Fig. 4. The elements bound by the dashed line are VSPT
subsystem for frequency adjustment. This one is composed
by an analog-to-digital converter (A/D), a sampling generator
(SG), a controller (Gc(z)) and an mSDFT tuned with k = 1.
The basic operating principle of this subsystem is as follows:
in each clock pulse (CLK) the A/D acquires x(t) and delivers
the grid instant value (x(n)). This value is processed sample
by sample by mSDFT (tuned with k = 1), delivering the
instantaneous value of the fundamental spectral component
(X̃1(n)). A system error signal (er (n)) proportional to the
phase error (eϕ(n)) can be obtained from the imaginary
component of X̃1(n), as proven below. With the current eϕ(n)
value the controller can adjust the following sampling period
Ts(n). Then, SG block generates the CLK signal needed to
trigger the A/D and to increment the instant values of every
twiddle factor. The rest of the system consists in several
mSDFTs and absolute value calculations, as harmonics have to
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be measured. Each mSDFT simultaneously receives the x(n)
value and the CLK signal, and delivers the desired X̃k(n).
Then, the absolute value is calculated to obtain the harmonic
measurement.

The following subsections explain the basic operating
principles of the phase detector, control loop, and system
modeling.

A. Phase Detector

As described in Section IV, VSPT automatically adjusts the
sampling frequency to a new value so as to maintain a null
error between ϕref(n) and ϕu(n). This phase error is estimated
by means of a phase detector.

For the special case of k = 1 the ϕm(n) signal [(8)] is equal
to ϕref(n) [(13)], so the mSDFT algorithm tuned with k = 1
is used as a phase detector. In fact, only the imaginary part of
the mSDFT algorithm is used to obtain the phase error signal
(eϕ(n)) needed for the VSPT technique to adjusts the sampling
frequency, as it is demonstrated below.

Under the assumption of a distorted input signal, the voltage
grid can be represented as follows:

x(n) = V̂1 cos[ϕu(n)] +
∞∑

k=2

V̂k cos[kϕu(n)+ φk]. (14)

The first term represents the grid voltage fundamental compo-
nent while the second term, the sum of the utility harmonics
components, where V̂1 and ϕu(n) are the fundamental peak
amplitude and utility phase, respectively, and V̂k and φk are
the peak amplitude and initial phase of the kth harmonics,
respectively. This signal is processed by mSDFT tuned with
k = 1, as seen in Fig. 1(b). Then, the imaginary part of (7)
becomes an oscillating signal generated by the multiplication
between (14) and the imaginary part of the twiddle factor

Im
{

x∗(n)
} = x(n) sin(ϕm(n)) = V̂1

2
sin[ϕm(n)− ϕu(n)]

+ V̂1

2
sin[ϕm(n)+ ϕu(n)]

+
N/2∑

k=2

V̂k

2
sin[ϕm(n)− kϕu(n)− φk]

+
N/2∑

k=2

V̂k

2
sin[ϕm(n)+ kϕu(n)+ φk]. (15)

As shown in (15), any sinusoidal signal in the voltage grid
generates two terms. The first one has a phase equal to the
difference of the modulated sequence phase and the analyzed
signal phase. The second term, in turn, is equal to the sum of
both phases.

The digital notch filter of (6) rejects the oscillating sig-
nals from Im[x∗(n)] by placing zeros in the grid frequency
multiples of the transfer function. This process results in the
imaginary component of the k = 1-bin

Im
{

X̃1(n)
} = V̂1 N

2
sin[ϕm(n)− ϕu(n)] (16)

where N is the gain of the filter (Fig. 2). If the phase difference
between ϕm(n) and ϕu(n) is assumed to be very small in (16),
the sine function can be approximated by this argument

Im
{

X̃1(n)
} ≈ Km N[ϕm(n)− ϕu(n)] (17)

where Km is equal to the factor V̂1/2. The difference between
ϕm(n) and ϕu(n) is the phase error of the system eϕ(n). Then
(17) is the system error signal (er (n)) which is proportional
to eϕ(n)

er (n) = Km Neϕ(n). (18)

The use of mSDFT in this manner allows in obtaining an error
signal proportional to the phase error of the system with the
substantial advantage of its simple structure. The ability to
reject oscillations in the eϕ(n) signal enhances the robustness
of the phase error detection method adopted.

B. Control Loop

The aim of this section is to obtain a mathematical model of
the proposed system to design the system controller (Gc(z))
and achieve the required system response. To model the sys-
tem, the samples are handled as a sequence with no reference
to sampling times. This enables z transform use even in a
variable frequency sampling system, such as the one proposed
in this manuscript.

The increment of the ϕu phase during the sampling period
results from the integral of the input angular frequency during
the corresponding sampling period

ϕu(n + 1) = ϕu(n)+
∫ t (n+1)

t (n)
ωdt (19)

where t (n) and t (n + 1) are consecutive sampling times.
Assuming that the input frequency remains constant during
the sampling period, (19) can be approximated as follows:

ϕu(n + 1) = ϕu(n)+ ωTs(n). (20)

The objective of the VSPT is to achieve N equally spaced
instants per input cycle under steady-state conditions. There-
fore, the phase increment of the modulated sequence (ϕm)
between sampling instants should be equal to 2π/N . This
sequence can be expressed by the following equation:

ϕm(n + 1) = ϕm(n)+ 2π

N
. (21)

Equations (20) and (21) can be transformed into the z-domain
yielding (22) and (23)

ϕu(z) = ωTs(z)
1

(z − 1)
(22)

ϕm(z) = 2π

N

1

(z − 1)
. (23)

Given the fact that mSDFT is used as a phase detector, in the
case of a small signal model, the system error signal is defined
by (17). This signal is the system phase error affected by the
HDNF(z) transfer function (which rejects all the oscillations
from the phase error) and Km . Then the z-domain expression
for the system error is as follows:

er (z) = Km HDNF(z)eϕ(z). (24)
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Fig. 5. System model of the proposed method.

This error signal is used to modify the sampling period Ts

and to enable ϕu = ϕm achieve synchronism. The sampling
period Ts is a function of the phase error eϕ , and is given by
the controller equation

Ts(z) = eϕ(z)Km HDNF(z)Gc(z). (25)

From the above equations and linearizing around a center
frequency equal to ω̄ = 2π × 50 Hz, a linear model for the
proposed method can be built. The resulting linear model in the
z-domain is illustrated in Fig. 5. This model is mathematically
identical to that found in [33], so the same strategy for control
design can be adopted. However, the bandwidth required for
the proposed method is lower than the bandwidth required
for the synchronization method cited. As a result, a simpler
controller is proposed

Gc(z) = K
(z − a)

(z − 1)
. (26)

Following the stability analysis from [33], the zero location
and gain of the controller shown in (26) are tuned to a =
0.99745 (2.6 Hz) and K = 2.7038 × 10−7 (−131.36 dB),
respectively. Thereby, a phase margin of 45◦ and an open-loop
crossover frequency of 5.905 Hz are obtained.

For the analyzed application, this simple controller works
properly. However, if a faster response in the frequency estima-
tion is needed, a more complex control can be implemented.

C. Efficient Architecture of the Harmonic Measurement
System

As mentioned above, there exists mathematical identity
between (4) and (12), whereby, regardless of the type of IIR
filter implemented, the phase detector and the system model
remain valid in both cases. So since only one N-length SW is
needed in (12) and the stored values for this are real and not
complex, this form of mSDFT is selected for the proposed
method. In this manner, a significant memory reduction is
attained. Fig. 6 shows the actual and final form of the proposed
method.

V. PERFORMANCE EVALUATION

This section studies the performance of the proposed
method by means of computer simulations. To this aim, a
structure such as that shown in Fig. 6 with N = 128 is
simulated using Matlab/Simulink software. Several scenarios

Fig. 6. Scheme of the proposed method.

were evaluated to assess the performance of the proposed
method.

The input signal to be analyzed by the proposed algorithm is

x (t) = sin (wL t + φ1)+ 0.2 sin (3wLt + φ3)

+ 0.1 sin (5wLt + φ5)+ 0.08 sin (9wLt + φ9)

+ 0.06 sin (11wLt + φ11)

+ 0.04 sin (13wLt + φ13) (27)

where wL = 2π × 50 Hz and the initial phase angles φk

are randomly selected between zero and 2π rad. This signal
is chosen particularly for its high content of odd harmonics,
typical of weak networks.

For each test performed, the real amplitude (black line) and
the estimated amplitude (gray line) of the 1st, 3rd, 5th, 9th,
11th, and 13th harmonics are shown. The values are expressed
on a per unit (pu) basis, using the amplitude of the fundamental
component in initial conditions as reference. In addition, the
frequency of the fundamental component ( fL ) is represented
by a black line, and the one estimated by the proposed method,
by a gray line. The estimated frequency is calculated from the
sampling frequency ( fs) and N (i.e., fL = fs/N).

Two indicators were defined to evaluate the measurement
error. One of them, called steady-state error (�est), is the value
of the maximum deviation of the estimated value from the
actual harmonic in steady state. The other, called settling time
(tset), is the time between the occurrence of a disturbance and
the time when the estimation of the fundamental component
(V̂1) settles to 1% error band of V1 final value. The reason
why V̂1 is chosen for determining the settling time is that
the measurement of the fundamental component is critical
to the frequency adjustment technique which, at the same
time, affects the performance of all harmonics estimations.
The results of these indicators for all tests are shown in
Table II.

A. Amplitude Tracking

To study the method’s ability to address variations in har-
monics amplitudes, two possible scenarios are simulated. The
first simulation studies the effect of the amplitude step-change
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TABLE II

SIMULATION TEST RESULTS

on the method performance. The amplitudes of the input signal
harmonics undergo a step-change of 20% of their nominal
values in t = 20 ms. The estimated values of the amplitudes
are shown from Fig. 7(a) to 7(f). In Fig. 7(a), it is shown
that V1 settles to the 1% error band (V̂1 ∈ [1.188, 1.212]) in
20 ms, and, at the same time, all measurements are settled. The
proposed scheme can track step changes in amplitudes with
zero error in all harmonic components under a steady-state
condition. Since the adjustment of the sampling frequency is
conducted with Im{X̃1(n)} estimation, when the step-change
occurs in this harmonic, an oscillatory transient appears in
the estimated frequency. This decaying oscillatory transient
has a maximum peak error of less than 0.15 Hz, and then
settles down to the actual value with zero error in steady state
[Fig. 7(g)]. This transient in f̂L has a small effect on amplitude
estimations, as seen from Fig. 7(a) to (f).

The second simulation concerns the study of the method
performance in tracking slow variations in Vk . The amplitude
of each harmonic component changes from its nominal value
of Vk to Vk + 0.2Vk sin(2π t + δk) (δk is chosen for the worst
case) at t = 0.2 s. The steady-state oscillations present in both,
the estimated frequency, and the measured harmonics are due
to the continuous variations in the harmonic signal ampli-
tudes, i.e., the input signal ceases to be stationary. For this
reason, the accuracy of any DFT-based technique is reduced.
Fig. 8(a)–(f) shows that the proposed method accurately
tracks the 1 Hz amplitude variations with a delay of 10 ms
in the worst case. The settling time is not shown in the
table because the error in the measurement of V̂1 is not
bounded to 1%, even so steady-state errors remain within
reasonable limits (Table II). Fig. 8(g) shows the estimated
frequency, where the oscillatory behavior can be noticed.
These oscillations are produced by the continuous variation
of Im{X̃1(n)}, which prevents the exact adjustment of the
sampling frequency. In the transient, the peak error is about
0.156 Hz and, in steady state, the maximum variation is
less than 0.01 Hz. In this case, the frequency error remains
bound well below 1%. Yet, even under these conditions, the
error indicators remain within acceptable ranges, as shown in
Table II.

B. Frequency Tracking

The ability of the method to measure harmonics in situ-
ations where the frequency deviates from its nominal value
is evaluated by simulating two possible scenarios. The first
simulation analyzes the effect of a frequency step of −0.5 Hz

Fig. 7. Performance of the proposed method for harmonics undergoing a 20%
step-change in their amplitudes nominal values. (a)–(f) Extracted amplitude of
the k-harmonics (gray) and its actual value (black). (g) Estimated fundamental
frequency (gray) and its actual value (black).

on the performance of the proposed method. This step-change
is imposed at t = 0.1 s. Fig. 9(a)–(f) shows the effect of the
frequency step-change on the estimated harmonic amplitudes.
During the transient, an oscillatory behavior is noticed. These
oscillations are attributed for two reasons: one of them is
the high distortion of the analyzed signal and the other is
the incorrect frequency estimation because of singularities
which are not located exactly at multiples of the current
line frequency ( fL). Despite this, even during the transient,
the maximum error in the measurement of V̂k does not
exceed 0.005 pu. The settling time for this scenario is 20 ms
(Table II). Variations in the estimated values are extinguished
once the sampling frequency is properly adjusted by the
method. Fig. 9(g) shows the frequency tracking feature that
accurately tracks steps in frequency. After 4 ms, the frequency
error remains below the 1% limit with a maximum error in the
transient of 0.5 Hz. Then, under a steady-state condition, the
system achieves null error in the estimation of the fundamental
frequency.
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Fig. 8. Performance of the proposed method for extracting harmonics of
oscillatory amplitudes. (a)–(f) Extracted amplitude of the k-harmonics (gray)
and its actual value (black). (g) Estimated fundamental frequency (gray) and
its actual value (black).

The aim of the second simulation is to verify the method
performance when a periodic and continuous frequency vari-
ation occurs. To achieve that, an oscillatory variation in the
fundamental frequency of the input signal (27) is added.
The fundamental frequency changes from its nominal value
of 50 Hz to 50 + 0.5 sin(2π t + ψ)Hz at t = 0.2 s (ψ is
chosen for the worst case). Fig. 10(a)–(f) shows the response
of the system to a continuous variation of the fundamental
frequency. During the transient, the estimations have a small
peak error and, in steady state, the oscillatory fundamental fre-
quency causes oscillations in the estimated magnitudes. These
oscillations are attributed to the continuous variation of the
fundamental frequency, which prevents the exact adjustment of
the sampling frequency, and therefore reduces the disturbances
rejection of HDNF(z) [(6)]. After a settling time of 20 ms,
the error in the measurement of V̂1 is bounded below 1%.
In addition, in steady state, the error remains bound within
acceptable margins (Table II). Actual and estimated frequency
values are shown in Fig. 10(g). A maximum error of 0.5 Hz

Fig. 9. Performance of the proposed method extracting the harmonics
undergoing a step-change in the fundamental frequency. (a)–(f) Extracted
amplitude of the k-harmonics (gray) and its actual value (black). (g) Estimated
fundamental frequency (gray) and its actual value (black).

is obtained during the transient. Then, in steady state, the
estimated frequency reaches the actual frequency, following
its variations with a delay of 4 ms and a maximum peak error
of 0.0375 Hz. A detailed analysis of the error indicators for
both tests and for all harmonics can be found in Table II.

Frequency variations are common in utility networks due to
the power imbalance between the generation and load demand.
Then, the results of these trials test the robustness of the
method in such cases, making it an attractive technique.

C. Simultaneous Tracking

A more challenging measurement scenario is also consid-
ered in which the test signal (27) undergoes simultaneous
variations of both frequency and amplitude. The fundamen-
tal frequency changes from its nominal value of 50 Hz to
50 + 0.5 sin(2π t + ψ)Hz at t = 0.2 s (ψ is chosen for
the worst case), and at the same time the amplitudes start
to oscillate as Vk + 0.2Vk sin(6π t + δk) (δk are chosen for
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Fig. 10. Performance of the proposed method for extracting the harmonics
of the signal with oscillating fundamental frequency. (a)–(f) Extracted ampli-
tude of the k-harmonics (gray) and its actual value (black). (g) Estimated
fundamental frequency (gray) and its actual value (black).

the worst case). This scenario, where the amplitude varies
at a rate of 3 Hz combined with a frequency variation rate
of 1 Hz is a very demanding situation, although it should be
noted that in practice this is unlikely to happen due to the
dynamics imposed by power grids. The estimated amplitudes
for this scenario are shown from Fig. 11(a) to (f). The proposed
scheme tracks amplitude variations with a delay of about 10 ms
in the worst case. Fig. 11(g) shows that the proposed scheme
tracks variation in the fundamental frequency, with moderated
oscillation over the nominal value, and a maximum error in
steady state of 0.09 Hz. The settling time for this case is not
shown in the table because the error in the measurement of
V̂1 is not bounded to 1%, even so the method performance
is satisfactory. The errors of the estimated frequency and
the harmonic measurement are the largest obtained among
the trials conducted. This is due to the fact that amplitude
variations are faster. However, even in this unlikely situation,
the system is stable and errors in steady state are acceptable
(Table II).

Fig. 11. Performance of the proposed method for extracting har-
monics of oscillatory amplitudes with oscillating fundamental frequency.
(a)–(f) Extracted amplitude of the k-harmonics (gray) and its actual value
(black). (g) Estimated fundamental frequency (gray) and its actual value
(black).

The performance evaluation of the proposed algorithm
proves that the method is able to track variations in power
signal characteristics, such as time variations of harmonics
amplitudes and fundamental frequency. Unavoidable oscilla-
tions and delays in the estimated frequency and extracted
amplitudes occur, though within an acceptable range, making
the method applicable to most practical cases.

D. Noise Rejection

Performance of proposed method working in the presence
of noise is discussed in this section. Accordingly, a white
Gaussian noise is added to the test signal showed in (27)
yielding a signal to noise rate (SNR) of 30 dB. Also two
disturbances are added to the test signal to evaluate the noise
influence during transients. Fig. 12 shows the response of the
method for this scenario, wherein the amplitudes undergo a
step-change of 20% of their nominal values in t = 0.25 s
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Fig. 12. Performance of the proposed method for extracting the har-
monics of the signal with a SNR= 30 dB. (a) Estimated (gray) and real
(black) fundamental amplitude. (b) Estimated (gray), and real (black) grid
frequency.

Fig. 13. (a) Mean square amplitude error in decibels for several SNR, within
a time window of 10 s. (b) Mean square frequency error in decibels for several
SNR, within a time window of 10 s.

and the fundamental frequency changes from its nominal
value to 50 + 0.5 sin(2π t + ψ)Hz at t = 0.5 s. A com-
parison between this figure and tests performed in Figs. 7
and 10, allows concluding that dynamic response remains
unchanged.

Finally, the test signal in (27) was degraded with white
Gaussian noise for different levels of SNR, to study the
performance of the system in steady-state condition. Fig. 13(a)
shows the mean square amplitude error (MSAE) in decibels
(10 log10(MSAE)) for all estimated amplitudes in relation to
different SNR levels, calculated during a time window of 10 s.
The estimations are grouped practically on the same curve, so
the noise has an equal effect on the harmonics measurement
method. The mean square frequency error (MSFE) in decibels
(10 log10(MSFE)) is shown in Fig. 13(b). Both indicators are
monotonically decreasing and, even in the worst case of SNR,
the method performed well.

VI. IMPLEMENTATION

Owing to the method modular nature (Fig. 6), the small
number of mathematical operations required, and the sim-
plicity of the control loop, the proposed method is more

TABLE III

RESOURCE USAGE BY COMPONENT

than suitable for implementation in an FPGA platform. The
algorithm is implemented in a Spartan-3E xc3s1600e FPGA
device from Xilinx. The frequency of the FPGA clock is
of 50 MHz, which means that the sampling period has a
resolution of 20 ns. Logic synthesis, place and route, and
timing analyses are performed using ISE Design Suite ver.13
design tool. A full explanation of the implementation can be
found in [35], from which the key information is extracted
and presented below. The use of resources based on hierarchy
can be seen in Table III. The complex resonator component
includes two resonators and two multipliers from Fig. 6 (for
calculation of the real and imaginary part of the desired
spectral component). It should be noticed that if M harmonics
is intended to be measured, the absolute value and complex
resonator sections must be repeated M times. The resources
used for the FPGA implementation allow to implement the
harmonics measurement algorithm as part of a more complex
system. It is worth noticing that the nominal frequency in
which this design operates (50 Hz ×128 = 6.4 kHz) is lower
than the maximum frequency registered by the analysis of each
individual component.

A. Timing Versus Area

Oftentimes in the design of any system to be implemented
in an FPGA platform the designer needs to make a tradeoff
between timing performance and area consumption. Some-
times the system is part of a larger system contained in the
same device, so certain area constraints need to be met. On
other occasions, the area is not an issue and a key factor is
timing performance.

The proposed method can meet both requirements given its
high implementation flexibility. If it were necessary to reduce
the consumption area, this could be attained by generating only
one mSDFT component and one absolute value component,
rather than several for each harmonics, a finite state machine
(FSM) to reuse the component and a RAM to store the
important values, the method can be implemented with a
significant reduction in area consumption. Conversely, if the
aim was to obtain the measurement as fast as possible, this
could be achieved by repeating the components previously
mentioned for each harmonics that is to be measured.

Final implementation is determined by application spec-
ification, the designer criterion, and not by the method
itself.
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Fig. 14. Online amplitude tracking. Time scale is 10 ms/div.

B. Experimental Testing

This section presents the experimental results obtained from
the implementation of the proposed method as shown in
Section VI. A test signal with known harmonic content was
used to quantify the performance of the proposed method;
and to conduct the experimental trial, a test bench comprising
several devices was used, where three parts can be differ-
entiated: generation, sampling and processing, and visualiza-
tion. A Hewlett Packard 33120A programmable waveform
generator was employed to generate the test signal; and to
sample and process the measurement, an AD677 with an
FPGA Spartan-3E xc3s1600e was used. Finally, a Tektronik
MSO 2024 oscilloscope was used to visualize and process the
signals of interest. The test signal used changed from an ideal
sinusoidal waveform to a nonideal one, thus time response
and precision could be measured. The fundamental component
changed from 0.9[pu] to 0.8[pu], and then 0.1[pu] of 3rd,
0.2[pu] of 5th, 0.04[pu] of 7th, 0.02[pu] of 9th and 0.06[pu] of
11th harmonics were added. Values are expressed on a per unit
(pu) basis, using a maximum generator voltage of 18 V peak-
to-peak as reference. The test signal, the estimated frequency
( fL ), and the estimated amplitude of the fundamental, as well
as the 3rd, 5th, 7th, 9th, and 11th harmonics (M = 6) are
shown in Fig. 14. The test demonstrates that the measurements
are stabilized in one cycle of the input signal. After this
transient, the measurements present neither oscillations NOR

variations. The frequency estimation ( f̂L) remains within the
1% frequency error band in the transient, and, after one cycle,
it settles to 50 Hz.

Tables IV and V show a comparison between harmonics
measurements done with the proposed method and an FFT
performed with the MSO 2024, both for ideal and distorted
conditions. For the proposed method, the mean (μ) and
standard deviation (σ ) of each estimated harmonic in a period
of one second are presented. All values are in volts rms.

Finally, a measurement of total harmonics distortion (THD)
of the grid voltage during a whole day is presented in Fig. 15.
To calculate the THD index, the necessary components for

TABLE IV

MEASUREMENT COMPARATIVE FOR IDEAL CONDITION, WHERE

ALL VALUES ARE IN VOLTS rms

TABLE V

MEASUREMENT COMPARATIVE FOR DISTORTED CONDITION,

WHERE ALL VALUES ARE IN VOLTS rms

Fig. 15. Grid total harmonics distortion (THD) estimated by the proposed
method.

estimating the first 40 grid harmonics have been implemented
(M = 40). The analyzed grid belongs to a university research
laboratory and a marked increase in the THD index is observed
from 8:00 A.M. to 4:00 P.M. As evidenced in this paper, the
proposed method allows for the analysis of power quality in
real grids with good response.

VII. INTERHARMONICS AND SUBHARMONICS

As it was shown in previous sections, the VSPT is able to
obtain a sampling frequency multiple of the input frequency
regardless of the number of harmonics and their amplitude.
This is possible due to the rejection that mSDFT tuned with
k = 1 imposes to the nonfundamental components of the
input signal. However, the proposed method, as shown so
far, does not reject subharmonics and interharmonics. When
the input signal is distorted by this kind of components, the
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estimated amplitude and sampling period present oscillations
in steady state. On the other hand, it is important to note
that the VSPT stability is not affected by subharmonics and
inteharmonics, since they are only disturbances on the control
loop. Steady-state error depends on the distorted amplitude and
loop rejection but, considering that the fundamental amplitude
is bigger than other components, the error is within acceptable
limits.

As it was previously stated, the proposed method presents
high implementation flexibility. The problem described in the
previous paragraph can be solved by increasing SW length
and maintaining the rest of the structure unchanged (with
the exception of controller coefficients which have to be
recalculated). By doing this, DFT resolutions and rejection of
subharmonics and interharmonics are increased while estima-
tion of these components is allowed. For example, a resolution
of 25 Hz is obtained with a double length of SW, therefore,
subharmonics and interharmonics close to multiples of 25 Hz
are highly attenuated. The IEC61000 standard imposes a
DFT measurement of the input signal in a time window
corresponding to a 10-grid period [12], [13]. Therefore, an
SW of ten times greater length can be adopted. Nevertheless,
it is important to note that there is a tradeoff between mSDFT
resolution and speed convergence.

VIII. CONCLUSION

A new method for harmonic measurement is presented
in this paper. The method uses the mSDFT algorithm to
calculate the grid harmonic content, with no errors or potential
instabilities, due to finite precision representation. Moreover
no damping factor is needed. The sampling frequency is
automatically adjusted to be an integer multiple of the line
frequency, thereby avoiding spectral leakage and picket–fence
effects, well-known problems affecting DFT-based techniques.

Several scenarios of possible operating conditions were
simulated. This study shows that the proposed method is robust
and accurate even in time-varying conditions. The performance
for noisy signals was presented, and for the different SNR, the
results are considered reasonable for practical applications.

The system implementation is conducted in an FPGA plat-
form obtaining a flexible and portable project. The modular
nature of the method allows designers to optimize area con-
sumption or timing depending on the project requirements.
In this paper, the project is implemented for optimum time
response, nonetheless the resources used for FPGA implemen-
tation are acceptable, and allow the method to be part of a
more complex system.

The performance of the proposed method has been evaluated
in several disturbance scenarios. Experimental and simulation
results have demonstrated the method measurement capability,
even in the case of highly distorted environments, noise
degraded signal, and time-varying conditions.
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