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ABSTRACT

We study how to read from the ordinary quiver of a representation-�nite string
algebra, the minimal lower bound m ≥ 1 such that the mth power of the
radical of its module category vanishes. We also show how to read the degree
of any irreducible morphism in such a representation-�nite string algebras
considering strings.
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1. Introduction

Let A be an a �nite-dimensional k-algebra over an algebraically closed �eld k, and mod A the category
of �nitely generated le� A-modules. For X,Y ∈ mod A, we denote by ℜ(X,Y) the set of all morphisms
f : X → Y such that, for all indecomposable A-module M, each pair of morphisms h : M → X and
h′ : Y → M the composition h′� is not an isomorphism. Inductively, the powers ofℜ(X,Y) are de�ned.
By ℜ∞

A (X,Y) we denote the intersection of all powers ℜi
A(X,Y) of ℜA(X,Y) with i ≥ 1.

By [3], if f : X → Y is a morphism between indecomposable A-modules, then f is irreducible if and
only if f ∈ ℜA(X,Y)\ℜ2

A(X,Y).
An important research direction towards understanding the structure of a module category is the

study of the compositions of irreducible morphisms in relation with the powers of the radical of their
module categories, see [8].

In case we deal with a representation �nite algebra, it is well known by a result of Auslander that there
is a positive integer n such that ℜn(modA) = 0, see [2, p. 183].

In order to study the relationship between compositions of irreducible morphisms and the powers
of the radical of their module categories, in [12], Liu introduced the notion of le� and right degree of
an irreducible morphism. This notion has been a fundamental tool to determine the above bound in
case we deal with a �nite-dimensional algebra over an algebraically closed �eld of �nite representation
type. More precisely, if A ≃ kQA/IA is representation-�nite, in [5], the author showed how to �nd the
minimal lower bound m ≥ 1 such that ℜm(mod A) vanishes in terms of the le� and right degrees of
particular irreducible morphisms.

The aim of this work is to determine the minimal positive integerm ≥ 1 such that ℜm+1(X,Y) = 0
for all modules X,Y ∈ mod A, in case A is a representation-�nite string algebra. This bound is given in
terms of strings and taking into account their, respectively, ordinary quivers.

Furthermore, we also show how to read the degree of any irreducible morphism of a representation-
�nite string algebra. This result shows that we have another way to read degrees in case we deal with
these algebras, and without considering the Auslander-Reiten quiver to read them.
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2 C. CHAIO AND V. GUAZZELLI

This paper is organized as follows. In the �rst section, we present some notations and preliminary
results. Section 2 is dedicated to prove the results concerning how to read from the ordinary quiver
of a representation-�nite string algebra the nilpotency index of the radical of the module category. In
Section 3, we explain how to read the degree of any irreducible morphism taking into account strings.

2. Preliminaries

Throughout this work, by an algebra, we mean a �nite-dimensional basic k-algebra over an algebraically
closed �eld, k.

1.1. A quiver Q is given by a set of verticesQ0 and a set of arrowsQ1, together with twomaps s, e : Q1 →

Q0. Given an arrow α ∈ Q1, we write s(α) the starting vertex of α and e(α) the ending vertex of α. For
each arrow α ∈ Q1, we denote by α−1 its formal inverse, where s(α−1) = e(α) and e(α−1) = s(α).

A walk in Q is a concatenation cn . . . c1, with n ≥ 1, such that ci is either an arrow or the inverse
of an arrow, and e(ci) = s(ci+1). We say that cn . . . c1 is a reduced walk provided ci 6= c−1

i+1 for each i,
1 ≤ i ≤ n − 1.

If A is an algebra then there exists a quiver QA, called the ordinary quiver of A, such that A is the
quotient of the path algebra kQA by an admissible ideal.

1.2. Let A be an algebra. We denote by modA the category of �nitely generated le� A-modules and by
indA the full subcategory of modA which consists of one representative of each isomorphism class of
indecomposable A-modules.

Let X be a non-projective (non-injective) indecomposable A-module. By α(X) (α′(X), respectively)
we denote the number of indecomposable summands in the middle term of an almost split sequence
ending (starting, respectively) at X. We say that α(ŴA) ≤ 2 if α(X) and α′(X) are less than or equal to 2,
whenever they are de�ned.

1.3. A morphism f : X → Y , with X,Y ∈ modA, is called irreducible provided it does not split and
whenever f = gh, then either h is a split monomorphism or g is a split epimorphism.

If X,Y ∈ modA, the ideal ℜ(X,Y) is the set of all the morphisms f : X → Y such that, for each
M ∈ indA, each h : M → X and each h′ : Y → M the composition h′� is not an isomorphism. For
n ≥ 2, the powers of ℜ(X,Y) are de�ned inductively. By ℜ∞(X,Y) we denote the intersection of all
powers ℜi(X,Y) of ℜ(X,Y), with i ≥ 1.

By [3], it is known that a morphism f : X → Y , with X,Y ∈ indA, is irreducible if and only if
f ∈ ℜ(X,Y) \ ℜ2(X,Y).

We denote by ŴA its Auslander-Reiten quiver, by τ the Auslander-Reiten translation and τ−1 its
inverse.

A pathM1 → M2 → · · · → Mn of irreducible morphisms withMj ∈ indA for j = 1, ..., n and n ≥ 3
is called sectional if for each j = 3, ..., n we have thatMj−2 6≃ τMj.

Following [11], we say that the depth of amorphism f : M → N inmodA is in�nite if f ∈ ℜ∞(M,N);
otherwise, the depth of f is the integer n ≥ 0 for which f ∈ ℜn(M,N) but f /∈ ℜn+1(M,N). We denote
the depth of f by dp(f ).

Next, we state the de�nition of degree of an irreducible morphism given by S. Liu in [12].
Let f : X → Y be an irreducible morphism in modA, with X or Y indecomposable. The le� degree

dl(f ) of f is in�nite, if for each integer n ≥ 1, eachmoduleZ ∈ indA and eachmorphism g : Z → Xwith
dp(g) = n we have that fg /∈ ℜn+2(Z,Y). Otherwise, the le� degree of f is the least natural number m
such that there is anA-moduleZ and amorphism g : Z → Xwith dp(g) = m such that fg ∈ ℜm+2(Z,Y).

The right degree dr(f ) of an irreducible morphism f is dually de�ned.
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For the convenience of the reader we state [7, Theorem 2.26] which will be useful for our further
purposes.

Theorem 1.4. Let A be a �nite dimensional k-algebra over an algebraically closed �eld and Ŵ ⊂ ŴA be a
component with α(Ŵ) ≤ 2. The following statements hold.
(1) If f = (f1, f2) : X → Y1 ⊕ Y2 is an irreducible epimorphism, with Y1,Y2,X ∈ Ŵ then dl(f ) =

dl(f1) + dl(f2).
(2) If f = (f1, f2)

t : X1 ⊕ X2 → Y is an irreducible monomorphism, with X1,X2,Y ∈ Ŵ then dr(f ) =

dr(f1) + dr(f2).

In order to read the nilpotency index of the radical of any module category, we shall strongly use the
following result from [5, Theorem A].

If either Pa = Sa or Ia = Sa then we write na = 0 and ma = 0, respectively. Otherwise, we consider
the irreducible morphisms ιa : rad(Pa) →֒ Pa and ga : Ia → Ia/soc(Ia) and we write na = dr(ιa) and
ma = dl(ga).

Theorem 1.5. Let A ≃ kQA/IA be a �nite dimensional algebra over an algebraically closed �eld and
assume that A is of �nite representation type. Consider m = max {na +ma}a∈Q0 . Then ℜm(mod A) 6= 0
and ℜm+1(mod A) = 0.

1.6. Let A be an algebra such that A ∼= kQA/IA. The algebra A is called a string algebra provided:
(1) Any vertex of QA is the starting point of at most two arrows.
(1’) Any vertex of QA is the ending point of at most two arrows.
(2) Given an arrow β , there is at most one arrow γ with s(β) = e(γ ) and βγ /∈ IA.
(2’) Given an arrow γ , there is at most one arrow β with s(β) = e(γ ) and βγ /∈ IA.
(3) The ideal IA is generated by a set of paths of QA.

LetA = kQA�IA be a string algebra. A string inQA is either a trivial path εv with v ∈ Q0, or a reduced
walk C = cn . . . c1 of length n ≥ 1 such that no sub-walk ci+t . . . ci nor its inverse belongs to IA. We say
that a string C = cn . . . c1 is direct (inverse) provided all ci are arrows (inverse of arrows, respectively).
We consider the trivial walk εv a direct as well as an inverse string.

For each stringC = cn . . . c1 inQA, an indecomposable stringA-moduleM(C) is de�ned. Conversely,
givenM an indecomposable string A-module, there exists a “unique” string C such thatM = M(C) =

M(C−1). The band modules are de�ned over strings C such that all powers Cn, with n ∈ N, are de�ned,
see [4]. Every module over a string algebra is de�ned either as a string module or as a band module, see
[4]. Moreover, if A is a representation-�nite string algebra, then all the indecomposable A-modules are
strings ones.

We say that a string C starts in a deep (on a peak) provided there is no arrow β such that Cβ−1 (Cβ ,
respectively) is a string. Dually, a string C ends in a deep (on a peak) provided there is no arrow β such
that βC (β−1C, respectively) is a string.

1.7. In [4], the authors proved that given a string C not starting (ending) on a peak, then there exists
a string Ch = CβC′ (hC = C′′β−1C) with β ∈ (QA)1 and C′ inverse (C′′ direct) such that Ch starts in
a deep (hC ends in a deep, respectively). Moreover, the canonical embedding f : M(C) →֒ M(Ch) (f ′ :
M(C) →֒ M(hC)) is irreducible, and the cokernel of f (f ′) isM(C′) (M(C′′) , respectively).

We claim that Ch and hC are unique. In fact, consider C a string not starting on a peak and β ∈ (QA)1
such that Cβ is a string. By de�nition of string algebras the arrow β is unique. If Cβ is a string starting
in a deep, then Ch = Cβ . Otherwise, there is a unique arrow α1 such that Cβα−1

1 is a string. If Cβα−1
1 is

a string starting in a deep then Ch = Cβα−1
1 . Otherwise, we iterate the same argument a �nite number

of times getting that Ch = Cβα−1
1 . . . α−1

r is a string starting in a deep. Since the arrows β , αj, j = 1, ..., r
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are unique then Ch is unique. Similarly, if C is a string not ending on a peak, we can prove that hC is
unique.

Dually, if C is a string not starting (ending) in a deep, then there exists a unique string Cc =

Cγ −1C′ (cC = C′′γC) with γ ∈ (QA)1 and C′ direct (C′′ inverse) such that Cc (cC) starts (ends,
respectively) on a peak.

By [4] we know that given a string algebra A then α(ŴA) ≤ 2. Moreover, the authors also described
all the almost split sequences of modA in terms of strings.

Consider I(u) to be the injective module corresponding to the vertex u ∈ (QA)0. Then, I(u) =

M(D2D1) where D1 is a direct string starting on a peak and D2 is an inverse string ending on a peak.
Suppose D1 = γ1 . . . γs and D2 = β−1

r . . . β−1
1 . Then, J1 = M(γ2 . . . γs) and J2 = M(β−1

r . . . β−1
2 ) are

the indecomposable direct summands of I(u)/soc I(u).
Dually, if P(u) is the projective corresponding to u ∈ Q0 thenP(u) = M(C2C1)whereC1 is an inverse

string and C2 is a direct string. Moreover, C2C1 is a string that starts and ends in a deep.
For a detail account on these algebras, see [4] and for general Auslander–Reiten theory, we refer the

reader to [1] and [2].

3. On the nilpotency index of the radical of themodule category of a string algebra

Throughout this work, we consider A to be a representation-�nite string algebra.
In this section, we show how to compute the minimal lower bound m ≥ 1 such that ℜm(modA)

vanishes taking into account the ordinary quiver of A.
Let A = kQA/IA be a representation-�nite string algebra. Let I be an indecomposable injective

A-module. Throughout all the paper, we may assume that I = I(u) = M(D2D1), with u ∈ Q0,
D1 = γ1 . . . γs a direct string starting on a peak and D2 = β−1

r . . . β−1
1 an inverse string ending on

a peak, with e(D1) = u = s(D2). We denote by v1 and v2 the vertices of QA such that v1 = s(γ1) and
v2 = s(β1).

Let J1 = M(γ2 . . . γs) and J2 = M(β−1
r . . . β−1

2 ) be the indecomposable direct summands of I/soc I.
If I/soc I has exactly two non-zero indecomposable direct summands, thenQA has a subquiver as follows

v1
γ1

$$H
HH

HH
H v2

β1

{{vv
vv
vv

u

Otherwise, if I/soc I is indecomposable then we consider D2 = ε−1
u .

We denote by J1 (by J2, respectively) the A-module such that the quotient of I by J1 (J2, respectively)
is J2 (J1, respectively). Observe that J1 and J2 are indecomposable A-modules. Moreover, J1 = M(D1)

and J2 = M(D2).
In a similar way, if P is an indecomposable projective A-module we may assume that P = P(u) =

M(C2C1), with u ∈ Q0, C1 = α−1
1 . . . α−1

m an inverse string starting in a deep and C2 = λn . . . λ1 a
direct string ending in a deep, with e(C1) = u = s(C2).

Let R1 = M(α−1
2 . . . α−1

m ) and R2 = M(λn . . . λ2) be the indecomposable direct summands of radP.
If rad P is indecomposable then we consider C2 = εu. We denote by R1 (by R2, respectively) the A-
module which is the quotient of P by R2 (by R1, respectively). Again, we observe that R1 and R2 are
indecomposable A-modules. Moreover, R1 = M(C1) and R2 = M(C2).

For each indecomposable A-module Z we de�ne the following sets:

MZ = {X ∈ indA | Z is a submodule of X}

and

SZ = {X ∈ indA | ∃ Y ∈ indA such that Y is a submodule of X and X/Y ≃ Z}.
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Our next result characterizes the setsMJ2
and SR2

in terms of walks of the ordinary quiver of a string
algebra. More precisely:

Lemma 2.1. Let A = kQA/IA be a representation-�nite string algebra. Let I = M(D2D1) and P =

M(C2C1) be an indecomposable injective and an indecomposable projective A-module, respectively, where
D1 = γ1 . . . γs is a direct string starting on a peak, D2 = β−1

r . . . β−1
1 is an inverse string ending on a peak,

C1 = α−1
1 . . . α−1

m is an inverse string starting in a deep and C2 = λn . . . λ1 is a direct string ending in a
deep. Let J1 and J2 be the indecomposable direct summands of I/soc I and R1 and R2 be the indecomposable
direct summands of radP. Then,
(a) MJ2

= {M(C) such that C or C−1 belongs to CD2} where
CD2 = {D2D where either D is trivial or D = γ1D

′ with D′ a string}.
(b) SR2

= {M(D) such that D or D−1 belongs to CC2} where

CC2 = {C2C where either C is trivial or C = α−1
1 C′ with C′ a string}.

Proof. We only prove statement (a) since (b) follows similarly.
Assume that X ∈ MJ2

. Then, J2 ⊂ X. If X = J2 then X = M(D2). Otherwise, we consider
C a string such that X = M(C). Then, there exists the canonical embedding M(D2) →֒ M(C). By
[4, p. 166] we have that C = D2αD for some α ∈ Q1 and D a string. We claim that α = γ1. In fact, since
I = I(u) = M(D2D1) with u ∈ Q0 and u = s(D2) = e(α) then either α = β1 or α = γ1. If α = β1

since D2 = β−1
r . . . β−1

1 then we get a contradiction to the fact that C = D2β1D is a string. Therefore,
α = γ1. Hence C ∈ CD2 .

Conversely, it is clear thatM(D2) = J2 ∈ MJ2
. Without loss of generality, we may consider C a string

such that C = D2γ1D with D a string. Then, by [4, p. 166] we have thatM(D2) is a submodule ofM(C).
Therefore,M(C) ∈ MJ2

.

Note that a similar analysis as above can be done for J1 and R1, since I = M(D2D1) = M(D−1
1 D−1

2 )

and P = M(C2C1) = M(C−1
1 C−1

2 ).

Remark 2.2. Given an indecomposable injective A-module I with J1 and J2 the direct summands of
I/socI, we have that I and J2 are in MJ2

. Moreover, I is the unique indecomposable injective module
that belongs toMJ2

.

If we consider C = D2γ1Dγ −1
1 D−1

2 then, D is not trivial, otherwise C is not a reduce walk. Note that
C and C−1 are di�erent strings in CD2 , butM(C) ≃ M(C−1). When C 6= D2, C 6= D2γ1Dγ −1

1 D−1
2 and

M(C) ∈ MJ2
we writeM(C) = M(D2γ1D) with D a string.

Next, we show an example of how to compute the setsMJ2
and SR2

.

Example 2.3. Let A = kQA/IA be the string algebra given by the quiver

1
α��

2
β

����
�� δ

��9
99
9 6

ε
����
� λ

��9
99

3
γ
��

5 7

4

with IA =< βα >. We denote the indecomposable modules by their Loewy series.

Consider I(5) = M(ε−1δα) :
1
2 6
5

. Then, I(5)/socI(5) = J1(5) ⊕ J2(5) where J1(5) = M(α) :
1
2

and J2(5) = M(ε6) : 6. Hence, J2(5) = M(ε−1) :
6
5
. Then, MJ2

= {Xi}
5
i=1 where X1 = J2 =
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M(ε−1) :
6
5
, X2 = M(ε−1δ) :

2 6
5

, X3 = I(5) = M(ε−1δα) :
1
2 6
5

, X4 = M(ε−1δβ−1) :
2 6
3 5

and

X5 = M(ε−1δβ−1γ −1) :
2 6
3 5
4

.

Now, consider P(2) = M(γβδ−1) :
2
3 5
4

. Then, rad P(2) = R1(2) ⊕ R2(2) where R1(2) = M(ε5) :

5 and R2(2) = M(γ ) :
3
4
. Hence, R2(2) = M(γβ) :

2
3
4
. Then SR2

= {Xi}
4
i=1 where X1 =

R2 = M(γβ) :
2
3
4
, X2 = P(2) = M(γβδ−1) :

2
3 5
4

, X3 = M(γβδ−1ε) :
2 6
3 5
4

and X4 =

M(γβδ−1ελ−1) :
2 6
3 5 7
4

.

In our next proposition, we describe the almost split sequences starting in an indecomposable A-
module which belong either toMJ2

or to SR2
.

Proposition 2.4. Let A = kQA/IA be a representation-�nite string algebra. Let I = M(D2D1) and P =

M(C2C1) be an indecomposable injective and an indecomposable projective A-module, respectively, where
D1 = γ1 . . . γs is a direct string starting on a peak, D2 = β−1

r . . . β−1
1 is an inverse string ending on a peak,

C1 = α−1
1 . . . α−1

m is an inverse string starting in a deep and C2 = λn . . . λ1 is a direct string ending in a
deep. Let J1 and J2 be the indecomposable direct summands of I/socI and R1 and R2 be the indecomposable
direct summands of rad P.
(a) Let X be a non-injective module inMJ2

. Then,

(i) if X = J2 then α′(X) = 1 and 0 → J2
f

→ X′
g

→ Y → 0 is an almost split sequence with
X′ ∈ MJ2

.

(ii) if X = M(D2γ1Dγ −1
1 D−1

2 ) then α′(X) = 2 and 0 → X
(f ,g)
→ X1⊕X2

(f ′,g′)t

→ Y → 0 is an almost
split sequence with X1,X2 ∈ MJ2

and where f , g, f ′, g′ are epimorphisms, with kernel equal to

J2.

(iii) if X 6= J2 and X 6= M(D2γ1Dγ −1
1 D−1

2 ) then α′(X) = 2 and 0 → X
(f ,g)
→ X1 ⊕ X2

(f ′,g′)t

→

Y → 0 is an almost split sequence with X2 ∈ MJ2
, where f , g′ are epimorphisms with Ker(f ) =

Ker(g′) = J2, and if f
′, g are epimorphisms then their kernels are not equal to J2.

(b) Let Y be a non-projective module in SR2
. Then,

(i) if Y = R2 then α(Y) = 1 and 0 → X
f

→ X′
g

→ R2 → 0 is an almost split sequence with
X′ ∈ SR2

.

(ii) if Y = M(C2α
−1
1 Cα1C

−1
2 ) then α(Y) = 2 and 0 → X

(f ,g)
→ X1 ⊕ X2

(f ′,g′)t

→ Y → 0 is an almost
split sequence with X1,X2 ∈ SR2

and where f , g, f ′, g′ are monomorphisms with cokernel equal

to R2.

(iii) if Y 6= R2 and Y 6= M(C2α
−1
1 Cα1C

−1
2 ) then α(Y) = 2 and 0 → X

(f ,g)
→ X1 ⊕X2

(f ′,g′)t

→ Y → 0
is an almost split sequence with X1 ∈ SR2

, where f , g′ are monomorphisms with Coker(f ) =

Coker(g′) = R2, and if f
′, g are monomorphisms then their cokernels are not equal to R2.
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Proof. We only prove Statement (a) since (b) follows dually.
(a), (i). Let X = J2. Then, X = M(D2). Note that D2 does not start on a peak since D2γ1 is a string.

Therefore, D2γ1D is de�ned and it is unique with D an inverse string starting in a deep. By [4, p. 170],

there exists an almost split sequence 0 → M(D2)
f

→ M(D2γ1D)
g

→ M(D) → 0 with indecomposable
middle term. By Lemma 2.1 (a), the string moduleM(D2γ1D) belongs toMJ2

.

(a), (ii) Let C = D2γ1Dγ −1
1 D−1

2 and X = M(C). Since C is a string that starts and ends on a

peak, by [4, p. 172] there is an almost split sequence starting in X of the form 0 → M(C)
(f ,g)
→

M(D2γ1D) ⊕ M(Dγ −1
1 D−1

2 )
(f ′,g′)
→ M(D) → 0. By Lemma 2.1 (a), we have that M(D2γ1D) ∈ MJ2

and thatM(Dγ −1
1 D−1

2 ) = M(D2γ1D
−1) ∈ MJ2

. By [4, p. 168], the morphism f : M(C) → M(D2γ1D)

is the canonical projectionwithKer(f ) = J2. Furthermore, themorphisms g, f ′, g′ are also epimorphisms
with kernel J2.

(a), (iii) Let X = M(C) such that X ∈ MJ2
, X 6= J2 and X 6= M(D2γ1Dγ −1

1 D−1
2 ). Without loss

of generality, we may assume that C = D2γ1D with D a string. Since D2 is a string ending on a peak
then either is C. By [4, p. 171], an almost split sequence starting in X depends on the string D. Then, D
satis�es one of the following conditions:
(1) D starts on a peak, or
(2) D does not start on a peak.
IfD satis�es (1) thenD is not a direct string becauseX is not injective. Therefore, wewriteD = D′′α−1D′,
with α ∈ Q1 and D′ a direct string. Then, C = D2γ1D

′′α−1D′ and by [4, p. 172] there is an almost split
sequence 0 → M(C) → M(D2γ1D

′′) ⊕ M(D′′α−1D′) → M(D′′) → 0 with two indecomposable
middle terms. By Lemma 2.1 (a),M(D2γ1D

′′) ∈ MJ2
.

By [4, p. 166, 168], the morphisms M(C) → M(D) and M(D2γ1D
′′) → M(D′′) are epimorphisms

with kernel equal to J2, and the morphisms M(C) → M(D2γ1D
′′) and M(D′′α−1D′) → M(D′′) are

epimorphisms with kernel equal toM(D′). We claim thatM(D′) 6= J2. In fact, ifM(D′) = J2, then either
D′ = D2 or D

′ = D−1
2 .

Assume that D′ = D2. Since D
′ and D2 are direct and inverse strings, respectively, then D2 is trivial.

We write, D2 = ε−1
u . Then, C = ε−1

u γ1D
′′α−1εu. Moreover, since e(α) = u = e(γ1) then α = γ1.

Therefore, we get a contradiction that X = M(C) is a module of the formM(D2γ1Dγ −1
1 D−1

2 ).
Now, if D′ = D−1

2 then M(C) = M(D2γ1D
′′α−1D−1

2 ) where α = β1 because α 6= γ1. Then
α−1D−1

2 = β−1
1 D−1

2 = β−1
1 β1 . . . βr contradicting that α

−1D−1
2 is a string. ThereforeM(D′) 6= J2.

Finally, if D satis�es (2) then D does not start on a peak and neither C does. Then, Dh = DαD′ and
Ch = CαD′ are de�ned where α ∈ Q1, see (1.7). Since C = D2γ1D, by [4, p. 171], there is an almost
split sequence 0 → M(C) → M(D2γ1DαD′) ⊕ M(D) → M(DαD′) → 0 withM(D2γ1DαD′) ∈ MJ2

.
Moreover, by [4, p. 166, 168], the morphisms M(C) → M(D) and M(D2γ1DαD′) → M(DαD′) are
epimorphisms with kernel M(D2) = J2, and M(C) → M(D2γ1DαD′) and M(D) → M(DαD′) are
monomorphisms.

Given I an indecomposable injective module, the aim of our next result is to determine the le�
degree of any irreducible morphism I → I/soc I. For such a purpose, we will consider each irreducible
epimorphism from I to an indecomposable direct summand of I/soc I. We shall apply [9, Lemma 5.1]
and prove that the modules involved in the sectional path δ of such a lemma are inMJ2

. Dually, we can
determine the right degree of an irreducible morphism radP → P.

We also observe that in [6, Proposition 6.1] such a result was generalized for almost pre-sectional
paths in artin algebras. Following the above notation we state the next result.

Proposition 2.5. Let A ≃ kQA/IA be a representation-�nite string algebra. The following statements hold.
(a) Let I = M(D2D1) be an indecomposable injective A-module and J1, J2 be the indecomposable direct

summands of I/soc I. Let f : I → J1 be an irreducible epimorphism with dl(f ) = l ≥ 1. Then, there is
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a con�guration of almost split sequences as follows:

J2

$$H
HHH

H N1

%%LL
LLL

L

M1

g1

::ttttt

%%KK
KKK

N2

M2
g2

88qqqqqq
Nl−1

''OO
OOO

Ml−1

''NN
NNN

N

gl−1

88pppp
J1 = Nl

I
f

66nnnnnnn

(1)

with J2 → M1 → · · · → Ml−1 → I a sectional path of length l, Mk ∈ MJ2
for k = 1, ..., l − 1

and where Mk appears in the sectional path exactly twice if Mk = M(D2γ1Dγ −1
1 D−1

2 ) and only once
if Mk 6= M(D2γ1Dγ −1

1 D−1
2 ). Moreover, given M ∈ MJ2

then either M = J2, M = I or M = Mk for
some k = 1, ..., l − 1.

(b) Let P = M(C2C1) be an indecomposable projective A-module and R1, R2 be the indecomposable direct
summands of rad P. Let f : R1 → P be an irreducible monomorphism with dr(f ) = l ≥ 1. Then, there
is a con�guration of almost split sequences as follows:

Nl−1 gl−1

&&MM
MMM

R2

N2 g2

&&L
LL

LL
Ml−1

99sssss

N1

99ttttt
g1
%%JJ

JJJ
M2

R1

::ttttt
f

%%J
JJ

JJ
M1

88rrrrr

P

99sssss

(2)

with P → M1 → · · · → Ml−1 → R2 a sectional path of length l, Mk ∈ SR2
for k = 1, ..., l − 1

and where Mk appears in the sectional path exactly twice if Mk = M(C2α
−1
1 Cα1C

−1
2 ) and only once

if Mk 6= M(C2α
−1
1 Cα1C

−1
2 ). Moreover, given M ∈ SR2

then either M = P, M = R2 or M = Mk for
some k = 1, ..., l − 1.

Proof. We only prove Statement (a) since (b) follows dually.
(a) Let f : I → J1 be the canonical projection with dl(f ) = l ≥ 1. By [9, Lemma 5.1], since Ker(f ) =

J2, there is a con�guration of almost split sequences as in (1), where Mk = τNk+1 for k = 1, ..., l − 1,
δ : J2 → M1 → · · · → Ml−1 → I is a sectional path of length l such that f δ = 0 and α′(J2) = 1.

First, we prove that each Mk belongs to MJ2
, for k = 1, ..., l − 1. We prove it by induction on the

le� degree of f . If dl(f ) = 1, then there is an almost split sequence 0 → J2 → I
f

→ J1 → 0 with
indecomposable middle term. Since J2 ∈ MJ2

then by Proposition 2.4 (a), there is a unique (up to

isomorphisms) almost split sequence with indecomposable middle term starting in J2 and moreover,
with I ∈ MJ2

.
Now, if l > 1 by inductive hypothesisM1, . . . ,Ml−2 belong toMJ2

. Let us prove thatMl−1 belongs to

MJ2
. Let 0 −→ Ml−2

(gl−2,fl−1)
T

−→ Nl−2 ⊕ Ml−1
(tl−1,gl−1)

−→ Nl−1 −→ 0 be an almost split sequence starting
inMl−2. By Proposition 2.4 (a), at least one of themodulesNl−2 orMl−1 belong toMJ2

. If bothmodules
belong toMJ2

then nothing to prove. Otherwise, by Proposition 2.4 (a), (ii), the moduleMl−2 is not of

the formM(D2γ1Dγ −1
1 D−1

2 ). We writeMl−2 = M(D2γ1Cl−2).
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Weclaim thatMl−1 ∈ MJ2
. In fact, themorphism gl−2 : Ml−2 → Nl−2 is an irreducible epimorphism

with kernel J2. By [4, p. 166], we have thatM(D2γ1Cl−2)/M(D2) ≃ M(Cl−2) and therefore Im(gl−2) ≃

M(Cl−2). Hence, Nl−2 ≃ M(Cl−2).
Suppose that Nl−2 ∈ MJ2

. By Lemma 2.1 (a), we have that Cl−2 = D2C
′
l−2 (where either C′

l−2

is trivial or C′
l−2 = γ1C

′′
l−2 with C′′

l−2 a string) or Cl−2 = C′
l−2D

−1
2 (where either C′

l−2 is trivial or

C′
l−2 = C′′

l−2γ
−1
1 withC′′

l−2 a string). Note thatCl−2 6= C′′
l−2γ

−1
1 D−1

2 because by our assumptionMl−2 6=

M(D2γ1C
′′
l−2γ

−1
1 D−1

2 ). Moreover, D2 is not trivial. Indeed, if D2 is trivial then D2 = ε−1
u and the only

arrow arriving at the vertex u is γ1. SinceMl−2 = M(D2γ1Cl−2) thenMl−2 = M(ε−1
u γ1Cl−2).

Now assume that Cl−2 is trivial then Cl−2 = εu. If Cl−2 starts on a peak, then Ml−2 is injective,
since Cl−2 = εu is a direct string, which is an absurd. If Cl−2 does not start on a peak, then (Cl−2)h =

Cl−2γ1D
′ = εuγ1D

′ is de�ned and the almost split sequence starting inMl−2 is as follows

0 −→ M(ε−1
u γ1εu) −→ M(ε−1

u γ1εuγ1D
′) ⊕ M(εu) −→ M(εuγ1D

′) −→ 0

where both indecomposable middle terms belong to MJ2
, which is not in the hypothesis of this

statement.
Now, if Cl−2 is not trivial then Cl−2 = ε−1

u γ1C
′′
l−2 andMl−2 = M(ε−1

u γ1ε
−1
u γ1C

′′
l−2). With a similar

analysis as before we get that eitherMl−2 is injective, (if C
′′
l−2 is a direct string starting on a peak), or the

almost split sequence starting inMl−2 has both indecomposable middle terms inMJ2
, a contradiction

in both cases.
Next, we continue analyzing the other cases assuming that D2 is not trivial. We will discard them

proving that we can construct a band module.
If Cl−2 = D2C

′
l−2, sinceMl−2 = M(D2γ1Cl−2) thenD2γ1D2 is a string. Therefore, for all the positive

integer n, (D2γ1)
n is de�ned, getting a band module and contradicting that A is representation-�nite.

Now, if Cl−2 = D−1
2 then D2γ1D

−1
2 is a string. Since, no sub-walk of D2γ1D

−1
2 belongs to IA, then all

the natural powers of the string D2γ1D
−1
2 γ −1

1 are de�ned, contradicting again that A is representation-
�nite.

Therefore, we prove that Nl−2 /∈ MJ2
and henceMl−1 ∈ MJ2

.

Now, consider M0 = J2 and Ml = I. Let us prove that if M ∈ MJ2
then M = Mk for some k =

0, ..., l. By Lemma 2.1, if M ∈ MJ2
then M = M(D2) or M = M(D2γ1D), with D a string. In case

M = M(D2), then M = M0 proving the statement. Otherwise, by [4, p. 169] the canonical projection
g : M(D2γ1D) → M(D) is an irreducible epimorphism with Ker(g) = J2. Since A is representation-
�nite, then by [10, Theorem A] we have that dl(g) = n < ∞. Moreover, by [6, Proposition 6.1], there
exists a con�guration of almost split sequences as follows:

J2

$$I
III

I Y0

&&NN
NNN

NN

τY1

g1

99sssss

&&L
LL

L Y1

τY2
g2

77pppppp
Yn−2

))SSS
SSSS

τYn−1

''PP
PPP

P

gn−1

77ooooo
Yn−1 ≃ M(D)

M
g

55kkkkkkkk

where J2 → τY1 → · · · → τYn−1 → M is a sectional path.
On the other hand, the irreducible epimorphism f : I → J1 has dl(f ) = l. Moreover, Ker(f ) = J2.

Then, there is a con�guration of almost split sequences as in (1).
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We claim that n ≤ l. Indeed, if n > l thenMl = I andMi ≃ τYi for 1 ≤ i ≤ l. Since both mentioned
con�gurations involve almost split sequences starting in the same modules, we get to the contradiction
thatMl ≃ τYl butMl is an injective module. Therefore n ≤ l. Hence, we prove thatM = Mn.

Finally, we determine the number of non-isomorphic modulesMk in the sectional path J2 → M1 →

· · · → Mn−1 → I in (1).We shall prove that themodules of the formM(D2γ1Dγ −1
1 D−1

2 ) appear exactly
twice in (1) and that the other modulesMk in (1) are pairwise non-isomorphic.

Consider M = M(D2γ1Dγ −1
1 D−1

2 ). By Proposition 2.4 (a), (ii) the irreducible morphisms f1 :
M(D2γ1Dγ −1

1 D−1
2 ) → M(D2γ1D) and f2 : M(D2γ1Dγ −1

1 D−1
2 ) → M(Dγ −1

1 D−1
2 ) are epimorphisms

such that Ker(f1) = Ker(f2) = J2. Since A is of �nite representation type, then by [10, Theorem A], we
have that dl(f1) = n1 ≤ l and dl(f2) = n2 ≤ l. Therefore, there exist two con�gurations of almost split
sequences as follows:

J2
""D

D Y1

%%KK
KK J2

((PP
PPP

P Y ′
1

%%KK
KK

X1

<<xx

""F
F Y2 X′

1

<<xx

""F
F Y ′

2

X2

99ssss
Yn1−1

((QQQ
Q X′

2

99ssss
Y ′
n2−1

))SSS

Xn1−1

((PP
PP

88ppp
M(D2γ1D) X′

n2−1
((PP

PP

88pp
M(Dγ −1

1 D−1
2 )

M f1

55kkkkk
M f2

44iiiii

Ifn1 = n2, by the uniqueness (up to isomorphisms) of the almost split sequenceswe infer thatYi ≃ Y ′
i

for all 1 ≤ i ≤ n1. But Yn1 ≃ M(D2γ1D) ≇ M(Dγ −1
1 D−1

2 ) ≃ Y ′
n2
. Then n1 6= n2.

Without loss of generality, we may assume that n1 < n2. Hence, M ≃ Mn1 and M ≃ Mn2 , with
1 ≤ n1 < n2 ≤ l, proving that at leastM appears twice as a module of the sectional path in (1).

Now suppose that M ≃ Mk for some k ≤ l, k 6= n1 and k 6= n2. The irreducible epimorphism
gk : Mk → Nk is such that dl(gk) = k. Since either Nk ≃ M(D2γ1D) or Nk ≃ M(Dγ −1

1 D−1
2 ) then

dl(gk) = n1 or dl(gk) = n2, contradicting our assumption that k 6= n1 and k 6= n2. Therefore, we prove
thatM = M(D2γ1Dγ −1

1 D−1
2 ) appears exactly twice in the sectional path J2 → M1 → · · · → Ml−1 → I

of the con�guration (1).
Assume thatM ≃ J2,M ≃ I orM ≃ M(D2γ1D). In the �rst and second case,M appears only once

in (1) because there is only one almost split sequence starting in a module inMJ2
with indecomposable

middle term and there is a unique indecomposable injective module in MJ2
, respectively. In the third

case, 0 → M → M′ ⊕ N′ → N → 0 is an almost split sequence with α′(M) = 2 andM′ ∈ MJ2
.

Suppose that M = Mk and M = Mj with 1 ≤ k < l, 1 ≤ j < l and k 6= j. Then, the almost
split sequences 0 → Mk → Mk+1 ⊕ Nk → Nk+1 → 0 and 0 → Mj → Mj+1 ⊕ Nj → Nj+1 → 0 are
isomorphic. By Proposition 2.4, (a), (iii)we know thatMk+1 → Nk+1 andMj+1 → Nj+1 are irreducible

epimorphisms with kernel equal to J2, and also Nk → Nk+1 and Nj → Nj+1 are either irreducible

monomorphisms or if they are epimorphisms then their kernels are not J2. Therefore, the morphisms
Mk+1 → Nk+1 andMj+1 → Nj+1 are isomorphic and hence k = dl(gk) = dl(gj) = j, contradicting our
assumption that k 6= j. Therefore, in these casesM appears only once in (1), proving the result.

Next, we show two examples where in the above mentioned sectional path some modules appear
twice.

Example 2.6.

(a) Consider the string algebra given by the quiver

1
α

⇄

β

2
γ

−→ 3
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with the relation βα = 0. The Auslander-Reiten quiver is the following:

S3

&&MM
MMM

M I3

''OO
OOO

OO

P2

77nnnnnnn

''OO
OOO

I2

&&MM
MM

MM

P1

99rrrrr

%%KK
KKK

τ−1P1

77ooooo

&&NN
NNN

I1

%%KK
KKK

K

τ 3S2

99sssss

%%KK
KKK

τ 2S2

77ooooo

''OO
OOO

O τS2

88rrrrrr

&&LL
LL

S2

S2

99sssss
S1

88pppppp
τ 3S2

99sssss

where we identify the same modules in the above quiver.
Following the notation of the above proposition, if we consider the injective corresponding to the

vertex 3, we have that I3 = M(D2D1) with D2 = ε−1
3 . Hence, the indecomposable projective P2 =

M(ε−1
3 γαβγ −1ε3). Then, as we can see, in the sectional path

S3 → P2 → τ−1P1 → τS2 → τ 3S2 → P1 → P2 → I3

the projective P2 appears twice and the other modules only once.
(b) Consider the string algebra given by the quiver

1α ::
β

// 2 γ
zz

with the relations α3 = 0, γ 2 = 0 and βα = 0. The Auslander-Reiten quiver is the following:

τS2

''PP
PPP

P S2

''OO
OOO

O

τ 2M

''OO
OOO

77ooooo
τM

''PP
PPP

77nnnnnn
M

''NN
NNN

M

%%LL
LLL

88rrrrr
τ 4M

''OO
OOO

77nnnnn
τ 3M

&&NN
NNN

77ppppp
τ 2M

&&MM
MMM

S2

$$H
HHH

H

::uuuuu
τ 4S2

&&MM
MMM

88ppppp
τ 3S2

''OO
OOO

O

77ooooo
τ 2S2

&&MM
MMM

M

88ppppp
τS2

P2

%%KK
KKK

K

99sssss
τ 2I2

''OO
OOO

77ooooo
τ I2

&&MM
MMM

M

88qqqqq
I2

&&LL
LL

LL

88rrrrrr

P1
&&NN

NNN
N

88qqqqqq
τ 2S1

''OO
OOO

O

77oooooo
τS1

&&NN
NNN

N

88qqqqqq
S1

N

%%LL
LLL

L

99rrrrrr
τ 2N

''OO
OOO

77ooooo
τN

&&NN
NNN

N

88ppppp
N

88qqqqqq

S1

88pppppp
τ−1S1

77ooooo
I1

88ppppppp

where we identify the same modules in the above quiver.
If we consider the injective corresponding to the vertex 1, we have that I1 = M(D2D1) with

D2 = ε−1
1 and D1 = α2. Then, the sectional path mentioned in the above proposition starts in S1

and ends in I1 and is of length 20. Note that the modules τ 3S2 = M(ε−1
1 α2β−1γ −1βα−1ε1), τ

2I2 =

M(ε−1
1 α2β−1γ −1βα−2ε1), τ I2 = M(ε−1

1 αβ−1γ −1βα−1ε1) and τ 2S1 = M(ε−1
1 αβ−1γ −1βα−2ε1)

appear twice, while the other modules appear only once.

Now, we are in position to prove one of the main results of this section.

Theorem 2.7. Let A be a representation-�nite string algebra. Let I and P be indecomposable injective and
projective A-modules, respectively. Let J1 and J2 be indecomposable direct summands of I/soc I and R1 and
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R2 be indecomposable direct summands of rad P. Then,
(a) dl(I → J1) = card(CD2) − 1 and dl(I → J2) = card(CD1) − 1.
(b) dr(R1 → P) = card(CC2) − 1 and dr(R2 → P) = card(CC1) − 1.

Proof. The result follows from [9, Lemma 5.1], Proposition 2.5.

By Remark 2.2, we know that for di�erent strings C and C−1 in CD2 or in CD1 we get the same string
modules inMJ2

or inMJ1
, respectively. The above theorem can be state taking into account themodules

instead of the strings as we shown below.
Consider the sets

M1 = {M(C) | C = D−1
1 β1Dβ−1

1 D1 with D a non-trivial string},

M2 = {M(C) | C = D2γ1Dγ −1
1 D−1

2 with D a non-trivial string},

S1 = {M(C) | C = C−1
1 λ−1

1 Dλ1C1 with D a non-trivial string} and

S2 = {M(C) | C = C2α
−1
1 Dα1C

−1
2 with D a non-trivial string}.

Then, we state Theorem 2.7 as follows:

Theorem 2.8. Let A be a representation-�nite string algebra. Let I and P be indecomposable injective and
projective A-modules, respectively. Let J1 and J2 be indecomposable direct summands of I/soc I and R1 and
R2 be indecomposable direct summands of rad P. Then,
(a) dl(I → J1) = card(MJ2

− M2) + 2 card(M2) − 1 and dl(I → J2) = card(MJ1
− M1) +

2 card(M1) − 1.
(b) dr(R1 → P) = card(SR2

−S2)+2 card(S2)−1 and dr(R2 → P) = card(SR1
−S1)+2 card(S1)−1.

Remark 2.9. In case we do not have a string module of the formM(C) = M(D2γ1Dγ −1
1 D−1

2 ) then all
modules in the sectional are pairwise non-isomorphic. Then, dl(I → J1) = card(MJ2

) − 1.

As an immediate consequence of Theorem 2.7 and [7, Theorem 2.26], we get the following result.

Corollary 2.10. Let A be a representation-�nite string algebra. Let I and P be indecomposable injective
and projective A-modules, respectively. Let J1 and J2 be indecomposable direct summands of I/soc I and R1
and R2 be indecomposable direct summands of radP. Then,
(a) dl(I → I/soc I) = card(CD2) + card(CD1) − 2.
(b) dr(radP → P) = card(CC2) + card(CC1) − 2.

Now, we show an example how to compute the nilpotency index of the radical of amodule category of
a representation �nite string algebra, taking into account the ordinary quiver QA and [5, Theorem 2.5].

Example 2.11. Let A = kQA/IA be the string algebra given by the quiver

1
α��

2
β

����
�� δ

��9
99
9 6

ε
����
� λ

��9
99

3
γ
��

5 7

4

with I =< βα >.
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Let I(u) and P(u) be the injective and projective A-modules corresponding to the vertex u, respec-
tively. Let J1(u), J2(u) and R1(u), R2(u) be the direct summands of I(u)/socI(u) and of radP(u),
respectively.

For i = 1, 2 we denote by mi(u) = card(MJi(u)
) = card(CDi(u)) and by si(u) = card(SRi(u)

) =

card(CCi(u)). Consider fu : I(u) → I(u)/socI(u), gu : rad P(u) → P(u) and r(u) = dl(fu) + dr(gu).
Computingmi(u) and si(u) for each vertex u ∈ Q0 we get the following results:

u m1(u) m2(u) dl(fu) s1(u) s2(u) dr(gu) r(u)

1 1 1 − 1 5 4 4
2 1 2 1 3 4 5 6
3 1 5 4 1 2 1 5
4 1 6 5 1 1 − 5
5 5 3 6 1 1 − 6
6 1 1 − 6 2 6 6
7 7 1 6 1 1 − 6

Hence, by Theorem 1.5 we get that ℜ7(modA) = 0.

4. How to read degrees from the ordinary quiver

Let A = kQ/I be a representation-�nite string algebra. For each u ∈ Q0 we de�ne the quivers Q
e
u and

Qs
u as follow:

(a) (a) The vertices (Qe
u)0 are the strings C in Q such that e(C) = u, where C is either the trivial walk

εu or C = αC′, with α ∈ Q1.
(b) If a = C and b = C′ are two vertices of (Qe

u)0, then there is an arrow from a → b in Qe
u if C

′ is
the reduced walk of Cβ−1, for some β ∈ Q1.

(b) (a)The vertices of (Qs
u)0 are the strings C in Q such that s(C) = u, where C is either the trivial walk

εu or C = C′α, with α ∈ Q1.
(b)If a = C and b = C′ are two vertices of (Qs

u)0, then there is an arrow from a → b in Qs
u if C

′ is
the reduced walk of βC, for some β ∈ Q1.

Next, we present an example that shows that these new quivers are not necessarily sub-quivers ofQA.

Example 3.1. Let A = kQ/I be the string algebra given by the quiver

1
α

{{xxx
xx
x β

##F
FF

FF
F

2

γ ##F
FF

FF
F 3

δ{{xxx
xx
x

4

ε ##F
FF

FF
F 6

λ{{xxx
xx
x

5
µ
��
7

with I =< δβ , εγ , µε >.
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Consider u = 3. Then, the quiver Qs
3 is the following

α−1γ −1δ

''OO
OOO

O
vvlll

lll

βα−1γ −1δ γ −1δ

$$I
II

II
I

ε3

||yy
yy
yy

δ

##G
GG

GG λ−1εδ

xxrrr
rr
r

εδ

Observe that Qs
3 is not a sub-quiver of Q, but if we consider u = 5 we get that Qe

5 is a subquiver of Q as
we show below.

εδ

��
ε

$$I
II

II
I λ

{{vvv
vvv

ε5

Proposition 3.2. Let A = kQ/I be a representation-�nite string algebra. Let I = I(u) and P = P(u) be
the injective and the projective A-modules corresponding to the vertex u ∈ Q0, respectively. Then,
(a) dl(I → I/soc I) = card((Qe

u)0) − 1.
(b) dr(radP → P) = card((Qs

u)0) − 1.

Proof. We only prove Statement (a) since (b) follows similarly. We consider the general case, that is,
when Q has a subquiver of the form:

v1
γ1

$$H
HH

HH
H v2

β1

{{vv
vv
vv

u

The string corresponding to the vertices of Qe
u are of the form:

(i) C0 = εu,
(ii) C1 = γ1C

′
1 with C′

1 a string,
(iii) C2 = β1C

′
2 with C′

2 a string.
Observe that there is a bijection between the strings given in (ii) and the stringsD2C1 ∈ CD2 − {D2}.

We also observe that there is a bijection between the strings given in (iii) and the strings D1C2 ∈ CD1 −

{D1}.
Hence, by Lemma 2.5 we have that

dl(I → I/soc I) = card(CD2) − 1 + card(CD1) − 1

= card(CD2 − {D2}) + card(CD1 − {D1})

= card((Qe
u)0) − 1,

since we are not considering in such a bijection the string C0 = εu.

Example 3.3. Consider A to be the string algebra given in Example 3.1. By the above result we have that
dl(I(5) → I(5)/socI(5)) = 3 since Qe

5 has four vertices, and dr(radP(3) → P(3)) = 6 since Qs
3 has

seven vertices.
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Next, for each vertex u ∈ Q0 we show the quiversQe
u andQ

s
u. Moreover, we compute the le� and right

degrees of the irreducible morphisms fu : I(u) → I(u)/socI(u) and gu : rad P(u) → P(u), respectively.
We denote by r(u) = dl(fu) + dr(gu).

u 1 2 3 4 5 6 7

·

��.
..

����
�

·

��1
11

����
�

·

��3
33

��





·

��

·

��
Qe
u ε1 ε2 · ·

��-
--

·

��





ε3 · ·

��2
22

·

��





·

��1
11

·

��





ε6 ·

��
· ε4 ε5 ε7

dl(fu) − 2 4 4 3 − 2

ε1

��1
11

��		
	

·

��1
11

����
�

·

��
Qs
u ·

��-
--

·

��





· ε2

��3
33

·

����
�

· ·

��2
22

ε3

��





ε4

��3
33

·

����
�

ε5

��

·

��1
11

ε6

����
�

ε7

· · ·

��4
44

·

��



· · ·

��
· ·

dr(gu) 4 2 6 2 1 4 −

r(u) 4 4 10 6 4 4 2

The maximum {r(u)}u∈Q0 is given by the vertex u = 3. Then, by Theorem 1.5, we infer that
ℜ11(modA) = 0.

4.1. The degrees of irreduciblemorphisms in a string algebra

Consider A ≃ kQA/IA a representation-�nite string algebra and I = M(D2D1) an indecomposable
injective A-module with J1 and J2 direct summands of I/soc I. Assume that dl(I → J1) = n. By
Theorem 2.7 we have that card(CD2) = n + 1.

We can give an order to the elements of the set CD2 = {C0, . . . ,Cn}. We say that Ci < Ci+1 for
i = 0, . . . n − 1, if there is an irreducible morphism fromM(Ci) toM(Ci+1).

We recall that if C ∈ CD2 then C is a string ending on a peak.
Let C0 = D2 and C1 = (D2)h = D2γ1C

′
1 with C′

1 an inverse string starting in a deep. We de�ne the
following strings inductively.

Consider Ci = D2γ1C
′
i. If C

′
i does not start on a peak then we choose Ci+1 = D2γ1C

′
i+1 with

C′
i+1 = (C′

i)h, that is, C
′
i+1 = C′

iβC
′′
i with β an arrow and C′′

i an inverse string starting in a deep, as
explained in (1.7). Therefore, by [4] there is an irreducible monomorphism fromM(Ci) toM(Ci+1). If
C′
i starts on a peak but it is not a direct string then C′

i is of the form C′
i = C′′

i α
−1C′′′

i , where α ∈ Q1

and C′′′
i is a direct string. Then, we choose Ci+1 = D2γ1C

′
i+1 with C′

i+1 = C′′
i . Again, by [4] there

is an irreducible epimorphism from M(Ci) to M(Ci+1). Otherwise, if C′
i starts on a peak and it is a

direct string, then M(Ci) is the injective module of MJ2
. By Lemma 2.1 we know that in both cases

Ci+1 ∈ CD2 . Following this construction we have that the last moduleM(Cn) is the injective module of
MJ2

. Therefore,M(Cn) = M(D2D1).
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We denote by M(Ci) = Xi for i = 0, . . . , n. In this way, we construct the sectional path of
Proposition 2.5. Moreover, we have a con�guration of almost split sequences as follows:

X0

$$II
III

Y1

&&LL
LLL

L

X1
g1

::uuuuu

$$I
III

I Y2

X2
g2

99rrrrrr
Yn−1

%%LL
LLL

Xn−1

''NN
NNN

gn−1

88pppp
Yn

Xn
gn

99rrrrrr

where dl(gi : Xi → Yi) = i, for i = 1, . . . , n.
Now we prove that given an irreducible epimorphism f : M → N between indecomposable

A-modules there is an indecomposable injective A-module such that for some i = 0, ..., n − 1, in the
above con�guration of almost split sequences, f = gi.

Lemma 3.4. Let A ≃ kQA/IA be a representation-�nite string algebra and f : M → N an irreducible
epimorphism with M,N ∈ indA. Then, there exists u ∈ (QA)0 such that Ker(f ) = J2(u), where I(u) is the
injective A-module corresponding to the vertex u and J1(u), J2(u) are the direct summands of I/soc I(u).
Then, M ∈ MJ2(u)

.

Proof. Let f : M → N be an irreducible epimorphism with M = M(C), N = M(C′). If C′ is a string
starting and ending in a deep, then C′ =h (C′′)h for some string C′′ andM(C′) can not be the codomain
of an irreducible epimorphism, see [4, p.166, p.168]. Then, without loss of generality we may assume
that C′ is a string not ending in a deep (if not we consider C′−1). Then, by [4, p.169] C is of the form
C = DαC′ =c C

′ with α ∈ Q1 and D an inverse string ending on a peak. Moreover, Ker(f ) ≃ M(D).
Now, consider u ∈ Q0 such that s(D) = u. The injective A-module corresponding to the vertex u is

of the form I(u) = M(D2D1) with D1 a direct string starting on a peak with e(D1) = u and D2 is an
inverse string ending on a peak with s(D2) = u. By the uniqueness of such string, D = D2. Moreover,
if J1(u) and J2(u) are direct summands of I/soc I(u) then J2(u) = M(D) = Ker(f ). Furthermore, by
de�nitionM ∈ MJ2(u)

, proving the result.

Remark 3.5. By the above lemma for any irreducible epimorphism between indecomposable
A-modules, f : M → N, we have that M ∈ MJ2(u)

for some u ∈ Q0. If M appears once in the
con�guration of almost split sequences described above, that is, M ≃ Xk for some 1 ≤ k ≤ n, then
dl(f ) = k. Otherwise, ifM ≃ Xk andM ≃ Xj with 1 ≤ k < j ≤ n, we have to consider the module N. If
N ≃ Xk+1, then dl(f ) = j. Otherwise, N ≃ Yk and dl(f ) = k.

In a similar way we can read the right degree of any irreducible monomorphism g : M → N, giving
the same order to the set CC2 , whereM(C2) is the cokernel of g.

Next, we show an example of how to compute the le� degree of an irreducible morphism.

Example 3.6. Let A ≃ kQA/IA be the algebra given in Example 2.3.

1
α��

2
β

����
�� δ

��9
99
9 6

ε
����
� λ

��9
99

3
γ
��

5 7

4

with I =< βα >.
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Consider the irreducible epimorphism f : M → N, whereM :
2 6
3 5

and N :
2
3
.

We writeM = M(C) and N = M(C′) with C = ε−1δβ−1 and C′ = β−1. Observe that C = ε−1δC′,
therefore following the above construction we have that ε−1 is the inverse string that ends on a peak and

the arrow δ = γ1. Moreover, Ker(f ) = M(ε−1) :
6
5
.

We denote by J2(5) the A-module M(ε−1) and we order the set MJ2(5)
as follows; we consider

X0 = M(ε−1) and X1 = M(ε−1δC1) with C1 an inverse string starting in a deep. Therefore, X1 =

M(ε−1δβ−1γ −1). Since C1 starts on a peak but is not a direct string, we write C1 = β−1γ −1ε4, where
ε4 is the direct string. Therefore, we choose X2 = M(ε−1δC2) with C2 = β−1. Again, C2 starts on a
peak but is not a direct string then we choose X3 = M(ε1δC3) with C3 = ε2. Now, C3 does not start on
a peak, then we choose X4 = M(ε−1δC4) with C4 = α. Since C4 is a direct string that starts on a peak,
then X4 is the injective module ofMJ2(5)

, getting the following ordered set:

MJ2(5)
=







X0 :
6
5
, X1 :

2 6
3 5
4

, X2 :
2 6
3 5

, X3 :
2 6
5

, X4 :
1
2 6
5







.

SinceM = X2 ∈ MJ2(5)
, then dl(f ) = 2.
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