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1. Introduction

Let A be an a finite-dimensional k-algebra over an algebraically closed field k, and mod A the category
of finitely generated left A-modules. For X, Y € mod A, we denote by R(X, Y) the set of all morphisms
f : X — Y such that, for all indecomposable A-module M, each pair of morphisms h : M — X and
W 1Y — M the composition #'fh is not an isomorphism. Inductively, the powers of R(X, Y) are defined.
By M%°(X, Y) we denote the intersection of all powers E)ii‘ X, Y)of Na(X,Y) withi > 1.

By [3],if f : X — Y is a morphism between indecomposable A-modules, then f is irreducible if and
only if f € Mo, V)\MA (X, V).

An important research direction towards understanding the structure of a module category is the
study of the compositions of irreducible morphisms in relation with the powers of the radical of their
module categories, see [8].

In case we deal with a representation finite algebra, it is well known by a result of Auslander that there
is a positive integer n such that " (mod A) = 0, see [2, p. 183].

In order to study the relationship between compositions of irreducible morphisms and the powers
of the radical of their module categories, in [12], Liu introduced the notion of left and right degree of
an irreducible morphism. This notion has been a fundamental tool to determine the above bound in
case we deal with a finite-dimensional algebra over an algebraically closed field of finite representation
type. More precisely, if A ~ kQ4 /I is representation-finite, in [5], the author showed how to find the
minimal lower bound m > 1 such that )"’ (mod A) vanishes in terms of the left and right degrees of
particular irreducible morphisms.

The aim of this work is to determine the minimal positive integer m > 1 such that R *1(X,Y) = 0
for all modules X, Y € mod A, in case A is a representation-finite string algebra. This bound is given in
terms of strings and taking into account their, respectively, ordinary quivers.

Furthermore, we also show how to read the degree of any irreducible morphism of a representation-
finite string algebra. This result shows that we have another way to read degrees in case we deal with
these algebras, and without considering the Auslander-Reiten quiver to read them.

CONTACT Claudia Chaio @ claudia.chaio@gmail.com e Departamento de Matematica, Funes 3350, Universidad Nacional de Mar
del Plata, 7600 Mar del Plata, Argentina.
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This paper is organized as follows. In the first section, we present some notations and preliminary
results. Section 2 is dedicated to prove the results concerning how to read from the ordinary quiver
of a representation-finite string algebra the nilpotency index of the radical of the module category. In
Section 3, we explain how to read the degree of any irreducible morphism taking into account strings.

2. Preliminaries

Throughout this work, by an algebra, we mean a finite-dimensional basic k-algebra over an algebraically
closed field, k.

1.1. A quiver Qis given by a set of vertices Qp and a set of arrows Q, together with two mapss,e : Q; —
Qo. Given an arrow o € Q;, we write s(«) the starting vertex of « and e(«) the ending vertex of «. For
each arrow & € Qy, we denote by ! its formal inverse, where s(a~!) = e(a) and e(a™!) = s(a).

A walk in Q is a concatenation ¢, . .. ¢, with n > 1, such that ¢; is either an arrow or the inverse
of an arrow, and e(¢;) = s(cit+1). We say that ¢, . .. ¢1 is a reduced walk provided ¢; # c:l for each i,
1<i<n-—1.

If A is an algebra then there exists a quiver Qju, called the ordinary quiver of A, such that A is the
quotient of the path algebra kQ4 by an admissible ideal.

1.2. Let A be an algebra. We denote by mod A the category of finitely generated left A-modules and by
ind A the full subcategory of mod A which consists of one representative of each isomorphism class of
indecomposable A-modules.

Let X be a non-projective (non-injective) indecomposable A-module. By «(X) (a’(X), respectively)
we denote the number of indecomposable summands in the middle term of an almost split sequence
ending (starting, respectively) at X. We say that (['4) < 2 if @(X) and o’ (X) are less than or equal to 2,
whenever they are defined.

1.3. Amorphismf : X — Y, with X,Y € modA4, is called irreducible provided it does not split and
whenever f = gh, then either h is a split monomorphism or g is a split epimorphism.

If X,Y € modA, the ideal 91(X, Y) is the set of all the morphisms f : X — Y such that, for each
M € indA,eachh : M — X andeach i : Y — M the composition 4'fh is not an isomorphism. For
n > 2, the powers of N (X, Y) are defined inductively. By 91°°(X, Y) we denote the intersection of all
powers R'(X, Y) of R(X, V), with i > 1.

By [3], it is known that a morphism f : X — Y, with X, Y € indA, is irreducible if and only if
feRX,Y)\ RB2(X,Y).

We denote by T'4 its Auslander-Reiten quiver, by 7 the Auslander-Reiten translation and 7! its
inverse.

Apath M} — My — --- — M, of irreducible morphisms with M; € ind A forj = 1,..,nand n > 3
is called sectional if for each j = 3, ..., n we have that M;_, % tM;.

Following [11], we say that the depth of a morphism f : M — Ninmod A isinfiniteif f € R (M, N);
otherwise, the depth of f is the integer n > 0 for which f € R"(M, N) but f ¢ R"+1(M, N). We denote
the depth of f by dp(f).

Next, we state the definition of degree of an irreducible morphism given by S. Liu in [12].

Letf : X — Y be an irreducible morphism in mod A, with X or Y indecomposable. The left degree
di(f) of f is infinite, if for each integer n > 1, each module Z € ind A and each morphism g : Z — X with
dp(g) = n we have that fg ¢ R""2(Z,Y). Otherwise, the left degree of f is the least natural number m
such that there isan A-module Z and amorphism g : Z — X withdp(g) = msuch thatfg € W"2(Z, Y).

The right degree d,(f) of an irreducible morphism f is dually defined.
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For the convenience of the reader we state [7, Theorem 2.26] which will be useful for our further
purposes.

Theorem 1.4. Let A be a finite dimensional k-algebra over an algebraically closed field and T' C T'4 be a

component with a(I") < 2. The following statements hold.

M Iff = (fi,fr) : X = Y1 @ Y, is an irreducible epimorphism, with Y1,Y2,X € T then di(f) =
dilfy) + di(fy).

Q) Iff = (fl,fz)t : X1 @ Xo — Y is an irreducible monomorphism, with X1,X5,Y € T then d,(f) =
dr(fl) + dr(fZ)-

In order to read the nilpotency index of the radical of any module category, we shall strongly use the
following result from [5, Theorem A].

If either P, = S, or I, = S, then we write n, = 0 and m, = 0, respectively. Otherwise, we consider
the irreducible morphisms ¢, : rad(P,) < P and g, : I, — I;/soc(I,) and we write n, = d,(t,) and

My = dl(ga)-

Theorem 1.5. Let A =~ kQu/I4 be a finite dimensional algebra over an algebraically closed field and
assume that A is of finite representation type. Consider m = max {n, + mg}aeq,. Then N (mod A) # 0
and R (mod A) = 0.

1.6. Let A be an algebra such that A = kQy4 /I4. The algebra A is called a string algebra provided:
(1) Any vertex of Qg is the starting point of at most two arrows.

(I") Any vertex of Q4 is the ending point of at most two arrows.

(2) Given an arrow S, there is at most one arrow y with s(8) = e(y) and By ¢ I4.

(2’) Given an arrow y, there is at most one arrow 8 with s(8) = e(y) and By ¢ I4.

(3) The ideal I4 is generated by a set of paths of Qa.

Let A = kQa 14 beastring algebra. A stringin Qg is either a trivial path ¢, with v € Qp, or a reduced
walk C = ¢, ... c; oflength n > 1 such that no sub-walk ¢;1 . .. ¢; nor its inverse belongs to I4. We say
that a string C = ¢, ... ¢] is direct (inverse) provided all ¢; are arrows (inverse of arrows, respectively).
We consider the trivial walk &, a direct as well as an inverse string.

For each string C = ¢, . . . ¢1 in Qq4, an indecomposable string A-module M(C) is defined. Conversely,
given M an indecomposable string A-module, there exists a “unique” string C such that M = M(C) =
M(C™1). The band modules are defined over strings C such that all powers C", with n € N, are defined,
see [4]. Every module over a string algebra is defined either as a string module or as a band module, see
[4]. Moreover, if A is a representation-finite string algebra, then all the indecomposable A-modules are
strings ones.

We say that a string C starts in a deep (on a peak) provided there is no arrow 8 such that C8~! (CB,
respectively) is a string. Dually, a string C ends in a deep (on a peak) provided there is no arrow g such
that BC (B~C, respectively) is a string.

1.7. In [4], the authors proved that given a string C not starting (ending) on a peak, then there exists
a string C, = CBC' (;,C = C"B~1C) with B € (Qa);1 and C' inverse (C” direct) such that Cj, starts in
a deep (,C ends in a deep, respectively). Moreover, the canonical embedding f : M(C) < M(Cy) (f' :
M(C) = M(;C)) is irreducible, and the cokernel of f (f') is M(C") (M(C") , respectively).

We claim that Cj, and ;,C are unique. In fact, consider C a string not starting on a peak and 8 € (Qa)1
such that CB is a string. By definition of string algebras the arrow g is unique. If CB is a string starting
in a deep, then C;, = CPB. Otherwise, there is a unique arrow «; such that Ca; lisa string. If CBay Lis
a string starting in a deep then C, = CBa; '. Otherwise, we iterate the same argument a finite number
of times getting that C;, = CBa ' ... ;! is a string starting in a deep. Since the arrows f, ajj=1,..,r
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are unique then Cj, is unique. Similarly, if C is a string not ending on a peak, we can prove that ;C is
unique.

Dually, if C is a string not starting (ending) in a deep, then there exists a unique string C, =
Cy~1C' (.C = C"yC) with y € (Qu)1 and C’ direct (C” inverse) such that C. (.C) starts (ends,
respectively) on a peak.

By [4] we know that given a string algebra A then «(I"4) < 2. Moreover, the authors also described
all the almost split sequences of mod A in terms of strings.

Consider I(u) to be the injective module corresponding to the vertex u € (Qa)o. Then, I(u) =
M(D,D;) where D; is a direct string starting on a peak and D; is an inverse string ending on a peak.
Suppose D; = y;...ysand D, = B, 1 .,31_1. Then, J; = M(y,...ys) and J, = M(B,” L .,82_1) are
the indecomposable direct summands of I(u)/socI(u).

Dually, if P(u) is the projective corresponding to u € Qp then P(u) = M(C,C;) where C; is an inverse
string and C is a direct string. Moreover, C,C; is a string that starts and ends in a deep.

For a detail account on these algebras, see [4] and for general Auslander—Reiten theory, we refer the
reader to [1] and [2].

3. On the nilpotency index of the radical of the module category of a string algebra

Throughout this work, we consider A to be a representation-finite string algebra.

In this section, we show how to compute the minimal lower bound m > 1 such that %" (mod A)
vanishes taking into account the ordinary quiver of A.

Let A = kQa/I4 be a representation-finite string algebra. Let I be an indecomposable injective
A-module. Throughout all the paper, we may assume that I = I(u) = M(D,D;), with u € Qq,
Dy = y1...ys adirect string starting on a peak and D = B;'... 8! an inverse string ending on
a peak, with e(D;) = u = s(D,). We denote by v; and v the vertices of Qa such that v; = s(y;) and
vz = s(B1).

Let]; = M(y,...ys)and J, = M(ﬂr_1 .. ﬂ;l) be the indecomposable direct summands of I/soc 1.
IfI/soc I has exactly two non-zero indecomposable direct summands, then Q4 has a subquiver as follows

v V
1\)/1\\ ﬂ/ 2
u

Otherwise, if I/soc I is indecomposable then we consider D, = ¢, .

We denote by J1 (by /2, respectively) the A-module such that the quotient of I by J; (T, respectively)
is J» (J1, respectively). Observe that Ji and J, are indecomposable A-modules. Moreover, 71 = M(D)y)
and J, = M(D;).

In a similar way, if P is an indecomposable projective A-module we may assume that P = P(u) =
M(C,Cy), withu € Qp, C; = 051_1 .. .oc,;l an inverse string starting in a deepand C; = A,... A1 a
direct string ending in a deep, with e(C;) = u = s(Cy).

Let Ry = M(az_ ...ayl)yand Ry = M(Ay ... A2) be the indecomposable direct summands of rad P.
If rad P is indecomposable then we consider C2 = &,. We denote by R, (by Ry, respectlvely) the A-
module which is the quotient of P by R; (by Ry, respectlvely) Again, we observe that R, and R, are
indecomposable A-modules. Moreover, R = M(C;) and R, = M(C).

For each indecomposable A-module Z we define the following sets:

Mz ={X € ind A | Z is a submodule of X}

1

and

Sz ={Xe€indA |3Y € ind A such that Y is a submodule of X and X/Y ~ Z}.
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Our next result characterizes the sets My and Sg; in terms of walks of the ordinary quiver of a string
algebra. More precisely:

Lemma 2.1. Let A = kQa/I4 be a representation-finite string algebra. Let I = M(D,D;) and P =
M(C,Cy) be an indecomposable injective and an indecomposable projective A-module, respectively, where
Dy = y1 ...y is a direct string starting on a peak, D, = B ... By is an inverse string ending on a peak,
C1 = oy '...a, is an inverse string starting in a deep and Cy = A, ... A1 is a direct string ending in a
deep. Let ]| and ], be the indecomposable direct summands of I /soc I and Ry and R, be the indecomposable
direct summands of radP. Then,
(a) ME = {M(C) such that C or C™! belongs to Cp,} where

Cp, = {D2D where either D is trivial or D = y; D’ with D’ a string}.
(b) sz = {M(D) such thatD or D! belongs to Cc, } where

Cc, = {C2C where either Cis trivial or C = o7 'C’ with C’ a string}.

Proof. We only prove statement (a) since (b) follows similarly.

Assume that X ¢ ME' Then, b, € X.If X = J, then X = M(D;). Otherwise, we consider
C a string such that X = M(C). Then, there exists the canonical embedding M(D,) — M(C). By
[4, p. 166] we have that C = DD for some @ € Q; and D a string. We claim that & = y;. In fact, since
I = I(u) = M(D,D,) with u € Qg and u = s(D;) = e(«) then eithera = By ora = y;. Ifa = B
since D = B! ... By ! then we get a contradiction to the fact that C = D, D is a string. Therefore,
o« = y1. Hence C € Cp,.

Conversely, it is clear that M(D,) = J, € M. Without loss of generality, we may consider C a string
such that C = D,y D with D a string. Then, by [4, p. 166] we have that M(D,) is a submodule of M(C).
Therefore, M(C) € ME‘ O

Note that a similar analysis as above can be done for J; and Ry, since | = M(D;D;) = M (Dle; )
and P = M(C,Cy) = M(C] ' G Y).

Remark 2.2. Given an indecomposable injective A-module I with J; and J, the direct summands of

I/socl, we have that I and J, are in M. Moreover, [ is the unique indecomposable injective module
that belongs to M.

If we consider C = D, leyl_lDz_ ! then, D is not trivial, otherwise C is not a reduce walk. Note that
C and C™! are different strings in Cp,, but M(C) =~ M(C™!). When C # D5, C # DzyIDyle;l and
M(C) € ME we write M(C) = M(D,y1D) with D a string.
Next, we show an example of how to compute the sets My and Sg.
Example 2.3. Let A = kQ4/I4 be the string algebra given by the quiver
1
W
2 6
NN
3 5 7

7y
4
with I4 =< Ba >. We denote the indecomposable modules by their Loewy series.
1
Consider I(5) = M(¢~'8a) : 26 . Then, I(5)/socI(5) = J;(5) & J>(5) where J;(5) = M(«) :
5

and J,(5) = M(sg) : 6. Hence, L(5) = M(s7!) : g . Then, My = {X,-}f:1 where X; = , =
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6 26 ! 26
MY 5 X2 = M(e718) : s X3 =105 =M 8a): 26 ,Xy=M@E"1887Y): 35 and
5
26
X5 =M 1887y 35
4
2
Now, consider P(2) = M(yB8~1) : 35 . Then, rad P(2) = R;(2) ® Ry(2) where R;(2) = M(es) :
4
3 2
5 and Ry(2) = M(y) : 4 . Hence, R,(2) = M(yB) : 3 .Then SE = {X,'}?:1 where X; =
4
2 2 26
Ry =MyB): 3, X =PQ2) = M®yBs™ ) : 35, X3 =Mypsle): 35 and X, =
4 4 4
26
M(yBs~ter™ly: 357 .
4

In our next proposition, we describe the almost split sequences starting in an indecomposable A-
module which belong either to M5 or to Sg;.

Proposition 2.4. Let A = kQu/I4 be a representation-finite string algebra. Let I = M(D3D;) and P =
M(C,Cy) be an indecomposable injective and an indecomposable projective A-module, respectively, where
Dy = y1 ...y, is a direct string starting on a peak, D, = B1 ... B! is an inverse string ending on a peak,
Ci1 = oy '...a,! is an inverse string starting in a deep and Cy = Ay, ... A1 is a direct string ending in a
deep. Let ]| and ], be the indecomposable direct summands of I /socl and Ry and R; be the indecomposable
direct summands of rad P.

(a) Let X be a non-injective module in ME‘ Then,

(i) ifX = L theno/(X) = 1and 0 — J» i) X' 2 Y = 0is an almost split sequence with
X e ME

APVAN S
(i) ifX = M(Dzleyl_lDz_l) thena'(X) =2and0 — X (f_,g) X19Xy (fi%) Y — 0isan almost

split sequence with X1, X, € My, and where f,g,f', ¢ are epimorphisms, with kernel equal to

Ja.
1INt
(ili) ifX # J, and X # M(Dyy\Dy; 'Dy") then o/ (X) = 2 and 0 — X g X X, kY

Y — 0is an almost split sequence with X, € My, where f,g" are epimorphisms with Ker(f) =
Ker(g') = J,, and if f', g are epimorphisms then their kernels are not equal to J.
(b) Let Y be a non-projective module in Sg. Then,

(i) ify = Ry thena(Y) = 1and 0 — X L x & R, — 0 is an almost split sequence with

X e SE

1 INE
(i) ifY = M(Coo; 'CayC5Y) then a(Y) =2 and 0 — X g X1 0X, U2y s 0is an almost

split sequence with X1, X, € Sg; and wheref,g,f', " are monomorphisms with cokernel equal
to R_2
Gy = 1 1 (9 ()"
(iii) fY #RyandY # M(Cyoy Ca1C; ") thena(Y) =2and0 - X = X16X, — Y —0
is an almost split sequence with X1 € Sg;, where f, g’ are monomorphisms with Coker(f) =
Coker(g') = Ry, and if f', g are monomorphisms then their cokernels are not equal to R;.



COMMUNICATIONS IN ALGEBRA® 7

Proof. We only prove Statement (a) since (b) follows dually.
(a), (i). Let X = J,. Then, X = M(D>). Note that D, does not start on a peak since D,y is a string.
Therefore, D,y D is defined and it is unique with D an inverse string starting in a deep. By [4, p. 170],

there exists an almost split sequence 0 — M(D;) i> M(D,y1D) M (D) — 0 with indecomposable
middle term. By Lemma 2.1 (a), the string module M(D,y; D) belongs to MI?

(a), (ii)) Let C = Dzleyle; and X = M(C). Since C is a string that starts and ends on a

peak, by [4, p. 172] there is an almost split sequence starting in X of the form 0 — M(C) i

M(D,y1D) & M(Dyl_lDz_l) (f—’g;) M(D) — 0. By Lemma 2.1 (a), we have that M(D,y1D) € ME
and that M(Dy; 'D; ') = M(Dyy1D™") € Mj. By [4, p. 168], the morphism f : M(C) — M(D,y1D)
is the canonical projection with Ker(f) = J,. Furthermore, the morphisms g, f, g’ are also epimorphisms
with kernel J,.

(a), (iii) Let X = M(C) such that X € My, X # J, and X # M(Dyy1Dy; 'D;"). Without loss
of generality, we may assume that C = D,y; D with D a string. Since D, is a string ending on a peak
then either is C. By [4, p. 171], an almost split sequence starting in X depends on the string D. Then, D
satisfies one of the following conditions:

(1) D starts on a peak, or

(2) D does not start on a peak.

If D satisfies (1) then D is not a direct string because X is not injective. Therefore, we write D = D"a "' D/,
with & € Q; and D' a direct string. Then, C = D,y D"« D’ and by [4, p. 172] there is an almost split
sequence 0 — M(C) — M(D,y,D") & M(D"a~'D') — M(D") — 0 with two indecomposable
middle terms. By Lemma 2.1 (a), M(D,y,D") € M.

By [4, p. 166, 168], the morphisms M(C) — M(D) and M(D;y,D”) — M(D") are epimorphisms
with kernel equal to J,, and the morphisms M(C) — M(D,y;D") and M(D"a~'D') — M(D") are
epimorphisms with kernel equal to M(D'). We claim that M(D') # J,. In fact, if M(D') = J,, then either
D' =DyorD =D;".

Assume that D' = D,. Since D' and D; are direct and inverse strings, respectively, then D; is trivial.
We write, D, = &, !. Then, C = ¢, !y1D"a"1e,. Moreover, since e(@) = u = e(y;) then @ = y;.
Therefore, we get a contradiction that X = M(C) is a module of the form M(D, leyl_lDz_ b.

Now, if D' = D5 ! then M(C) = M(D,y1D"a"'D; ') where « = f; because @ # y;. Then
o~ 'Dy = gDy = BBy . .. By contradicting that D5 ! is a string. Therefore M(D') # J,.

Finally, if D satisfies (2) then D does not start on a peak and neither C does. Then, D, = DaD’ and
Cy = CaD' are defined where & € Qy, see (1.7). Since C = D,y D, by [4, p. 171], there is an almost
split sequence 0 — M(C) — M(Dyy1DaD’) & M(D) — M(DaD') — 0 with M(D,y;DaD’) € M.
Moreover, by [4, p. 166, 168], the morphisms M(C) — M(D) and M(D,y;DaD’) — M(DaD') are
epimorphisms with kernel M(D,) = J2, and M(C) — M(D,y1DaD’) and M(D) — M(DaD') are
monomorphisms. O

Given I an indecomposable injective module, the aim of our next result is to determine the left
degree of any irreducible morphism I — I/socI. For such a purpose, we will consider each irreducible
epimorphism from I to an indecomposable direct summand of I/soc I. We shall apply [9, Lemma 5.1]
and prove that the modules involved in the sectional path § of such a lemma are in M. Dually, we can
determine the right degree of an irreducible morphism rad P — P.

We also observe that in [6, Proposition 6.1] such a result was generalized for almost pre-sectional
paths in artin algebras. Following the above notation we state the next result.

Proposition 2.5. Let A >~ kQa /I4 be a representation-finite string algebra. The following statements hold.
(a) Let I = M(DyD:) be an indecomposable injective A-module and J1, ], be the indecomposable direct
summands of I/socl. Let f : I — ]| be an irreducible epimorphism with dj(f) = 1 > 1. Then, there is
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a configuration of almost split sequences as follows:

To e ()

\4\
\/gf

N,

L Ty
=N
with ], — My — --- — Mj_; — I a sectional path of length I, My € /\/l] fork =1.,l-1

and where My appears in the sectional path exactly twice if My = M(D2y1Dy; 'D;Y) and only once
if M # M(Dyy1Dy; D2 ). Moreover, given M € M] then either M = ], M = I or M = M for
somek=1,..,1— 1.

(b) LetP=M (Cz C1) be an indecomposable projective A-module and Ry, Ry be the indecomposable direct
summands of rad P. Let f : Ry — P be an irreducible monomorphism with d,(f) = 1 > 1. Then, there
is a configuration of almost split sequences as follows:

N el Ry (2)
N, o “Ml—l
A M,
Ry oo M
\P/

with P — Mj — --- — Mj_; — R, a sectional path of length |, My € Sgyfork =1,.,1—1
and where My, appears in the sectional path exactly twice if My = M(CzaflCalCZ) and only once
if My # M(CzoszCoqC;l). Moreover, given M € SE then either M = P, M = Ry or M = M for
somek=1,..,1—1.

Proof. We only prove Statement (a) since (b) follows dually.

(a) Let f : I — ]; be the canonical projection with d;(f) = [ > 1. By [9, Lemma 5.1], since Ker(f) =
T, there is a configuration of almost split sequences as in (1), where My = tNy4 fork = 1,..,1 — 1,
8§:J» = My — --- — Mj_; — Iisasectional path of length I such that f§ = 0 and o' (L) = 1.

First, we prove that each My belongs to My, for k = 1,..,1 — 1. We prove it by induction on the

left degree of f. If d;(f) = 1, then th_ere is an almost split sequence 0 — J, — I i) J1 — 0 with
indecomposable middle term. Since J, € My then by Proposition 2.4 (a), there is a unique (up to
isomorphisms) almost split sequence with indecomposable middle term starting in J, and moreover,
with I € ME

Now, if ] > 1 by inductive hypothesis My, . .., M;_; belong to ME. Let us prove that M;_; belongs to

fi )T (1,81
My Let0 —> M @ 2—ﬁ>1 Ni_, & M;_; e Nj_1 —> 0 be an almost split sequence starting

in Mj_,. By Proposition 2.4 (a), at least one of the modules N;_, or M;_; belong to MH' If both modules
belong to ME then nothing to prove. Otherwise, by Proposition 2.4 (a), (ii), the module M;_; is not of

the form M(D, leyl_lDz_l). We write Mj_, = M(D;y1Ci_>).
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We claim that M;_; € ME' In fact, the morphism g;_, : M;_, — Nj_, isanirreducible epimorphism
with kernel J5. By [4, p. 166], we have that M(D,y;Cj_,)/M(D;) >~ M(C;_,) and therefore Im(g;_,) =~
M(Cj_,). Hence, Nj_, >~ M(Cj_,).

Suppose that Ni_, € ME' By Lemma 2.1 (a), we have that C;_, = D,C;_, (where either C;_,
is trivial or C;_, = y1C/, with C/', a string) or C_, = C|_,D; ! (where either C,_, is trivial or
C_,= C;’_Z)/l_1 with C/' , astring). Note that C;_» # C}"_ 27/1_1D2_ ! because by our assumption M;_, #
M(Dyyy C;’_ nylD; 1y, Moreover, D, is not trivial. Indeed, if D, is trivial then D, = &, I'and the only
arrow arriving at the vertex u is ;. Since Mj_, = M(D2y1Ci—,) then M;_, = M(e;lylcl,g).

Now assume that C;_; is trivial then C;_, = &,. If Cj_; starts on a peak, then M;_, is injective,
since Cj_, = &, is a direct string, which is an absurd. If C;_, does not start on a peak, then (C;_,), =
Ci_2y1D' = e,y D' is defined and the almost split sequence starting in M;_ is as follows

0 — M(e; 'y164) — M(e, 'yieuy1D') @ M(e,) —> M(ey1D') —> 0

where both indecomposable middle terms belong to My, which is not in the hypothesis of this
statement.

Now, if C;_; is not trivial then C;_, = ¢, 1y, C/,and M, = M(e; 'yie, C/,). With a similar
analysis as before we get that either M;_, is injective, (if C;"_, is a direct string starting on a peak), or the
almost split sequence starting in M;_, has both indecomposable middle terms in My, a contradiction
in both cases.

Next, we continue analyzing the other cases assuming that D, is not trivial. We will discard them
proving that we can construct a band module.

IfCi_, =D, C;_z, since Mj_, = M(D,y1Cj—,) then D,y D, is a string. Therefore, for all the positive
integer n, (D2y1)" is defined, getting a band module and contradicting that A is representation-finite.

Now, if Cj_, = D5 ! then D, viDy lisa string. Since, no sub-walk of D,y D5 ! belongs to I4, then all
the natural powers of the string D,y D; 'y, ! are defined, contradicting again that A is representation-
finite.

Therefore, we prove that Ni_ ¢ Mj and hence M;_; € M.

Now, consider My = J, and M; = I. Let us prove that if M € ME then M = M, for some k =
0,...l. By Lemma 2.1, if M € ME then M = M(D,) or M = M(D,y1D), with D a string. In case
M = M(Dy), then M = M proving the statement. Otherwise, by [4, p. 169] the canonical projection
g : M(Dyy D) — M(D) is an irreducible epimorphism with Ker(g) = J,. Since A is representation-
finite, then by [10, Theorem A] we have that d;(g) = n < co. Moreover, by [6, Proposition 6.1], there
exists a configuration of almost split sequences as follows:

““““““““““““““““ Yo
I { \
‘CY1 Y1
‘L'Y2 Yn—Z
TY g s Yy—1 =~ M(D)
\ M %

where J, — 1Y} — --- — tY,_; — M is a sectional path. _
On the other hand, the irreducible epimorphism f : I — J; has d;(f) = I. Moreover, Ker(f) = J,.
Then, there is a configuration of almost split sequences as in (1).
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We claim that n < [. Indeed, if n > [ then M; = I and M; >~ tY; for 1 < i < L Since both mentioned
configurations involve almost split sequences starting in the same modules, we get to the contradiction
that M; =~ tY; but M is an injective module. Therefore n < I. Hence, we prove that M = M,,.

Finally, we determine the number of non-isomorphic modules Mj, in the sectional path [, — M; —
-+ — M,_1 — Iin (1). We shall prove that the modules of the form M(D, leyl_lDz_ ) appear exactly
twice in (1) and that the other modules M in (1) are pairwise non-isomorphic.

Consider M = M(D, leyle; b. By Proposition 2.4 (a), (ii) the irreducible morphisms f; :
M (Dzleyl_lDz_ Hh o> M (D2y1D) and f, : M(D, leyl_lDz_ Hh oM (Dyl_lDz_ 1) are epimorphisms
such that Ker(f;) = Ker(f;) = J>. Since A is of finite representation type, then by [10, Theorem A], we
have that dj(fi) = n; < land d)(f,) = ny < I. Therefore, there exist two configurations of almost split
sequences as follows:

Jp) N Y: “ Jp) \ Y] “
v 4
D R — Y X S Y}
N / AN , ,
X5 Yo -1 X, ‘ Ynz—l
7 s - 1n—1
Koy —q oo M(D,y1D) Xppyoq MDy, D, ")

If n; = ny, by the uniqueness (up to isomorphisms) of the almost split sequences we infer that Y; >~ Y!
forall 1 <i < ny.ButY, ~ M(Dyy1D) 2 M(Dy; 'D;') > Y . Then ny # ny.

Without loss of generality, we may assume that n; < n,. Hence, M >~ M, and M >~ M,,, with
1 < m < ny <1, proving that at least M appears twice as a module of the sectional path in (1).

Now suppose that M >~ My for some k < |, k # n; and k # n,. The irreducible epimorphism
g : My — Ny is such that dj(gr) = k. Since either Ny =~ M(D;y1D) or Ny ~ M(Dy; 'D,") then
di(gr) = ny or dj(gk) = ny, contradicting our assumption that k # n; and k % n,. Therefore, we prove
that M = M(D,y; Dy, ' D;!) appears exactly twice in the sectional path J, — Mj —> --- — M;_; — I
of the configuration (1).

Assume that M ~ J,, M ~ [ or M >~ M(D,y; D). In the first and second case, M appears only once
in (1) because there is only one almost split sequence starting in a module in My with indecomposable
middle term and there is a unique indecomposable injective module in My, respectively. In the third
case,0 > M — M’ ® N’ — N — 0 is an almost split sequence with &'(M) = 2 and M’ € M.

Suppose that M = My and M = Mjwith1 < k < 1 < j < land k # j. Then, the almost
split sequences 0 — My — Mj11 & Ny — Niy1 — 0and 0 — M; - M1 @ Nj > Njy1 — Oare
isomorphic. By Proposition 2.4, (), (iii) we know that Mg y; — Nigy1and Mj; — Nj4q are irreducible
epimorphisms with kernel equal to J;, and also Ny — Ni41 and N; — Nj4 are either irreducible
monomorphisms or if they are epimorphisms then their kernels are not J,. Therefore, the morphisms
Mj41 — Niy1and Mj; — Njiq are isomorphic and hence k = dj(gx) = di(gj) = j, contradicting our
assumption that k # j. Therefore, in these cases M appears only once in (1), proving the result. O

Next, we show two examples where in the above mentioned sectional path some modules appear
twice.

Example 2.6.
(a) Consider the string algebra given by the quiver

o Y
122—3

B
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with the relation Sa = 0. The Auslander-Reiten quiver is the following:

/\

\ /
1 P, \
NG / \ / \ S
2
where we identify the same modules in the above quiver.
Following the notation of the above proposition, if we consider the injective corresponding to the

vertex 3, we have that I = M(D,D) with D, = &5 ! Hence, the indecomposable projective P, =
M(es LyaBy ~les). Then, as we can see, in the sectional path

S3 —> Py — t_lPl - 185 —> r352—>P1 — P, > I

the projective P, appears twice and the other modules only once.
(b) Consider the string algebra given by the quiver

aCli)ZO)’

with the relations &® = 0, y? = 0 and fa = 0. The Auslander-Reiten quiver is the following:

/\/

1'2

4M M M

,|

/i

Wa
\/

78, 738, 728 7S,

/
\Y)

\ ,
T 12

P2 ‘KI

Pl fZSI Sl Sl

N/ N\

2N

/\/\/\
\/\/\/

\
N
~
7
N
N
\

VAANWARN
NN\ Y/
\/\/

S1 ‘57181

where we identify the same modules in the above quiver.

If we consider the injective corresponding to the vertex 1, we have that I} = M(D,D;) with
D, = &' and D; = a?. Then, the sectional path mentioned in the above proposition starts in S;
and ends in I; and is of length 20. Note that the modules 735, = M(eflazﬁfly’lﬁa”el), 2L, =
M oy Ba2e)), th, = M(s'ap 'y~ Bale)) and 28, = M(e; ap~ly ' Ba2e))
appear twice, while the other modules appear only once.

Now, we are in position to prove one of the main results of this section.

Theorem 2.7. Let A be a representation-finite string algebra. Let I and P be indecomposable injective and
projective A-modules, respectively. Let ] and ], be indecomposable direct summands of I/soc I and R, and
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R, be indecomposable direct summands of rad P. Then,
(a) did — J1) = card(Cp,) — 1 and di(I — J;) = card(Cp,) — 1.
(b) d;(Ry — P) = card(Cc,) — 1 and d,(Ry — P) = card(C¢,) — 1.

Proof. The result follows from [9, Lemma 5.1], Proposition 2.5. O

By Remark 2.2, we know that for different strings C and C™! in Cp, or in Cp, we get the same string
modules in My or in My, respectively. The above theorem can be state taking into account the modules
instead of the strings as we shown below.

Consider the sets

M ={M) | C= DflﬂlDﬁlel with D a non-trivial string},
My ={MC)|C= Dzleyl_lDz_1 with D a non-trivial string},
Si={MC)|C= Cl_lkl_lelcl with D a non-trivial string} and

S; = {M(C) | C = Cya; ' Da; C, ! with D a non-trivial string}.

Then, we state Theorem 2.7 as follows:

Theorem 2.8. Let A be a representation-finite string algebra. Let I and P be indecomposable injective and

projective A-modules, respectively. Let ]| and ], be indecomposable direct summands of I/socI and R, and

R, be indecomposable direct summands of rad P. Then,

@) diI - J1) = card(My; — Mp) + 2 card(M>) — 1 and di(I — J») = card(My — My) +
2 card(M;) — 1.

(b) dr(Ry — P) = card(Sg;—82)+2 card(Sz2)—1 and dy(R, — P) = card(Sg;—S1)+2 card(S1)—1.

Remark 2.9. In case we do not have a string module of the form M(C) = M (Dzleyl_lDz_ 1) then all
modules in the sectional are pairwise non-isomorphic. Then, di(I — J;) = card(/\/lE) - 1.

As an immediate consequence of Theorem 2.7 and [7, Theorem 2.26], we get the following result.

Corollary 2.10. Let A be a representation-finite string algebra. Let I and P be indecomposable injective
and projective A-modules, respectively. Let || and J, be indecomposable direct summands of I/socI and R,
and Ry be indecomposable direct summands of radP. Then,

(a) diI — I/socI) = card(Cp,) + card(Cp,) — 2.

(b) d,(radP — P) = card(Cc,) + card(Cc,) — 2.

Now, we show an example how to compute the nilpotency index of the radical of a module category of

a representation finite string algebra, taking into account the ordinary quiver Q4 and [5, Theorem 2.5].
Example 2.11. Let A = kQa/I4 be the string algebra given by the quiver

1

Jo

2 6

B / \5 € / \/\
3 5 7
7y

4

with I =< Ba >.
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Let I(u) and P(u) be the injective and projective A-modules corresponding to the vertex u, respec-
tively. Let J1(u), J2(u) and R;(u), Ry(u) be the direct summands of I(u)/socI(u) and of rad P(u),
respectively.

For i = 1,2 we denote by m;(u) = card(MTi(u)) = card(Cp,()) and by s;(u) = card(SE(u)) =
card(Cc,(y)). Consider f,, : I(u) — I(u)/socl(u), g, : rad P(u) — P(u) and r(u) = di(f,) + dr(gu)-
Computing m;(u) and s;(u) for each vertex u € Qo we get the following results:

u | my () ma (1) di(fu) s1(u) s2(u) dr(gu) r(u)
1 1 1 - 1 5 4 4
2 1 2 1 3 4 5 6
3 1 5 4 1 2 1 5
4 1 6 5 1 1 - 5
5 5 3 6 1 1 - 6
6 1 1 - 6 2 6 6
7 7 1 6 1 1 6

Hence, by Theorem 1.5 we get that 7 (mod A) = 0.

4. How to read degrees from the ordinary quiver

Let A = kQ/I be a representation-finite string algebra. For each u € Qp we define the quivers Q¢, and
Q;, as follow:
(a) (a) The vertices (Q;)o are the strings C in Q such that e(C) = u, where C is either the trivial walk
gyor C=alC,witha € Q.
(b) Ifa = Cand b = C' are two vertices of (Q%)o, then there is an arrow from a — bin Q, if C' is
the reduced walk of C8~, for some 8 € Q.
(b) (a)The vertices of (Q;,)o are the strings C in Q such that s(C) = u, where C is either the trivial walk
gyorC=Ca,witha € Q.
(b)Ifa = Cand b = C' are two vertices of (Q}), then there is an arrow from a — b in Q}, if C' is
the reduced walk of BC, for some 8 € Q.
Next, we present an example that shows that these new quivers are not necessarily sub-quivers of Q4.

Example 3.1. Let A = kQ/I be the string algebra given by the quiver

ZYI\ﬁ3
DA
N,
e

7

with I =< 88, ey, ue >.
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Consider u = 3. Then, the quiver Q; is the following

a"ly~ls
/
Ba~ly~1s \

y '8 €3
\8 / A7 1es
\88 /

Observe that Q3 is not a sub-quiver of Q, but if we consider u = 5 we get that Qf is a subquiver of Q as
we show below.

€6
J
DN

Proposition 3.2. Let A = kQ/I be a representation-finite string algebra. Let I = I(u) and P = P(u) be
the injective and the projective A-modules corresponding to the vertex u € Qo, respectively. Then,

(a) di(I = I/socl) = card((Q})o) — 1.

(b) dy(radP — P) = card((Q;)o) — 1.

Proof. We only prove Statement (a) since (b) follows similarly. We consider the general case, that is,
when Q has a subquiver of the form:

" 71 B "2
\ ) /

The string corresponding to the vertices of Q¢, are of the form:
(1) Co = eus
(i) Ci = ] with C] a string,
(iii) G, = B1C, with C, a string.

Observe that there is a bijection between the strings given in (ii) and the strings D,C; € Cp, — {Dz}.
We also observe that there is a bijection between the strings given in (iif) and the strings D;C, € Cp, —
{D1}.

Hence, by Lemma 2.5 we have that

diI — I/socI) = card(Cp,) — 1 + card(Cp,) — 1
= card(Cp, — {D2}) + card(Cp, — {D1})
= card((Qy)o) — 1,

since we are not considering in such a bijection the string Cy = ¢,,. O

Example 3.3. Consider A to be the string algebra given in Example 3.1. By the above result we have that
di(I(5) — I(5)/socl(5)) = 3 since Qf has four vertices, and d,(radP(3) — P(3)) = 6 since Q; has
seven vertices.
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Next, for each vertex u € Qg we show the quivers Qf, and Q;,. Moreover, we compute the left and right
degrees of the irreducible morphisms f,, : I(4) — I(u)/socI(u) and g, : rad P(u) — P(u), respectively.
We denote by r(u) = di(f,) + dr(gy).

u 1 2 3 4 5 6 7
e A VAN VAN ¢
Qu €1 253 . . . £3 . . . . . &6 .
\/ NSNS |
. €4 &5 &7
di(fu) - 2 4 4 3 — 2

€1 . .

Y\ 4\ |
Qi[ . . . 82 . . . 83 84 . 85 . 86 87

\/ N NS T
N v
dr(g) 4 2 6 2 1 4 -
r(u) 4 4 10 6 4 4 2
The maximum {r(u)},cq, is given by the vertex u = 3. Then, by Theorem 1.5, we infer that

Rl (modA) = 0.

4.1. The degrees of irreducible morphisms in a string algebra

Consider A =~ kQa/I4 a representation-finite string algebra and I = M(D,D;) an indecomposable
injective A-module with J; and ], direct summands of I/socl. Assume that (I — J;) = n. By
Theorem 2.7 we have that card(Cp,) = n + 1.

We can give an order to the elements of the set Cp, = {Cy,...,C,}. We say that C; < Cjy; for
i=0,...n— 1, if there is an irreducible morphism from M(C;) to M(Cit1).

We recall that if C € Cp, then C is a string ending on a peak.

Let Co = D; and C; = (D), = D, C} with C| an inverse string starting in a deep. We define the
following strings inductively.

Consider C; = D,y C.. If C! does not start on a peak then we choose Ciy1 = D1y C; 41 with
Cipy = (Chp, thatis, Ci; = CiBC/ with f an arrow and C] an inverse string starting in a deep, as
explained in (1.7). Therefore, by [4] there is an irreducible monomorphism from M(C;) to M(Ciy1). If
C; starts on a peak but it is not a direct string then C; is of the form C; = C/ oFlCQ’ ", where € Q;
and C!” is a direct string. Then, we choose Ci1; = Dy C; 41 With C = C/. Again, by [4] there
is an irreducible epimorphism from M(C;) to M(Ciy1). Otherwise, if C; starts on a peak and it is a
direct string, then M(C;) is the injective module of My By Lemma 2.1 we know that in both cases
Ci+1 € Cp,. Following this construction we have that the last module M(C,,) is the injective module of
M. Therefore, M(Cy) = M(D2D;).
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We denote by M(C;)) = X; fori = 0,...,n In this way, we construct the sectional path of
Proposition 2.5. Moreover, we have a configuration of almost split sequences as follows:

2 Yn

-1
41 \Y

-1 n
\X /g:

n
where dj(gi : X; — Yy) =i fori=1,...,n.
Now we prove that given an irreducible epimorphism f : M — N between indecomposable
A-modules there is an indecomposable injective A-module such that for some i = 0,...,n — 1, in the
above configuration of almost split sequences, f = g;.

Lemma 3.4. Let A =~ kQu/I4 be a representation-finite string algebra and f : M — N an irreducible
epimorphism with M, N € ind A. Then, there exists u € (Qa)o such that Ker(f) = T2 (), where I(u) is the
injective A-module corresponding to the vertex u and ], (u), J»(u) are the direct summands of I/soc I(u).
Then, M € My .

Proof. Letf : M — N be an irreducible epimorphism with M = M(C), N = M(C'). If C' is a string
starting and ending in a deep, then C' =, (C")}, for some string C” and M(C’) can not be the codomain
of an irreducible epimorphism, see [4, p.166, p.168]. Then, without loss of generality we may assume
that C' is a string not ending in a deep (if not we consider C'~!). Then, by [4, p.169] C is of the form
C = DaC =, C' with @ € Q; and D an inverse string ending on a peak. Moreover, Ker(f) >~ M(D).
Now, consider u € Qg such that s(D) = u. The injective A-module corresponding to the vertex u is
of the form I(u) = M(D,D;) with D; a direct string starting on a peak with e(D;) = u and D, is an
inverse string ending on a peak with s(D;) = u. By the uniqueness of such string, D = D,. Moreover,
if J1 (1) and J,(u) are direct summands of I/soc I(u) then J,(u) = M(D) = Ker(f). Furthermore, by
definition M € ME(u)’ proving the result. O

Remark 3.5. By the above lemma for any irreducible epimorphism between indecomposable
A-modules, f : M — N, we have that M € My, for some u € Qo. If M appears once in the
configuration of almost split sequences described above, that is, M >~ X for some 1 < k < n, then
di(f) = k. Otherwise, if M >~ Xj and M ~ X; with 1 < k < j < n, we have to consider the module N. If
N =~ X1, then di(f) = j. Otherwise, N ~ Y and d;(f) = k.

In a similar way we can read the right degree of any irreducible monomorphism g : M — N, giving
the same order to the set Cc,, where M(C) is the cokernel of g.

Next, we show an example of how to compute the left degree of an irreducible morphism.
Example 3.6. Let A >~ kQy/I4 be the algebra given in Example 2.3.

1

Je

2 6

"V NN
3 5 7
7y

4

with I =< Ba >.
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32 56 and N: ; .

We write M = M(C) and N = M(C') with C = ¢ 188! and C' = B~!. Observe that C = ¢~ 18C/,
therefore following the above construction we have that ¢! is the inverse string that ends on a peak and
6
5

We denote by J,(5) the A-module M(¢~!) and we order the set ME(S) as follows; we consider
Xo = M(¢7Y) and X; = M(e~18C;) with C; an inverse string starting in a deep. Therefore, X; =
M(e~ 18871y ~1). Since C; starts on a peak but is not a direct string, we write C; = B~y ~ley, where
g4 is the direct string. Therefore, we choose X, = M(¢~18C,) with C; = B~!. Again, C;, starts on a
peak but is not a direct string then we choose X3 = M(g;6C3) with C3 = &;. Now, C3 does not start on
a peak, then we choose X4y = M (e718Cy) with C4 = «. Since Cy is a direct string that starts on a peak,
then X, is the injective module of My, ), getting the following ordered set:

Consider the irreducible epimorphism f : M — N, where M :

the arrow § = y;. Moreover, Ker(f) = MY

26 1
26 26
M) = Xo=5,X1:iS,X2:35,X3: s ,X4:256

SinceM =X, € MTz(S)’ then d;(f) = 2.
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