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Abstract

The mechanisms by which the expression of animal cell death suppressors in economically important plants conferred
enhanced stress tolerance are not fully understood. In the present work, the effect of expression of animal antiapoptotic
gene Ced-9 in soybean hairy roots was evaluated under root hairs and hairy roots death-inducing stress conditions given by
i) Bradyrhizobium japonicum inoculation in presence of 50 mM NaCl, and ii) severe salt stress (150 mM NaCl), for 30 min and
3 h, respectively. We have determined that root hairs death induced by inoculation in presence of 50 mM NaCl showed
characteristics of ordered process, with increased ROS generation, MDA and ATP levels, whereas the cell death induced by
150 mM NaCl treatment showed non-ordered or necrotic-like characteristics. The expression of Ced-9 inhibited or at least
delayed root hairs death under these treatments. Hairy roots expressing Ced-9 had better homeostasis maintenance,
preventing potassium release; increasing the ATP levels and controlling the oxidative damage avoiding the increase of
reactive oxygen species production. Even when our results demonstrate a positive effect of animal cell death suppressors in
plant cell ionic and redox homeostasis under cell death-inducing conditions, its expression, contrary to expectations,
drastically inhibited nodule formation even under control conditions.
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Introduction

Programmed cell death (PCD) is a genetically regulated process

of cellular suicide and is well known to play a fundamental role in

a wide variety of developmental and physiological functions in

animals, plants, and fungi [1–3]. A key feature of PCD is the

requirement of energy to the control and execution of the death in

an orderly manner [4,5]. In plants, PCD is essential for cell

homeostasis and specialization, playing an important role in plant

development and adaptive responses to different stress conditions

such as salinity, cold stress, hypoxia and pathogen attack [6–8].

In metazoans, from humans to Caenorhabditis elegans, the

central regulators of PCD are well characterized and conserved

involving pro- and anti-apoptotic protein such as APAF-1/CED-4

and BCL-2/CED-9, and executing protein family caspasas/CED-

3 [9,10]. Interestingly, although these regulators are absent in the

genomes of plants and yeast, the effects of animal pro- and anti-

apoptotic proteins has been studied in transgenic plants [11–18].

According to the localization of these heterologous proteins in

plant cells, it is proposed that cell death suppressors contribute to

maintain the organelles homeostasis preventing the generation/

release of death signals, similar to what occurs in animals [11,13].

However, there are limited data regarding the mechanisms

through which the animal cell death suppressors modulate the

plant physiology.

Remarkably, the expression of PCD suppressors in plants result

in agronomical beneficial features such as improved tolerance to a

variety of biotic and abiotic stresses [11–16]. Increased the

biological nitrogen fixation in legumes is a main objective for the

agriculture, and different strategies had been explored towards this

objective. During the natural or stress induced senescence, which

involve cell death processes, the biological nitrogen fixation

metabolism is impaired, affecting both quality and quantity of

legume yields [19,20]. Therefore, the development of strategies to

increase the tolerance to a variety of stresses is highly relevant. To

the best of our knowledge, the effect of animal PCD suppressor has

not been tested in legumes.

Soybean (Glycine max L.) culture is strongly affected by drought

and salinity [21,22]. Likewise, the soybean-rhizobia symbiotic

interaction process is also severely affected by stress conditions

[19,20]. Our group has reported that salt stress, but not osmotic

stress, negatively affect the early stages of the Glycine max L.-

Bradyrhizobium japonicum interaction such as root hairs defor-
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mations and viability [23], and how these short-term treatments

affect nodule formation [24]. In this context, two root hairs death-

inducing conditions were identified: sub lethal salt stress

treatments combined with B. japonicum inoculation (inoculated

50 mM NaCl) and severe salt stress (150 mM NaCl). Interestingly,

in root hairs under sub lethal salt stress conditions (50 mM NaCl),

the symbiotic interaction with B. japonicum induced a sustained

increase of intracellular reactive oxygen species (ROS) levels in a

similar pattern to that observed in response to pathogenic elicitors

[23,25]. In contrast, under 150 mM NaCl, the intracellular ROS

production decreased from the beginning of treatment indepen-

dently of the presence of the symbiont [23].

The aim of the present work was to evaluate if the expression of

Ced-9 from Caenorhabditis elegans could improve the stress

tolerance of legume-rizobia symbiotic interaction and the biolog-

ical nitrogen fixation process. Transgenic soybean-hairy roots

expressing Ced-9, obtained with Agrobacterium rhizogenes

[26,27], were subjected to the above described cell death-inducing

conditions, in order to evaluate root cell viability, redox and ionic

parameters associated and nodule development.

Results

Root hairs death-inducing stress conditions
Two-day soybean seedlings were subjected 30 min under

previously reported root hairs death-inducing conditions. Moder-

ate salt stress treatments (50 mM NaCl) combined with B.
japonicum (inoculated 50 mM NaCl) and severe salt stress

(150 mM NaCl) were the cell death conditions for root hairs

[23]. However, under these root hairs death-inducing conditions

the roots were kept alive. These results were observed by Evans

Blue staining and DNA degradation analysis (Fig. 1A, 1B and 1C).

Root hairs DNA degradation was observed while roots maintained

the chromatin integrity (Fig. 1C).

Malondialdehyde content (MDA), which is an intermediary

metabolite of lipid peroxidation used as oxidative stress marker,

was measured in root hairs. The MDA level increased in

inoculated and inoculated 50 mM NaCl treatments, whereas

non significant differences were observed in salt stress alone

(50 mM NaCl and 150 mM NaCl) respect to control (Fig. 2A).

Likewise, with the purpose to discriminate ordered or non-ordered

death processes, the levels of adenosine-59-triphosphate (ATP)

were quantified [4,28] in root hairs subjected to root hairs death-

inducing conditions. No significant changes were observed at

50 mM NaCl (Fig. 2B). Under inoculated 50 mM NaCl

treatment, root hairs had increased ATP levels as well as under

inoculated control treatment (Fig. 2B). Conversely, under 150 mM

NaCl treatment, root hairs showed a slight, but not significant

decrease in ATP levels respect to the control (Fig. 2B).

CED-9 expression ameliorates root hairs death-inducing
conditions effects

In order to evaluate the effect of the animal cell death

suppressor, wild type and CED-9 transgenic hairy roots were

obtained by infection with A. rhizogenes K599 strain. It should be

pointed out that the differentiation and development of hairy roots

were conducted without antibiotic selection, thus the resulting

K599-CED9 composite plants contained both transgenic and wild

type hairy roots (Fig. S1A). The expression level of the transgene in

hairy roots was tested by qPCR using Ced-9 specific-derived

primers (Fig. S1B) and the identity of qPCR product was verified

by nucleotide sequencing. The K599-CED9 hairy roots were

shorter than wild type hairy roots obtained by infection with

untransformed A. rhizogenes (K599-empty) (Fig. S2A).

Roots hairs nuclear morphology was evaluated in K599-empty

and K599-CED9 hairy roots incubated 30 min under control, or

root hair death-inducing conditions (Fig. 3; Fig. S3). The nuclear

morphology of root hairs was evaluated by acridine orange and

ethidium bromide (AO/EB) staining and observed with confocal

microscopy. Acridine orange is a dual-fluorescence dye that

interacts with DNA and RNA, and it also serves as a pH indicator.

Figure 1. Root hairs death inducing stress conditions. Two-day soybean seedlings were subjected 30 min to control, inoculated with B.
japonicum (inoculated), inoculated with B. japonicum in presence of 50 mM NaCl (inoc 50 mM NaCl), and 150 mM NaCl conditions. A) Evans blue
staining of roots showing loss of membrane integrity (upper image) and detail of root hairs staining (image below). B) Evans Blue stain intensity was
measured by the image analyzer program Optimas 6.1. C) DNA degradation in a representative sample pool of root and root hairs. 1: Control, 2:
inoculated 50 mM NaCl, 3: 150 mM NaCl. 2 mg of DNA were loaded on a 2% TAE agarose gel and stained with ethidium bromide. Data are means 6

SE of four independent experiments (two roots per experiment). Different letters indicate significant differences between treatments (p,0.05, DGC
test).
doi:10.1371/journal.pone.0101747.g001

Effects of Ced-9 Expression in Soybean
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Ethidium bromide binds to DNA by intercalating between the

bases, but it is membrane impermeant so generally excluded from

viable cells [28]. Hence, roots were incubated 30 min with AO/

EtBr to allow entry of the probes. The nuclei of root hairs in the

control treatments exhibited an orthodox conformation, and

similar size and shape between K599-empty and K599-CED9

hairy roots (Fig. S3). Under root hair death-inducing conditions,

root hairs of K599-empty hairy roots showed significantly higher

nuclear fragmentation than root hairs of K599-CED9 hairy roots

(Fig. 3). Furthermore, an increase in AO staining was observed in

K599-empty hairy roots particularly under 150 mM NaCl

conditions (Fig. 3).

CED-9 effects on root ion and redox homeostasis under
hairy roots death-inducing conditions

Whole hairy roots were used to perform the biochemical

determinations due to the low yield of root hairs in hairy roots.

However, as previously observed, root hair death-inducing

conditions did not induce roots death. Then, treatment time was

adjusted to 3 h, when positive Evans Blue staining (Fig. S2A), but

not DNA degradation (Fig. S2B) could be observed. This result

indicates an early stage of root cell death. It also was noted that

K599-CED9 hairy roots showed more membrane selectivity than

K599-empty hairy roots (Fig. S2A).

K599-empty hairy roots showed a dramatic decrease in

potassium levels under 150 mM NaCl treatment, whereas in

K599-CED9 hairy roots this decrease was much less pronounced.

Nevertheless, no significant differences were observed in potassium

content between control and inoculated 50 mM NaCl treatments

in any transgenic or wild type genotype (Fig. 4A). However,

sodium content in hairy roots increased in a dose dependent

manner in both K599-empty and K599-CED9 hairy roots

(Fig. 4B). Moreover, no significant differences in the concentration

of sodium were observed between K599-empty and K599-CED9

in any of the treatments performed (Fig. 4B). Likewise, calcium

concentration decreased markedly in K599-empty hairy roots only

under 150 mM NaCl treatment (Fig. 4C), whereas the calcium

Figure 2. Evaluation of malondialdehyde (MDA) and Adeno-
sine-59-triphosphate (ATP) levels in root hairs. Two-day soybean
seedlings were subjected 30 min to control, inoculated with B.
japonicum (inoculated), 50 mM NaCl, inoculated with B. japonicum in
presence of 50 mM NaCl (inoc 50 mM NaCl), and 150 mM NaCl
conditions. Then, root hairs were extracted from roots and MDA and
ATP content were evaluated. Data are means 6 SE of four (MDA) and
three (ATP) independent experiments (root hairs from 200 roots per
experiment). Different letters indicate significant differences between
treatments (p,0.05, DGC test).
doi:10.1371/journal.pone.0101747.g002

Figure 3. Ced-9 expression ameliorates root hairs death-
inducing conditions effects. K599-empty (A, C, E) and K599-CED9
(B, D, F) hairy roots were subjected 30 min under control (A and B),
inoculated with B. japonicum in presence of 50 mM NaCl (inoc 50 mM
NaCl) (C and D), and 150 mM NaCl (E and F). Nuclear morphology of
root hairs was evaluated. Arrows indicates nuclear fragmentation.
Images were taken with a Zeiss confocal microscope. The excitation was
performed simultaneously at 488 nm and emission filter BP 500–530 IR
and BP 565–615 IR for AO and EtBr, respectively (image overlay).
doi:10.1371/journal.pone.0101747.g003
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content in K599-CED-9 hairy roots did not change in stress

treatment respect to control (Fig. 4C).

In order to characterize changes in the redox state during hairy

roots death-inducing conditions, the levels of MDA, hydrogen

peroxide (H2O2), antioxidant capacity, ascorbic acid ratio

(reduced form/total) and ATP in K599-empty and K599-CED-9

hairy root were quantified (Fig. 5 and Fig. 6). MDA content

increased in K599-empty hairy roots under stress conditions

(Fig. 5A). Interestingly, K599-CED9 hairy roots did not show

significant differences under any stress treatments regarding

control (Fig. 5A). In accordance, H2O2 levels increased in K599-

empty hairy roots under inoculated 50 mM NaCl and 150 mM

NaCl treatments, whereas K599-CED9 hairy roots did not show

significant differences in H2O2 content between control and stress

treatments (Fig. 5B). Moreover, differences in H2O2 content

between K599-empty and K599-CED9 were only observed under

150 mM NaCl treatment (Fig 5B). The Ferric Reducing Ability of

Plasma (FRAP) assay showed raises in antioxidant capacity in

K599-empty hairy roots under 150 mM NaCl (Fig. 5C), although

the ascorbic acid ratio was reduced (Fig. 5D). Under roots death-

inducing conditions, K599-CED9 hairy roots did not show

differences in both antioxidant capacity and ascorbic acid ratio

respect to control (Fig. 5C and 5D).

ATP levels increased in K599-empty hairy roots inoculated in

presence of 50 mM NaCl treatment while no significant difference

were observed under 150 mM NaCl (Fig. 6), similarly to the results

observed in root hairs (Fig. 2). In contrast, K599-CED9 hairy roots

had increased ATP content under all stress conditions, including

150 mM NaCl treatment, showing significant differences respect

to K599-empty hairy roots (Fig. 6).

Ced-9 expression inhibit nodule formation in hairy roots
Strikingly, K599-CED9 composite plants showed a reduction of

60% in the number of nodules compared to K599-empty

composite plants under control conditions (Fig. 7A and 7B). As

it was previously mentioned, each soybean K599-CED9 compos-

ited plants developed both transgenic K599-CED9 and non-

transgenic hairy roots (Fig. S1). In the nodulation assay, K599-

CED9 composite plants had both hairy roots with and without

nodules. Hairy roots from K599-CED9 composite plants were

separated according nodulated and non nodulated and the

presence of Ced-9 transgene was examined by PCR. This

experiment clearly showed that in K599-CED9 hairy roots

nodulation was dramatically inhibited, while in the same

composite plant, those non-transgenic hairy roots were nodulated

(Fig. 7C).

Discussion

Soybean-rhizobia symbiotic interaction is severely affected by

salt stress, showing a reduction on number and weight of nodules

in plants salinized with 26 mM NaCl [19,20]. Our group had

studied the effects of salt stress conditions on early events of

Glycine max L.-B. japonicum symbiotic interaction, where

undescribed root hairs death-inducing conditions were identified:

sub lethal salt stress treatments combined with B. japonicum
(inoculated 50 mM NaCl) and severe salt stress (150 mM NaCl)

(Figure 1). During the early events of symbiotic interaction, a fast

and transient increase of intracellular ROS generation take place

in root hairs [23,25], whereas a sustained ROS production was

reported when the symbiotic interaction occurred under 50 mM

NaCl [23]. A similar root hair ROS kinetic was observed in

response to pathogenic elicitors [25]. In contrast, under 150 mM

NaCl conditions, intracellular ROS production diminished from

the beginning of treatment [23]. Hence, the initial hypothesis was

that the expression of anti-apoptotic proteins from animals, which

have no homologues identified in plants, modulates redox

homeostasis and delays senescence and death processes of the

plant-symbiont system in legumes under stress conditions.

Figure 4. Ced-9 affects ion relationship during hairy roots
death-inducing stress conditions. K599-empty (dark bars) and
K599-CED9 (grey bars) hairy roots were subjected 3 h to control,
inoculated with B. japonicum in presence of 50 mM NaCl (inoc 50 mM
NaCl), and 150 mM NaCl conditions, and then potassium, sodium and
calcium ions were quantified by high pressure liquid chromatography.
Data are means 6 SE of five independent hairy roots. Different Latin
and Greek letters indicate significant differences between treatments in
K599-empty and K599-CED9 hairy roots, respectively (p,0.05, DGC
test). Asterisks indicate significant differences between hairy roots
genotypes (p,0.05, DGC test).
doi:10.1371/journal.pone.0101747.g004
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First at all, in this work we characterized these two root hairs

death-inducing conditions. There are two main ways to execute

cell death: ordered (programmed-like) and non-ordered (necrosis).

The ATP level is a fine parameter to distinguish ordered from

non-ordered cell death types in mammalian cells [4,5]. During

apoptosis, ATP has to be maintained high to allow the formation

of the apoptosome [29,30], while ATP depletion has been

observed during necrosis [31–33]. However, this observation has

not been clearly observed in plants [34–37]. Casolo et al [38]

found that in soybean cell cultures, low H2O2 concentration

induces PCD, which is accompanied by a slight decrease in ATP.

In addition, ATP depletion after PCD induction in A. thaliana
[39] and tobacco BY-2 cells [40] has also been reported. It has

been reported that environmental stimuli can produce different

types of cell death depending on the stimulus intensity and the

ATP availability within the cell [41]. Here, we have determined

that root hairs death induced by inoculation in presence of 50 mM

NaCl showed characteristics of ordered-process, with increased

ROS generation, MDA and ATP levels, whereas the cell death

induced by 150 mM NaCl treatment showed non-ordered or

necrotic-like characteristics, like decreases in ROS production and

ATP levels (Figure 2). Furthermore, the differences observed in

Evans Blue staining between these death-inducing treatments

(Figure 1A) also indicates the differences in the stress intensity

which would lead to the execution of ordered-death or necrosis-

like processes. Moreover, the increased MDA and ATP levels

observed in control inoculated root hairs (Figure 2) would be due

to the increased metabolic activity during early responses of the

symbiotic interaction [25,42,43].

The expression of cell death suppressor Ced-9 from C. elegans
inhibited or at least delayed cell death under root hairs death-

inducing conditions (Figure 3). Furthermore, an increase in AO

staining was observed especially under 150 mM NaCl conditions,

which would indicate cellular acidification. Interestingly, the

expression of Ced-9 affected both ordered and necrotic-like death

events in root hairs (Figure 3), and it has also been documented in

animal systems [44–46], suggesting similar functionality level

between the components of the mechanisms of cell death in plants

and animals. However, few works have evaluated homeostatic and

physiological parameters in transgenic plants in order to under-

stand the effects of the expression of Ced9. Shabala and coworkers

[16] have demonstrated that the expression of Ced-9 delays the

onset of leaf senescence symptoms under salt and oxidative stress

conditions altering the flow patterns of K+ and H+ across the

Figure 5. Ced-9 expression prevents ROS generation under hairy roots death-inducing stress conditions. K599-empty (dark bars) and
K599-CED9 (grey bars) hairy roots were subjected 3 h under control, inoculated with B. japonicum in presence of 50 mM NaCl (inoc 50 mM NaCl), and
150 mM NaCl conditions, and redox parameters were evaluated. A) MDA content, B) H2O2 content, C) FRAP (Ferric Reducing Ability of Plasma) assay,
D) Reduced/total ascorbic acid ratio. Data are means 6 SE from five independent hairy roots. Different Latin and Greek letters indicate significant
differences between treatments in K599-empty and K599-CED9 hairy roots, respectively (p,0.05, DGC test). Asterisks indicate significant differences
between hairy roots genotypes (p,0.05, DGC test).
doi:10.1371/journal.pone.0101747.g005
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plasma membrane. Consistent with Shabala’s results [16], K599-

CED9 hairy roots showed altered potassium content respect

K599-empty hairy roots only under 150 mM NaCl condition,

whereas non-significant differences were observed under inocu-

lated 50 mM NaCl between transgenic and wild type hairy roots.

This result indicates different causes of death and therefore,

different mechanisms of action of CED-9 under these stress

conditions (Figure 4B). Moreover, CED-9 effects on K+-efflux may

be due to sustained levels of Ca2+ which subsequently may affect

the opening and closing balance of non-selective cation channels

(NSCC) [47,48] (Figure 4C), but Ca2+ subcellular localization

approaches are required to verify this hypothesis. However, Ced9-

expression had no effect on sodium influx which increased in dose

dependent manner, similarly to that observed in K599-empty

hairy roots (Figure 4B).

It has been shown that under saline stress ROS generation are

induced [49–51] leading to oxidative damage [52,53]. In this

regard, it has been suggested that anti-apoptotic genes from

animals would suppress ROS generation or promote its removal in

plants [7,14]. However, to best of our knowledge, there are no

redox studies to support this hypothesis since these conclusions

were based on visual observations such as a lack of decoloration in

transgenic leaves under stress conditions [13,14] and chlorophyll

content in salt stressed leaves [16]. In this work, we reported redox

effects of Ced-9-expression in soybean hairy roots under stress

conditions (Figure 5 and 6). Increases in antioxidant capacity in

K599-empty hairy roots (Figure 5C) could indicate a response to

oxidative stress induced by hairy root death-inducing conditions

(Figure 5A and 5B); while no changes were observed between

treatments in K599-CED9 hairy roots (Figure 5A, 5B, 5C and

5D). These results demonstrated that the expression of Ced9

prevents ROS generation in hairy roots under stress conditions.

On the other hand, the mammalian homologous of CED-9 may

regulate metabolic efficiency in neurons through interaction with

the mitochondrial F1F0 ATP synthase in the inner membrane

[54]. Likewise, Qiao et al [13] suggested a possible contribution of

Bcl-xL and Ced-9 to improved mitochondrial membrane potential

when were expressed in plants. In this regard, this work

demonstrated that K599-CED-9 hairy roots had improved

metabolism assessed as ATP content (Figure 6), particularly in

severe salt conditions.

Strikingly, despite of improved metabolism and tolerance to

death-induced stress conditions, K599-CED9 hairy roots had a

significant inhibition of its nodulation capacity (Figure 7). More-

over, given that cell death process is an early control of the number

of nodules [55,56], we expected that the expression of Ced-9 could

impact positively on the nodulation process. Taking into account

that one of the main action of Ced-9 is the ionic flux control, it is

possible that its expression in legume could adversely affect the ion

flux signatures that occur during rhizobium perception [57,58].

Likewise, It has been reported in animals that CED9 interact with

proteins involved in vesicular traffic and autophagy [59], which in

turn have participation in organogenesis events [60–62]. In this

regard, we have the hypothesis and also relevant unpublished data

showing that CED9 expression, which have no homologues

identified in plants, could affect nodule organogenesis by

interacting with vesicular traffic and autophagy proteins conserved

in plants.

In summary, in this work we characterized the effects of Ced-9-

expression on soybean hairy root under different, ordered-like and

necrosis-like root hair and root death-inducing conditions. In this

respect, we demonstrated that part of improved tolerance given by

Ced-9 expression is based on the maintenance of ionic and redox

homeostasis capacity. However, contrary to expectations, Ced-9

expression drastically inhibited nodule formation, and conse-

quently the expression of animal cell death suppressors seems not

to be an adequate strategy to increase the nitrogen content derived

from biological fixation.

Materials and Methods

Bacterial strain and plant material
Soybean seeds (Glycine max L. DM4800) were disinfected with

sodium hypochlorite 5% (v/v) for 5 min and germinated in the

dark for 48 h on filter paper moistened with distilled water. The

seeds were incubated at 28 and 37 uC during the first and second

24 h periods, respectively, to promote the growth of roots and root

hairs. Bradyrhizobium japonicum USDA 138 was cultured in yeast

extract mannitol (YEM) medium [63] at 28 uC with constant

agitation for 5 days (36109 cells mL21). The bacteria were washed

and resuspended in sterile water.

Binary vector and A. rhizogenes strains
The binary vector pBI2113-Ced-9 has an efficient promoter

cassette overexpressing the Ced-9 gene (GenBank accession

number L26545), a Caenorhabditis elegans homolog of Bcl-xL

which was kindly provided by Dr. Yuko Ohashi [12,64].

Cucumopine-type A. rhizogenes strain K599 was used to infect

cotyledon axes regions. A. rhizogenes K599 with pBI2113-Ced-9

was grown in Luria-Bertani (LB) medium containing kanamycin

(Km) at 50 mg mL21. To get fresh cells, A. rhizogenes K599 was

grown on LB plates containing Km and incubated 48 h at 28 uC.

Cells were collected from these plates and diluted into 1 mL of

sterile water. For control hairy roots (K599-empty), a fresh culture

of A. rhizogenes K599 lacking the binary vector was grown in LB

medium without antibiotics.

Figure 6. Effects of Ced-9 expression on adenosine-59-triphos-
phate (ATP) levels in control and stressed hairy roots. K599-
empty (dark bars) and K599-CED9 (grey bars) hairy roots were subjected
3 h to control, inoculated with B. japonicum in presence of 50 mM NaCl
(inoc 50 mM NaCl), and 150 mM NaCl conditions and ATP content was
evaluated. Data are means 6 SE of four independent hairy roots.
Different Latin and Greek letters indicate significant differences
between treatments in K599-empty and K599-CED9 hairy roots,
respectively (p,0.05, DGC test). Asterisks indicate significant differences
between hairy roots genotypes (p,0.05, DGC test).
doi:10.1371/journal.pone.0101747.g006

Effects of Ced-9 Expression in Soybean
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A. rhizogenes-mediated root transformation
Induction of A. rhizogenes-mediated root transformation

protocol was modified from Estrada-Navarrete [27]. Briefly, after

germination, sprouts were inoculated by injection directly into the

cotyledonary nodes with a syringe and transferred to a hydroponic

double tube system and incubated in a growth chamber under

16 h photoperiod (350 mmol m22 s21) at 2662 uC. The smaller

tube contained the sprout watered with B&D solution [65]

Figure 7. Ced-9 expression inhibits nodule formation in hairy roots. K599-empty and K599-CED9 composite plants were inoculated with B.
japonicum USDA138 and after 14 days the nodulation was evaluated. A) Image of nodules in K599-empty and K599-CED9 hairy roots. B) Number of
nodules in K599-empty (black bar) and K599-CED9 (grey bar) composite plants. Total nodules were counted and divided by the total number of hairy
roots, including hairy roots without nodules (nodule number per hairy root). C) Nodulated and non-nodulated hairy roots of K599-CED9 composite
plants were separated and Ced-9 transgenic hairy roots were identified by Ced-9 PCR (+ indicates Ced-9 positive control). Data are means 6 SE of four
composite plants. Different letters indicate significant differences between composite plant genotypes (p,0.05, DGC test).
doi:10.1371/journal.pone.0101747.g007

Effects of Ced-9 Expression in Soybean

PLOS ONE | www.plosone.org 7 July 2014 | Volume 9 | Issue 7 | e101747



supplemented with 8 mM KNO3 and it was within a larger tube

that serves as moist chamber. Typically, soybean plants infected by

A. rhizogenes started to show tumors approximately 5 days after

inoculation. Twelve days after A. rhizogenes infection, plantlets

exhibited numerous induced hairy roots per wound site. Primary

root was removed from the plant by cutting approximately 1 cm

below the cotyledon nodes and the composite plants were placed

in plastic trays with B&D solution with or without KNO3

depending on the treatment to be performed.

Root hairs death-inducing conditions
After germination, sprouts were incubated 30 min in aerated

tubes that contained sterile water (control), B. japonicum
(inoculated), 50 mM NaCl, B. japonicum in presence of 50 mM

NaCl and 150 mM NaCl. Root hairs from roots subjected to

different stress treatments were extracted by peeling the root zone

containing young root hairs, which were immediately frozen in

liquid air. Peeling was performed under a magnifying glass by

making an incision with a scalpel in root and pulling the epidermal

tissue containing the root hairs using a fine-tipped clamp. Root

hairs of approximately 200 roots generate sufficient material for a

sample.

Hairy roots death-inducing conditions
Once primary root was removed from the plant by cutting

below the cotyledon nodes, the composite plants were placed in

aerated plastic trays with B&D solution supplemented with 8 mM

KNO3 and incubated in a growth chamber under 16 h

photoperiod (350 mmol m22 s21) at 2662 uC during two weeks.

Hairy roots were subjected to stress treatments for 3 h and then,

they were immediately frozen in liquid air.

Cell death evaluations
Cell death evaluations were performed by Evans Blue staining

and DNA degradation analysis. Evans Blue is a dye used in the

determination of cell viability [13] due to its inability to permeate

intact cell membranes. When cells lose the membrane potential,

the dye diffuses within the cell and it may visualized by

conventional microscopy. The roots were incubated 10 min with

Evans Blue 0.05% (w/v) in water or each NaCl levels assayed.

Genomic DNA was isolated using CTAB [66]. In brief, the

samples were homogenized to a fine powder using a mortar and

pestle under liquid nitrogen and thawed in CTAB extraction

buffer (2% w/v CTAB, 1.4 M NaCl, 20 mM EDTA, 100 mM

TRIS-HCl pH 8.0). RNase A was added and the homogenate was

incubated for 30 min at 37 uC. DNA was extracted twice with an

equal volume of chloroform:isoamylalcohol (24:1 v/v) and pre-

cipitated with 0.6 vols. of isopropanol. For visualization of the

DNA degradation, equal amounts of DNA (2 mg) were loaded on a

2% TAE agarose gel and stained with ethidium bromide.

The nuclear morphology of hairy roots was evaluated by

acridine orange (AO, 50 mg/mL) and ethidium bromide (EtBr,

50 mg/mL) staining and observed with Zeiss confocal microscopy.

AO and EtBr are dyes that intercalate DNA and fluoresce under

UV light. The orange color and the presence of the dispersed

chromatin in the cytoplasm indicate that the cells have lost

integrity of the nuclear membrane and are in a very late stage of

death. Both dyes are excited by 488 nm and emission was

observed at 500–530 nm and 565–615 nm for AO and EtBr,

respectively.

MDA and ATP quantification in root hairs and hairy roots
The samples were homogenized using a mortar and pestle

under liquid nitrogen and thawed in 3% (v/v) trichloroacetic acid

(TCA) then centrifugation was carried out at 13,000 g, 4 uC
during 15 min.

MDA levels were quantified according Heath and Packer [67].

Briefly, 100 mL of sample were mixed with 100 mL of 20% TCA +
0.5% thiobarbituric acid (TBA), incubated at 90uC for 20 min and

ice cold rapidly. The mix was centrifuged at 13,000 g for 10 min.

The absorbance of the supernatant was read at 532 nm y 600 nm.

The concentration of ATP present in each of the samples was

determined with a GloMax luminometer using a bioluminescent

detection reagent (ENLITEN rLuciferase/Luciferin; Promega)

according to manufacturer. The amount of ATP present in the

sample was calculated from the measured relative light units using

a standard curve spanning the relative light unit range obtained

from the samples [68].

Na+, K+ and Ca+ determination in hairy roots
Ion quantification was performed by high pressure liquid

chromatography (Shimadzu LC2010) with Shim-pack IC–C3

column and non-suppressed system. Hairy roots segments (50 mg)

were placed into 1 mL of 0.1 N nitric acid during 3 days. Samples

were passed through 0.22 mm pore size MF Millipore cellulose

membrane filters and diluted 6 times with MQ water. Then,

30 mL of samples were analyzed. The mobile phase was oxalic acid

2.5 mM and the time of chromatography was 20 min with a flow

rate of 1.2 mL min21. Quantitative analysis was done with

multicationic standards by software LCSolution.

Fluorometric H2O2 determination in hairy roots
The samples were homogenized in 3% (v/v) trichloroacetic acid

(TCA) then centrifugation was carried out at 12,000 g, 4 uC
during 15 min. 100 mL of supernatant was mixed with determi-

nation buffer (100 mM potassium phosphate pH 7.4, 4.5 U/mL

horse radish peroxidase (HRP) and 1 mM p-hydroxyphenilacetic

acid). Duplicates were incubated with catalase in order to diminish

unspecific fluorescence. Hydrogen peroxide fluorescence was

measured with spectrofluorometer Shimatzu at 371–414 nm

excitation and emission respectively [69].

FRAP (Ferric Reducing Ability of Plasma) assay
The samples were homogenized using a mortar and pestle

under liquid nitrogen and ethanol 80% was added. Then,

centrifugation was carried out at 12,000 g, 4 uC during 10 min.

100 mL of supernatant was mixed with reaction buffer (5 mL of

Acetate buffer 0.3 M pH 3.6; 0.5 mL of TPTZ 10 mM (2,4, 6

Tris (2 pyridyl) s-triazine) diluted in 40 mM HCl and 0.5 mL of

FeCl3 200 mM) in a microplate on ice. Samples were removed

from the ice and read at 600 nm after 20 min. A standard curve

with TROLOX was done to calculate FRAP capacity in samples

[70].

Ascorbic acid determination
Samples were prepared for ascorbate analyses by homogenizing

material in 1 mL of 3% trichloroacetic acid. The homogenate was

centrifuged at 10 0006g at 4uC for 15 minutes and the

supernatant was collected for analyses of ascorbate. Total

ascorbate content was determined according to Gillespie and

Ainsworth [71] with modifications [72]. The reaction mixture for

total ascorbate contained a 50 mL aliquot of the supernatant,

15 mL of 150 mM phosphate buffer (pH 7.4) and 15 mL of 10 mM

DTT; samples were incubated at room temperature for 10 min.
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After that, the mix was incubated for 60 min at 37 uC with 15 mL

of 0.5% N-ethylmaleimide (NEM), 16.6% orthophosphoric acid

(H3PO4), 1.33% a-a’bipyridyl, and 30 mL of 3% FeCl3. The

samples were measured at 525 nm in ELISA MRX II. Reduced

ascorbic acid content was determined using the same protocol,

except for the addition of NEM and DTT.

Protein content
Protein content was determined spectrophotometrically at

578 nm according to Bradford [73] with bovine serum albumin

(BSA) as a standard.

Evaluation of nodulation in hairy roots
Primary soybean root was removed twelve days post-infection

with A. rhizogenes by cutting approximately 1 cm below the

cotyledon nodes and the composite plants were placed in aerated

plastic trays with B&D solution with 8 mM KNO3 in a growth

chamber under 16 h photoperiod (350 mmol m22 s21) at 2662

uC. After two days, the nutrient solution was replaced by B&D

without KNO3 and the inoculation with B. japonicum USDA138

was performed. The nodule number was assessed 14 days post-

inoculation.

RNA extraction
Samples were homogenized in a cold mortar with TRIzol

Reagent (1:10 mg plant tissue:mL reagent), mixed for 1 min and

incubated at room temperature for 5 min. Then, 0.2 mL

chloroform per mL of TRIzol Reagent was added and incubated

at room temperature for 3 min. After incubation, the samples were

centrifuged at 12,000 g at 4uC for 15 min and the aqueous phases

were transferred to clean tubes. RNA was precipitated by adding 1

vol. of isopropanol, incubated at room temperature for 10 min

and centrifuged at 12,000 g at 4uC for 15 min. The precipitate

was washed with 70% ethanol and the samples were centrifuged

again at 12,000 g, 4uC for 15 min. The precipitate was dried and

resuspended in DEPC water and its concentration was quantified

using a NanoDrop 3300 spectrometer (Thermo Scientific).

Purified RNA was treated with DNase I (Invitrogen) to remove

genomic DNA, according to the manufacturer’s instructions.

qPCR
RNA DNA-free (1 to 2.5 mg) was used with oligo(dT) for first

strand cDNA synthesis using the Moloney Murine Leukemia Virus

Reverse Transcriptase (M-MLV RT, Promega) according to the

manufacturer’s instructions. For each primer pair, the presence of

a unique product of the expected size was checked on ethidium

bromide–stained agarose gels after PCR reactions. Absence of

contaminant genomic DNA was confirmed in reactions with

DNase treated RNA as template. The qPCR reaction was

performed using iQ Universal SYBR Green Supermix Bio Rad.

Amplification of actin (forward primer 59-AACGACCT-

TAATCTTCATGCTGC-39 and reverse primer 59- GGTAA-

CATTGTGCTCAGTGGTGG-39) and EF1a (forward primer

59-GGTCATTGGTCATGTCGACTCTGG-39 and reverse

primer 59-GCACCCAGGCATACTTGAATGACC-39) was used

to normalize the amount of template cDNA. The gene-specific

primer pairs employed for the detection of transcripts of Ced-9

was: forward primer 59-CTACGAACGAGCAGAAGCTGAA-39

and reverse primer 59- CAAGCTGAACATCATCCGCCCA-39.

qRT-PCR was performed in thermocycler iQ5 (BioRad) at 59uC
with iQ SYBR Green Supermix (BioRad), according to the

manufacturer’s instruction.

Statistical analyses
Data were analyzed using analysis of variance (ANOVA)

followed by the DGC test model with InfoStat software [74].

Supporting Information

Figure S1 K599-CED9 composite plants developed both
transgenic and wild type hairy roots. Development of

transgenic (K599-CED9) and non-transgenic (K599-empty) hairy

roots in a soybean K599-CED9 composite plant. A) Identification

of K599-CED9 hairy roots by Ced-9 PCR (+: positive control,

numbers from 1 to 5: independent hairy roots of the same K599-

CED9 composite plant). B) Ced-9-expression levels in K599-

CED9 hairy roots measured by qRT-PCR and normalized to

elongation factor 1a (EF1a).

(TIF)

Figure S2 Hairy roots death-inducing stress conditions.
A) Evans blue staining of K599-empty and K599-CED9 hairy

roots showing loss of membrane integrity after 3 h of treatment

with 150 mM NaCl. B) DNA degradation in hairy roots incubated

3 h under control and stress conditions. 1: Control, 2: inoculated

with B. japonicum in presence of 50 mM NaCl, 3: 150 mM NaCl.

2 mg of DNA were loaded on a 2% TAE agarose gel and stained

with ethidium bromide.

(TIF)

Figure S3 Nuclear morphology in root hairs. K599-empty

(A, C, E) and K599-CED9 (B, D, F) hairy roots were subjected

30 min under control (A and B), inoculated with B. japonicum (C

and D), and 50 mM NaCl (E and F), and root hairs nuclear

morphology was evaluated. Images were taken with a Zeiss

confocal microscope. The excitation was performed simultaneous-

ly at 488 nm and emission filter BP 500–530 IR and BP 565–615

IR for AO and EtBr, respectively. AO: acridine orange channel,

EtBr: ethidium bromide channel, AO/EtBr: image overlay.

(TIF)
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