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This work shows a possible implementation of the refined zigzag theory in elements based on Simo’s
shell theory. Refined zigzag theory can deal with composite laminate economically, adding only two
nodal degrees of freedom, with very good accuracy. Two existing elements are considered, a four-node
bi-linear quadrilateral and a six-node linear triangle. This geometry is enhanced with a hierarchical field
of in-plane displacement expressed in convective coordinates. The objective is to have simple and effi-
cient elements to analyze composite laminates under large displacements and rotations but small elastic
strains. General aspects of the implementation are presented, and in particular the assumed natural
strain technique used to prevent transverse shear locking. Several examples are considered to compare
on the one hand with analytical static solutions and natural frequencies of plates, and on the other hand
to observe the buckling loads and non-linear behavior with large displacement in double curved shells. In
these latter cases comparisons are against numerical solutions obtained with solid elements. The results
obtained are in a very good agreement with the targets used.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Both the classical theory of thin shells [7] and the first order
transverse shear deformation theory (FSDT, [12]) lead to good
results in treating homogeneous materials. However, the basic
hypothesis that assumes that fibers in the direction normal to
the shell will remain straight leads to poor predictions when deal-
ing with materials with a high degree of heterogeneity across the
thickness.

In order to improve predictions, theories with higher order
(cubic or higher) interpolation of displacements in the thickness
of the shell have been proposed (see for example the monograph
[10]) but their use is not widespread because their predictive
power is unreliable.

A three-dimensional analysis using solid elements appears as
the most suitable technique for the treatment of composite mate-
rials, but it can easily become prohibitively expensive due to the
number of layers in the laminate that may be greater than 100.
In such cases multiple layers may be grouped together within
one single layer with combined properties in order to maintain
the number of degrees of freedom (DoFs) of the problem within
manageable limits [8].

More precise techniques than those based on shell theories are
layer-wise approaches, in which the thickness of the laminate is
divided into a number of layers (which may or may not coincide
with the physical number of layers) assuming a linear variation
of displacements (in the plane of the layer) between layers. A
review of these techniques can be seen in [11]. This approach
clearly suffers from the same problem of using three-dimensional
solid elements for the analysis.

The analysis made with solid element models and layer-wise
approaches show that the profile of the in-plane displacement
along the normal to the plane of the laminate can not be approxi-
mated by a polynomial of higher order. That has led to the appear-
ance of zigzag approximations where the interpolation functions
are only C0 continuous across the thickness and with a zigzag pro-
file, i.e. the first derivative (with associated transverse shear defor-
mation) is discontinuous. This naturally occurs due to the different
modules of transverse elasticity of each layer, which may differ by
several orders of magnitude. In [1] a review of these theories may
be seen. Recently a refined version of this proposal [15] has been
presented, that based on the FSDT (5 DoFs), two additional DoFs
are included, representing the amplitudes of hierarchical in-plane
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displacements added to the linear through-the-thickness assump-
tion kinematics. This theory involves constant transverse shear
stresses in each layer (and therefore discontinuous) but allows
treating clamped boundary conditions that is a limitation present
in early zigzag theories.

These refined zigzag theories (ZZRT) have been implemented in
2D beam elements [5,9] and flat plate elements [15,2,6] where a
very good approximation has been reported for the displacement
field across the laminate thickness. It was also reported that the
shear stresses directly obtained using the constitutive relation
and the shear deformations computed from the displacement field
show a poor approximation. An accurate recovery of transverse
shear stresses requires integration across the laminate thickness
of the equilibrium equations in the plane of the sheet, for which
the derivatives of the stresses between finite elements must be
evaluated.

In the author’s knowledge the ZZRT has not been used in double
curvature shells. Furthermore geometrically nonlinear models for
plates resort to the use of von Kármán plate kinematics in order
to evaluate buckling loads.

In this paper a possible implementation of the ZZRT on shell ele-
ments based on the geometrically exact shell theory of Simo [13] is
presented. The elements considered are a bi-linear 4-node quadri-
lateral and a linear 6-node triangle, the latter with a no-conform-
ing interpolation of the field director [4]. The scope of this work
is restricted to small elastic strains but large displacements and
rotations.

An outline of this paper is as follows. The basic kinematic of the
base shell theory by Simo (FSDT) is summarized in the next sec-
tion. Then additional displacement fields (ZZRT) are introduced
and a possible way to obtain the across the thickness interpolation
is explained. Resulting elasticity matrices for the new generalized
stress and strain measures are then evaluated. Section 6 summa-
rizes the base shell elements used and the modifications required
to include the ZZRT approximation while in Section 7 the trans-
verse shear approach to avoid locking is explained. Several exam-
ples are presented in Section 8 to compare linear plate models
with theoretical results and non-linear shell models with 3D solid
discretizations. Finally some conclusions are summarized.

2. Basic kinematics

For a formulation in large displacements and rotations and
small strains compatible with an elastic composite laminate, we
start from the approach proposed by Simo et al. [13] where the
configuration of the shell is defined by the position of the middle
surface u and the field director t (pseudo normal). The positions
of a material point before and after the deformation are written as

Xðx; y; zÞ ¼ u0ðx; yÞ þ zt0ðx; yÞ ð1Þ
xðx; y; zÞ ¼ uðx; yÞ þ ztðx; yÞ ð2Þ
Kðx; yÞ ¼ t1 t2 t3½ � ð3Þ

where ðx; y; zÞ are convective coordinates in a suitably chosen local
system with z in the direction of the director and ðx; yÞ are associ-
ated with two orthogonal directions in the tangent plane to the
middle surface. The director t is the third component ðt3Þ of the
local triad K and it is assumed that for small strains the thickness
does not change during the deformation.

The relevant strain measures are obtained first evaluating the
deformation gradient relative to the convective system

F ¼ @x
@X
¼ ux þ ztx;uy þ zty; t
h i

ð4Þ

and with it the right Cauchy–Green tensor results
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where the terms associated with z2 are commonly neglected. Then
it can be distinguished
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and the Green Lagrange strain tensor of the middle surface
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that allows to compute curvature changes from the original
configuration
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� the transverse shear strains
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These generalized strains allow to obtain the strain tensor at
any point across the thickness.

3. Additional displacement field

To consider the use of the ZZRT it is necessary to distinguish dis-
placements in the direction of the director and displacements in
the tangent plane to the middle surface. Besides, these new dis-
placements are additional to the basic kinematics (i.e. hierarchical
DoFs). The zigzag functions are introduced into the convective local
coordinate system with components in the tangent plane of the
shell (directions ðx; yÞ)

uðx; y; zÞ
vðx; y; zÞ

� �
¼

/xðzÞ
/yðzÞ

" #
wxðx; yÞ
wyðx; yÞ

" #

uðx; y; zÞ ¼ /ðzÞwðx; yÞ
ð12Þ

where w is the amplitude of the hierarchical displacement and the
hierarchical interpolation function across the thickness /iðzÞ (zigzag
function) is null at both bottom and top shell surfaces

/ � h
2

� �
¼ 0 ð13Þ
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while its derivative with respect to the transverse coordinate ðzÞ,
assumed constant within each layer,

bk
i ¼

/k
i � /k�1

i

zk � zk�1 ¼
/k

i � /k�1
i

hk
ð14ÞX

bk
i hk ¼ 0 ð15Þ

depends solely on the properties of the laminate.
As the scope of this work is restricted to small strains, the results

of the ZZRT [15] can directly be used to enhance the in-plane strain
components at each layer k of the laminate in the form:

Ek
m ¼ Em þ zkvþUkrw ð16Þ

where two matrices have been defined that include the hierarchical
shape functions / and the in-plane gradient of the amplitudes

/k ¼
/k

x

/k
y

/k
x /k
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2
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While the transverse shear strain is now the sum
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where 12 is the identity matrix of order 2 and we have defined the
diagonal matrix

bk ¼
bk

x

bk
y

" #
ð19Þ
4. Determination of the zigzag functions

The ZZRT [15] indicates a way to obtain zigzag functions /. Note
first that by the properties of the functions / (Eq. (13))Z

h
cizðzÞdz ¼

Z
h

ciz þ biwið Þdz ¼ cizh ð20Þ

The stresses in each layer, separating in-plane components and
transverse shear components, are

rk ¼
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where the in-plane and transverse elasticity matrices of each layer
Dk

p and Dk
t are in general full matrices. In particular the transverse

strain components can be written from Eq. (18) as
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Replacing in the transverse shear stresses (22) and regrouping
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If the diagonal term which multiplies each wj is made constant
through the thickness

Gk
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allows to obtain a possible distribution of the bk
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thickness
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allows to obtain each Gi in the form
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then

Gk
xy 1þ bk

x

� �
¼ Gk

xy
Gx

Gk
xx

 !
¼ Gx

Gk
xy

Gk
xx

 !
ð29Þ

Gk
yx 1þ bk

y

� �
¼ Gk

yx
Gy

Gk
yy

 !
¼ Gy

Gk
yx

Gk
yy

 !
ð30Þ

This gives a possible way to obtain the derivatives of the zigzag
functions across the laminate thickness. The variable g is not use
below, the shear stress are computed using (22) and the shear
forces are obtained integrating across the thickness.

5. Equivalent elasticity matrices and stress measures

Associated with the hierarchical strains new stress measures
appear. For a linear elastic material the internal strain energy per
unit of middle surface is:
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where energy is written as a quadratic form of the generalized
strains defined in (16) and (18) in order to obtain the conjugated
generalized stresses. Defining for the shell in-plane components
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where D11
p ; D12

p and D22
p are the standard terms that appear when

dealing with laminates for thin shell theories. While for the trans-
verse shear components
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where a standard term from the FSDT appears

D11
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while in the counter-diagonal:
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and finally
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Then the internal strain energy can be written as:
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2

eT
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ð37Þ

that allows to define conjugated generalized stresses integrated
across the thickness
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The integrals in thickness are (denoting �zk ¼ 1
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The resultant stress measures are
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It can be easily shown that

N ¼
Z

h
DpEdz ¼

Z
h
rpdz ð42Þ

M ¼
Z

h
zDpEdz ¼

Z
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zrpdz ð43Þ

Q ¼
Z

h
Dt cþ bwð Þdz ¼

Z
h
sdz ð44Þ
represent what is usually meant by membrane, flexional and shear
forces. While there are two new stress measures

M/ ¼ D31
p Em þ D32

p vþ D33
p rw ¼

Z
h

/Trpdz ð45Þ

Q / ¼ D21
t cþ D22

t w ¼
Z

h
bTsdz ð46Þ

associated with the in-plane and transverse direction gradient of
function w respectively.

6. Shell elements

6.1. Configuration and local systems

The element configuration is defined by the position of the mid-
dle surface u and the direction of the director t, both with respect
to a global system and the additional displacement field w in the
local convective system. At any time the configuration results from
the interpolation of the nodal values

u ¼
XNN

I¼1

NIuI ð47Þ

t ¼
XNN

I¼1

NItI ð48Þ

w ¼
XNN

I¼1

NI
wI ð49Þ

besides, the director t is part of a local triad where the other two
vectors do not necessarily lay in the tangent plane to the shell mid-
dle surface

K ¼ t1 t2 t3½ � ð50Þ

In the original configuration (index 0), at each integration point,

a local orthogonal system ux;uy

h iG

0
is defined laying in the tangent

plane to the shell middle surface. In a similar way at each mesh

node a local system must be defined ux;uy

h iI

0
that can be related

to the local nodal system t1; t2½ �I0, first by an angle b between t3 and
the normal to the tangent plane ux �uy and second by an angle a
(a rotation around t3 of the local system to fit the nodal system)
between ux and t1 that later allows to transform the contributions
to the DoFs w from one nodal system to the other. The hierarchical
nodal DoFs are then related at each node by

wx

wy

" #I

¼
cos a sina
� sina cos a

� �I w1

w2

� �I

wI
L ¼ RIw

I
G

ð51Þ

that must be used to compute the contributions to equilibrium
equations and stiffness matrix.

Two elements have been considered in this work, namely a
four-node bi-linear quadrilateral (QL) and a six-node triangle
(TLLL) where middle surface geometry u is linearly interpolated
from the vertex nodes and the local system K is linearly interpo-
lated from the mid-side nodes. For the additional in-plane dis-
placements w the same interpolation of the middle surface is used.

6.2. Strains

The interpolation of the new variable w can be written in terms
of the matrix

N ¼ N1 NNN

N1 . . . NNN

" #
2�2NN

ð52Þ
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w ¼ Nwe ð53Þ

where we includes the hierarchical nodal variables associated to the
element. There are two new strain measures to compute and their
respective tangent matrices:

� The in-plane gradient of w that is written as a four component
column array
wx0x

wy0y

wx0y

wy0x

2
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3
7775 ¼
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y NNN
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2
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rw ¼ Bb/we

ð54Þ
� The derivative in the transverse direction
c/x

c/y

" #
¼

bxwx

bywy

" #
¼ Bs/we ð55Þ
Then the variation of all the strain measures can be written as
(the expressions for the matrices Bm; Bb and Bs may be found in
the original papers [14,4])
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dT
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2
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where du3�1 is the variation of the middle surface and dT2�1 denotes
the in-plane components of the director variation. Note also that an
assumed natural strain (ANS) approach is used for transverse shear
then Bs will be substituted by �Bs matrices as shown below.

The equivalent nodal forces stem from the integration at each
element
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that is numerically performed with NG points with weighting coef-
ficients w. The contributions may be split in two parts

1. that corresponding to membrane and bending forces
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2. that corresponding to transverse shear forces
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where the substitute matrices �Bs and �Bs/ are obtained by interpola-
tion of matrices computed at sampling points (see next section).

7. Transverse shear approach

In the original version of the elements an ANS approach has
been used for transverse shear strains leading to substitute matri-
ces (�Bs). In the same line it is possible to define an almost identical
approach for �Bs/ assuming the same interpolation for these new
shear strains in natural coordinates. Let us see the details for both
elements.

7.1. Four-node quadrilateral QL

For the four-node quadrilateral function w is re-interpolated
from four sampling points located ad mid-side points
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where the values of function w at the sampling points in terms of
the nodal values are
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The covariant components of function w respect to the natural
system ðn;gÞ are obtained projecting on vectors un and ug. Remind
that the in-plane Jacobian matrix of the isoparametric mapping is:

un;ug

h i
¼ J un;ug� 	

¼ un;ug

h i�T
¼ J�T ¼

un � tx ug � tx

un � ty ug � ty

" #

ð62Þ

At the sampling points only the components along the sides are
considered
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~w ¼ T4�8w
e

ð63Þ

that substituted in Eq. (60)

�w ¼ Pðn;gÞ T we ð64Þ

allows to rebuild the vector

w ¼ �wnu
n þ �wgu

g ð65Þ

that is evaluated at the integration points where the Cartesian con-
vective components are recovered
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" #G

¼
tx �un tx �ug

ty �un ty �ug

" #G �wn

�wg

" #G

¼ J�T
G P nG;gGð Þ T we ð66Þ

The associated equivalent nodal forces are obtained by the
integralZ

A
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s/Q /dA ¼ TT
Z

A
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where it can be defined

q/


 �
4�1
¼ 1

2

XNG

G¼1

PT J�1
G Q /JGwG ð68Þ

thenZ
A

BT
s/Q /dA ¼ TT q/ ð69Þ

7.2. Six-node linear triangle TLLL

For this six-node triangle with linear interpolation of both the
middle surface (u and w) and the director field, to deal with trans-
verse shear the function w is re-interpolated from three sampling
points located at mid-sides. Besides, for a linear triangle, strain
and stresses (transverse shear included) are computed at the ele-
ment center only. To avoid an excessively flexible element due to
sub-integration, which leads to the appearance of a shear spurious
mode, it is desirable to use some form of stabilization. It is there-
fore convenient to write in parallel:

�c ¼
cn

cg

" #
¼
�g �g 1� g
n n� 1 n

� � ffiffiffi
2
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t

�c5
g

c6
n
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" #
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n n� 1 n
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w6
n

2
664

3
775 ¼ P n;gð Þ ~w ð71Þ

in this case the ~w are the components along each side evaluated at
mid-side nodes. The covariant components of the function w with
respect to the natural system ðn;gÞ are obtained projecting in direc-
tions un y ug. Then

ffiffiffi
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with the difference that in the first case the inner products are in 3D
space and both vectors are changing during the deformation pro-
cess, whereas in the second case it is in the 2D space tangent to
the shell and the tangent vectors to the side are unchangeable
due to the nature of the approximation. At each point of interest
the interpolation allows to reconstruct the vectors

c ¼ �cnu
n þ �cgu

g ð74Þ
w ¼ �wnu

n þ �wgu
g ð75Þ

which are used in the integration points where Cartesian compo-
nents are recovered
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7.2.1. Equivalent nodal forces due to transverse shear
The nodal forces associated with the standard transverse shear

are obtained by the integral
r ¼
Z

A

�Bs
� 	T

2�15

Q 1

Q 2

� �
dA ¼

Z
A

~Bs

h iT

3�15
PT J�1QdA ¼ ~Bs
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3�15
�Q ð78Þ

where a vector �Q associated to shear forces has been defined and
will be called ‘‘integrated shear force vector’’. In the elastic case is
the sum of:
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Explicitly integrating in the area
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Similarly a vector �Q / can be defined as
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that in elastic case is the sum of
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Thus material stiffness matrix associated to transverse shear
results:
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~B/s

" #T ~D11
t
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t

" #
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" #
ð87Þ
7.2.2. Shear stabilization
In case a single integration point at the center of the element is

used, it is necessary to stabilize the shear to avoid the appearance
of spurious modes without associated strain energy. To achieve
this, natural shear strains are first written as the sum
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The first component corresponds to values at the element cen-
ter (subscript ‘‘C’’) and the second component (subscript ‘‘H’’),
which vanishes in the center and varies linearly, can be used to
perform the required stabilization. Similarly the additional shear
strain

wn

wg

" #
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wn
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The integrated shear force vectors are split similarly

�Q 3�1 ¼ �Q C
3�1 þ �Q H

3�1 ð90Þ
�Q /3�1 ¼ �Q C

/3�1 þ �Q H
/3�1 ð91Þ

with the component evaluated at the center

�Q C
3�1 ¼ APCJ�1Q C ð92Þ

�Q C
/3�1 ¼ APCJ�1Q /C ð93Þ

The shear strain components c0H and w0H can be used in various
ways for stabilization. Within an implicit scheme the non-constant
part of the integrated shear force vector can be written:
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Explicitly integrating in the area
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that can be written as:
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In this way the stiffness matrix associated to transverse shear
stabilization results:
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While the material stiffness matrix with one integration point
is:
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8. Examples

The present examples are intended to show that the results of
plate models match or converge to analytical results published in
the literature for ZZRT, i.e. the objective is to validate the finite ele-
ment model. It is not the purpose of this section (or work) to assess
the ZZRT which has already been done by other authors, who have
studied the profiles of displacements and stresses across the thick-
ness of the laminate. Besides, when curved shells in nonlinear
regime are considered it is necessary to compare with numerical
models discretized with solid elements. In that case this section
is intended to show that the deformations are broadly similar in
both models which contributes significantly to the assessment of
the ZZRT, but no detailed displacements or stresses profiles across
the thickness of the laminate are compared here.

The materials involved in the examples analyzed below have
the mechanical properties (EI and GIJ in GPa and density (q) in
Kg=m3) listed in Table 1. The table includes two rather stiff mate-
rials (1 and 4) used as the external layers of the laminates and
three materials (2, 3 and 5) used as internal layers (core) of the
laminates. The three laminates considered have five layers and
are symmetric with respect to the middle surface. They are defined
in Table 2 where a indicates the angle (in degrees) between the
material axis 1 with local direction x. The thickness of each layer
is expressed as percentage of the total thickness of the laminate.

8.1. Simple supported square plate under bi-sinusoidal load

This example was taken from [6], the cross section is defined by
sandwich laminate 1 with total thickness t ¼ 0:5 m. A simple sup-



Table 1
Material properties (EI and GIJ en GPa).

Mat 1 2 3 4 5 (iso)

E1 50 10�5 0.01 131 0.00689

E2 10 10�5 0.01 10.34

E3 10 0.07585 0.07585 10.34
m12 0.05 0.01 0.01 0.22 0.00
m13 0.05 0.01 0.01 0.22
m23 0.25 0.01 0.01 0.49
G12 5 0.0225 0.0225 6.895
G13 5 0.0225 0.0225 6.205
G23 5 0.0225 0.0225 6.895
q 1000 1000 1000 1627 97

Table 2
Sandwich laminates stacking sequence.

Mat t[%] a

(1)
1 5 0
1 5 90
2 80 0
1 5 90
1 5 0

(2)
1 5 0
1 5 90
3 80 0
1 5 90
1 5 0

(3)
4 4.1667 0
4 4.1666 90
5 83.334 0
4 4.1666 90
4 4.1667 0
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ported square plate with side length a ¼ 10 m (aspect ratio
a=h ¼ 20) is subjected to a bi-sinusoidal load (null on the border
and maximum at the center) of amplitude q0 ¼ 1 KPa.

Due to symmetry one quarter of the plate is discretized where
the center of the plate coincides with the origin of the coordinate
system. The imposed boundary conditions are (‘‘hard-type’’):
Side u v w hx hy wx wy

x ¼ 0 0.0 0.0 0.0
y ¼ 0 0.0 0.0 0.0
x ¼ a=2 0.0 0.0 0.0 0.0 0.0
y ¼ a=2 0.0 0.0 0.0 0.0 0.0
A uniform structured mesh with an equal step in both direc-
tions D ¼ 0:15625 m was considered, that implies 33 nodes per
side, a total of 1089 nodes and 1024 four-node quadrilateral ele-
ments (QL) or 512 six-node triangular elements (TLLL).

The vertical displacement at the plate center computed accord-
ing to Reference [6] is

w 0;0ð Þ ¼ 0:1118� D11

a4 q0 ¼ 0:6742 mm

Using element QL (7232 DoFs) it gets 0.6740 (99.96%) and with
element TLLL (2848 DoFs) it gets 0.6752 (100.14%) that is slightly
larger that the reference value, which may be associated to the
non-conformity of the director field. Note that the model with ele-
ments QL has 2.5 times the number of DoFs of the model with TLLL
elements. On the other hand a plot of stress states from the inte-
gration points are much smoother using the quadrilateral element
so this is generally preferred if a structured mesh is possible. Con-
sidering the first-order theory (FSDT), the theoretical value is
0.2472 and those obtained by the finite element models are respec-
tively 0.2469 (99.86%) and 0.2483 (100.41%), slightly below and
above the reference value. In Fig. 1 the amplitude of the additional
displacement is shown for the two elements considered.

8.2. Clamped plate under uniform load

The same geometry but fully clamped at the edges was ana-
lyzed but now under a uniform load q ¼ 1 KPa. The maximum dis-
placement obtained was wQL

max ¼ 0:6916 with the QL model and
wTLLL

max ¼ 0:6985 with the TLLL model. In this case comparison is
made against a finite element model with 20-node standard solid
elements and a mesh of 16� 16� 9 (one element per layer in
the outer layers and 5 elements in the core). For the latter model
the displacement computed was wSolid

max ¼ 0:6936 (average of top
and bottom surfaces) that shows a very good correlation between
the shell and the solid model. On the other hand using the FSDT the
displacement computed at the center is just wFSDT

max ¼ 0:1134.

8.3. Vibration of a square plate

To assess simple dynamic behavior natural frequencies of a sim-
ply supported square plate have been computed that can be com-
pared with recently published results [6]. Two aspect ratios where
considered, namely a=t ¼ 10 and a=t ¼ 100, and the sandwich lam-
inate 3 was used for the transverse section. The same discretization
of the first example was used again (with symmetry conditions) so
it is only possible to evaluate symmetric modes. A simple diagonal-
ized (lumped) mass matrix was used. The Table 3 shows the
dimensionless frequencies computed with the two elements pre-
sented here and those reported in the literature. In the table
‘‘mode’’ indicates the number of half-waves in each direction. It
can be seen a very good correlation between published and present
results.

Furthermore the same plate of the first example, simply sup-
ported under sinusoidal load in both directions of the plane, is ana-
lyzed by assuming that the load is temporarily applied as a step
function (Heaviside). The time integration is performed using New-
mark algorithm for the implicit case and central differences within
an explicit scheme. For the same discretization used before, with
the stiffness matrix in the original configuration and a diagonalized
mass matrix, the fundamental periods from a linear eigenvalue
analysis are TQL ¼ 0:1154 and TTLLL ¼ 0:1156. The Fig. 2 shows the
vertical displacement of the center of the plate as a function of
time. In that figure four curves are included, two correspond to
the FSDT (the smaller displacement) and two to ZZRT. The differ-
ence in results obtained using implicit and explicit integration
schemes are insignificant so only the implicit results are plotted.
The differences between the QL and TLLL models are almost null.
Note that the vibration amplitude AQL ¼ 1:348 and ATLLL ¼ 1:350 is
slightly below twice the displacement corresponding to the static
analysis.

8.4. Spherical sector with line loads

To make comparisons for double curved shells in the non-linear
rage the spherical sector shown in Fig. 3 with radius R ¼ 10 m and
angle a ¼ 30o is considered. The applied loads are uniform line
loads, outward over the meridians A–A (þx) and C–C (�x) and
inward over the meridians B–B (�y) and D–D (þy).
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Table 3
Natural frequencies of a simple supported plate.

Ref. [6] QL TLLL

Mode a=t ¼ 10 a=t ¼ 100 a=t ¼ 10 a=t ¼ 100 a=t ¼ 10 a=t ¼ 100

(1,1) 1.852 11.95 1.851 11.95 1.850 11.92
(1,3) 5.241 36.17 5.324 37.30 5.143 37.02
(3,3) 7.704 49.80 7.679 49.68 7.733 49.48
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The sandwich laminate used is number 2 which differs from
number 1 in that the core material is much more rigid in the plane
of the shell in order to prevent an early collapse. In this case the
total thickness is t ¼ 0:2 m and the reference line load is
q0 ¼ 1 MN/m. Due to symmetry the mesh used covers one quarter
of the geometry with 40 divisions in the parallel direction and 14
along the meridian, that leads to a total of 615 nodes and 520
quadrilateral elements or 260 triangular elements. For comparison
an eight-node solid element model was used with the same dis-
cretization of the middle surface and 6 layers through the thick-
ness. This solid element includes an ANS approach for the
transverse shear strains[3] so it can used to model shells with high
aspect ratio (in-plane/thickness lengths).

A non-linear geometrical and linear material analysis is per-
formed. The maximum inward displacement is 3 m (30% of the
radius). The Fig. 4 plots the inward and outward displacements
of the two points on the lower free side at the loaded meridians.
The results shown include those obtained with the quadrilateral
element (QL), the triangle (TLLL) and the solid element model
(SOLAG). It can be observed an excellent correlation between the
results obtained with solid and shell elements. The triangular ele-
ment is in this case slightly stiffer because the membrane perfor-
mance is poorer but note also that the number of degrees
involved is lower. Results obtained using the FSDT with standard
shear coefficients kx ¼ ky ¼ 5

6 have also been included, that solution
is clearly stiffer.



Table 4
Critical loads of a clamped cylinder.

Model Axial load [MN/m] External pressure [MPa]

Solids 7.040 0.3888
ZZRT 7.093 0.3988
FSDT 20.529 0.6583

(a) (b) (c)

Fig. 5. Buckling mode under axial load (a) solids; (b) ZZRT; (c) FSDT.

(a) (b) (c)

Fig. 6. Buckling mode under external pressure (a) solids; (b) ZZRT; (c) FSDT.
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8.5. Buckling of a cylinder

In this example the behavior of a clamped cylinder under alter-
natively axial and pressure loads is studied. The radius of the cyl-
inder is 10 and the total length 20 while the thickness is t ¼ 0:25
with a cross section defined by laminate 2, wherein direction 1
of the laminate is the tangent to the parallel direction. Only one
eighth of the cylinder has been meshed (1 quadrant and half the
length) setting symmetry conditions on 3 of its edges while the
remaining edge is clamped. This boundary conditions arbitrary
restricts bifurcation modes to such symmetries but substantially
alleviates the numerical solid element model used for comparison.
The structured mesh used has 60 divisions along one quadrant and
42 divisions along half cylinder, that leads to 2623 nodes and 2520
QL elements. Again a model with 8-node solid elements was con-
sidered for comparison. The mesh in this case includes the same
discretization used with shell elements for the middle surface
and 7 elements in thickness.

The critical loads obtained are indicated in Table 4, a very good
correlation is obtained between the solid model and the shell
model when the ZZRT is used.

These similarities and differences between critical loads have
their correlation with the shape of the buckling modes. In Fig. 5
the buckling modes for axial load are shown. Here it may be noted
that in the axial case the buckling mode predicted by FSDT is sub-
stantially different from that predicted by the model with 3D ele-
ments, while although ZZRT do not show the same number of
waves (which may be due to insufficient discretization of the solid
model), the pattern is similar. Finally in Fig. 6 buckling modes due
to lateral pressure are shown, where the similarity between the
results of solid and ZZRT models can again be seen, while the
greater rigidity introduced by the FSDT with a lower number of cir-
cumferential waves can be appreciated.

9. Conclusions

A possible implementation of the refined zigzag theory (ZZRT)
in two finite elements based on the geometrical exact shell theory
proposed by Simo et al. has been presented. The elements are a
bilinear quadrilateral and a six-node triangle with a linear interpo-
lation of the middle surface geometry and a linear (non-conform-
ing) interpolation of the director field.

The main issues in the implementation are:

� The hierarchical additional displacements are defined as the in-
plane local components in a convective system of the middle
surface of the shell.
� It is restricted to small elastic strains then no distinction is

made between different strain measures.
� The strain tensor components are computed as the sum of those

arising from the configuration change of the middle surface
geometry and its director field (FSDT) plus those resulting from
the additional displacements as derived by the ZZRT.
� The same assumed natural strain approach (ANS) used for

transverse shear in the FSDT is also applied to the additional
strains from the ZZRT transverse shear.
� A diagonalized (lumped) mass matrix has been considered for

dynamical problems.

The main conclusions that may be mentioned are:

� Both proposed elements behave well and converge to the ZZRT
results in the plates examples considered, both in static equilib-
rium and natural vibration frequencies.
� Use of a diagonalized mass matrix shows and adequate dynamic

behavior with identical results in both time integration schemes
(implicit and explicit) considered.
� The comparison with solid element models in double curved

shell examples shows a very good agreement which validates
not only the elements but also increases the predictive potential
of the ZZRT.
� The evaluation of critical loads on curved geometries shows an

excellent correlation when compared with solid models and
indicates again the limitation of the FSDT.
� The assumed natural strain (ANS) approach for transverse shear

works correctly. The same can be said of the stabilization
scheme used for the transverse shear in the TLLL element with
one integration point.
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