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a b s t r a c t

A first-order formulation to analyze the dynamic response of layered soil profiles is presented as an
alternative to the widely used second-order thin-layer method by the direct stiffness approach,
including an efficient simulation of the underlaying elastic half-space. In contrast to the thin-layer
method where response is expressed through a combination of second-order propagation modes, the
proposed procedure uses first-order modal parameters that have the capacity to provide a good
approximation in the complete wave number domain k, including the exact stiffness values for k¼0 and
k-1, thus justifying its designation of doubly-asymptotic. This feature allows obtaining the exact soil
profile response for static loads, while the proposed treatment of the elastic half-space reproduces
naturally the radiation condition without a need of artificial damping. The capacity of the proposed
formulation to solve elastodynamic problems is assessed by comparing its results with those of exact
solutions available in the literature, and numerical solutions of rigid disks supported on the surface of
different soil profiles.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The direct stiffness method provides the basis for both the thin-
layer method and for the new proposed method here, designated
as first-order doubly-asymptotic formulation (FODAF). The exact
stiffness matrices in the wave number domain for a finite stratum
and for a half-space were given by Kausel and Roesset [1].
Calculation of the profile response by these methods is carried
out for each frequency by transforming the excitation from the
space domain to the wave number domain, calculating the
displacements through the stiffness matrix of the soil profile and
then applying the inverse transform into the space domain. The
Hankel Transform allows calculating the response in cylindrical
coordinates from the wave number domain to the spatial domain.
The numerical implementations of this transform lead to inac-
curacies due to singularities of the integrand that may be reduced
by refining the discretization in the wave number k at an increased
computational effort.

The thin-layer method (TLM) described in detail by Kausel [2]
and Park [3] approximates the exact stiffness of a layer by the
direct method through matrices that are independent of the wave

number. The main advantage of this method lies in approximating
the transcendental form of stiffness coefficients by algebraic
expressions leading to a solution expressed in terms of eigenvalues
associated with propagation modes of the soil profile. Such
representation allows an analytical transformation into the space
domain without additional loss of accuracy. In this approach the
layers stiffness coefficients for wave numbers which tend to
infinity are proportional to k2 while the exact stiffness coefficients
vary with k. This characteristic brings in the shortcoming that the
method is not rigorously capable of representing static solutions of
the soil profile. Representation of an underlying half-space in the
thin-layer method is done by incorporating additional strata of
increasing thickness up to a total thickness of 1.5 times the wave
length for each frequency, and vertical and horizontal dashpots at
the base of the lowest stratum as an approximation to the
consistent boundary conditions as presented by Lysmer and
Kuhlemeyer [4]. This last approach is only effective for plane and
axisymmetric models according to Lin et al. [5], so that Oliveira
Barbosa et al. [6] recently provided an improved approximation
based on the perfectly matched layer technique (PML).

The first-order formulation proposed here relies on an expan-
sion of the exact coefficients of the layer stiffness matrix up to the
first power of k generating two independent matrices with respect
to the wave number. In this way, the coefficients of the formula-
tion are proportional to k for wave numbers tending to infinity
as in the exact solution. The modal parameters result of the
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first-order in contrast to thin-layer method where they derive
from second order matrices. Addition of auxiliary degrees of
freedom (d.o.f.) to the stiffness matrices allows a good match with
the exact coefficients in the wave number domain. These auxiliary
d.o.f. are used to enlarge the modal model, and from the point of
view of modal analysis can be considered as secondary or slave d.
o.f., which once condensed to the primary or master d.o.f. allow to
reproduce adequately the variations of the stiffness coefficients
with respect to the wave number.

On the other hand, an experimental modal analysis technique
is used to adjust the exact stiffness coefficients of the half-space
through first-order modal parameters. The half-space modal
model is then transformed into physical matrices that can be
assembled with the matrices for the soil layers. Matching of the
stiffness coefficients of the half-space is carried out both for real
and imaginary components allowing a correct simulation of the
radiation process and of the solution for the static cases. As a
result, this formulation turns out to be doubly-asymptotic since it
tends to the exact solution both when the wave number tends to
zero and to infinity. Such feature is of interest in order to represent
the soil profile response at low frequencies, including the static
case, while retaining the advantage of the thin-layer method of the
exact modal transformation from the wave number domain to the
spacial domain. In addition, the foregoing formulation does not
require artificial damping to avoid numerical problems. If required,
material damping of the strata may be accounted for by adding it
to the eigenvalues of the complete soil profile. Main issues related
to the calculation of integrals of the Hankel Transform that arise in
this formulation are discussed in the paper.

2. Direct stiffness method

Fig. 1 shows load and displacement components at the inter-
faces of the jth layer according to terminology adopted by Kausel
and Roesset [1]. Cylindrical coordinates will be used here,
although resulting matrices both for strata and for the half-space
are also valid for plane wave fronts in cartesian coordinates.

Load vector Pj for each interface is transformed from the time
domain t to the frequency domain ω through the Fourier Trans-
form, azimutal coordinate θ is expressed in terms of Fourier series
through integer numbers μ, and radial coordinate ρ is transformed
to the wave number domain k by the Hankel Transform:

Pj k;μ;ω
� �¼ aμ

Z 1

0
ρ Cμ

Z 2π

0
Tμ

Z 1

�1
Pj ρ;θ; t
� �

e� iωtdt dθ dρ ð1Þ

aμ ¼
1=2π if μ¼ 0
1=π if μa0

(
ð2Þ

Cμ ¼

d
dðkρÞJμðkρÞ

μ
kρJμðkρÞ 0

μ
kρJμðkρÞ d

dðkρÞJμðkρÞ 0

0 0 � JμðkρÞ

2
6664

3
7775 ð3Þ

Tμ ¼
diag cos ðμθÞ � sin ðμθÞ cos ðμθÞ� �

: symmetric loads respect to x� axis
diag sin ðμθÞ cos ðμθÞ sin ðμθÞ� �

: anti� symmetric loads respect to x� axis

(

ð4Þ

where Jμ(kρ) is the Bessel function of μth order.
Force–displacement relations for a layer are expressed as:

Kst
j U

st
j ¼ P

st
j ð5Þ

or:

Kj;j Kj;jþ1

Kjþ1;j Kjþ1;jþ1

" #
Uj

Ujþ1

" #
¼

Pj

Pjþ1

" #
ð6Þ

In cylindrical coordinates this last expression takes the form:

K11 0 K13 K14 0 K16

0 K22 0 0 K25 0
K13 0 K33 �K16 0 K36

K14 0 �K16 K11 0 �K13

0 K25 0 0 K22 0
K16 0 K36 �K13 0 K33

2
6666666664

3
7777777775

uj
ρ

uj
θ

uj
z

ujþ1
ρ

ujþ1
θ

ujþ1
z

2
6666666666664

3
7777777777775
¼

τjρz
τjθz
σj
z

τjþ1
ρz

τjþ1
θz

σjþ1
z

2
6666666666664

3
7777777777775

ð7Þ

where the degrees of freedom ρ and z (SV-P waves) are coupled,
while d.o.f. θ (SH waves) is decoupled from the other ones.

The displacement vector for the complete profile is obtained as:

U ¼ K �1P ¼ F P ð8Þ
where K represents the stiffness matrix of the profile obtained by
assembling the individual layers and half-space matrices, while F
represents the flexibility matrix of the soil profile.

The inverse transform to the space-time domain of the dis-
placements obtained from Eq. (8) is carried out by:

Uj ¼ ∑
1

μ ¼ 0
Tμ

Z 1

0
k Cμ

Z 1

�1
Uj eiωtdω dk ð9Þ

The stiffness matrices in a non-dimensional form associated
with the direct stiffness method are presented in what follows.

2.1. Layer stiffness matrices

The layer stiffness matrix for the d.o.f. associated with SV-P
waves (Rayleigh modes) may be expressed as:

Kst
R ¼ωρVS K

st
R ð10Þ

K
st
R ¼

K11 K13 K14 K16

K13 K33 �K16 K36

K14 �K16 K11 �K13

K16 K36 �K13 K33

2
66664

3
77775 ð11Þ

K11 ¼ κð1�s2ÞðTs � rsTr Þ
Ds

K33 ¼ κð1�s2ÞðTr � rsTsÞ
Dr

K14 ¼ κð1�s2ÞðrsTrSs �TsSr Þ
Ds

K36 ¼ κð1�s2ÞðrsTsSr �TrSsÞ
Dr

K13 ¼ κð1�s2Þð1�SrSs � rsTrTsÞ
D �κð1þs2Þ

K16 ¼ κð1�s2ÞðSr �SsÞ
D

ð12Þ

D¼ 2ðSrSs�1Þþð1
rs
þrsÞTrTs ð13Þ

Tr ¼ tanhðrκηÞ Ts ¼ tanhðsκηÞ
Sr ¼ sechðrκηÞ Ss ¼ sechðsκηÞ ð14Þ

h j 
P     , U j+1       j+1 

P   ,  U j           j 

x 

y 
z 

ρ
θ

Fig. 1. Load and displacement components of the jth layer.
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r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

κ2

r
s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

κ2

r
α¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2�ν

1�ν

r
ð15Þ

κ ¼ k Vs
ω

η¼ h ω
Vs

ð16Þ

whereω is the analysis frequency, ρ is the layer mass density, VS is
the shear wave velocity, ν is the Poisson coefficient, k and κ
represent the dimensional and non-dimensional wave number,
respectively, while h and η are the layer thickness in dimensional
and non-dimensional form.

The layer stiffness matrix for the d.o.f. associated with the SH
waves (Love modes) may be expressed as:

Kst
L ¼ωρVS K

st
L ð17Þ

K
st
L ¼ K22 K25

K25 K22

" #
ð18Þ

K22 ¼ sκ coth sκη
� �

K25 ¼ �sκ csch sκη
� � ð19Þ

2.2. Half-space stiffness matrices

The stiffness matrix of the half-space for SV-P waves is expressed
as:

Khs
R ¼ωρVS K

hs
R ð20Þ

K
hs
R ¼ κ

ð1�rsÞ
rð1�s2Þ 2rs�1�s2

2rs�1�s2 sð1�s2Þ

" #
ð21Þ

and that for SH waves is:

Khs
L ¼ωρVS K

hs
L ð22Þ

K
hs
L ¼ s κ ð23Þ

Taking limits is required to obtain the stiffness coefficients
of layers or the half-space in all cases when ω¼0 and/or k¼0 as
described in [1].

3. First-order doubly-asymptotic formulation (FODAF)

The general form of the approximation proposed herein for the
layer stiffness matrices both for SV-P and SH waves may be written
in a kind of “nested” or “fractal” matrix representation:

~K
st
R=L ¼ K0þκK1�κ2 ~K

�1
I

~K I ¼ K2þκK3�κ2 ~K
�1
II

~K II ¼ K4þκK5�κ2 ~K
�1
III

~K III ¼ K6þκK7… ð24Þ

where ~K
st
R=L represents a generic approximation for both K

st
R and

K
st
L . An equivalent matrix form for this representation, known as

“companion” matrix form in the field of experimental modal
analysis, consists of two matrices that are independent of the
wave number, retaining the same degree of accuracy:

~K
st
R=L ¼ In Kst

A þκKst
B

� ��1
ITn

� ��1
ð25Þ

In ¼ I 0 0 ⋯ 0
� � ð26Þ

ð27Þ

ð28Þ

In this way, the layer flexibility matrices takes the standard
form for first-order systems:

~F
st
R=L ¼ ~K

st
R=L

� ��1
¼ In Kst

A þκKst
B

� ��1
ITn ð29Þ

The parameter n represents the number of times that the d.o.
f.’s of the layer are to be increased with auxiliary d.o.f.’s. The first
four d.o.f.’s of matrices KA

st and KB
st for SV-P waves, and the first two

d.o.f.’s of those matrices for SH waves represent the physical d.o.f.’s
of the layer, to be assembled with those of other layers to form the
matrices KA and KB of the complete soil profile. The auxiliary d.o.f.‘s
can be considered as “internal” d.o.f.’s of each layer so they are not
affected by the boundary conditions or to assembling with the d.o.
f.’s of other strata.

3.1. Layer stiffness matrices

The layer stiffness matrix for SV-P waves turns out to be nearly
singular for small values of κ due to this matrix must satisfy the
rigid body modes condition, and for this reason it is advantageous
to provide a good match in this range. Therefore, the sub-matrices
Ki from expressions (27) and (28) are obtained by equating the
exact layer matrices given by Eqs. (11) and (18) and their
derivatives valued at κ¼0 with the proposed approximation of
Eq. (24) and its respective derivatives. For SV-P waves, the exact
layer matrix and the first derivatives result in the form:

K
st
R

			
κ ¼ 0

¼ K
st
R;0 ¼

k011 0 k014 0

0 k033 0 k036
k014 0 k011 0

0 k036 0 k033

2
666664

3
777775 ð30Þ

K
st0
R

			
κ ¼ 0

¼ K
st
R;1 ¼

0 k113 0 k116
k113 0 �k116 0

0 �k116 0 �k113
k116 0 �k113 0

2
666664

3
777775 ð31Þ
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K
st''
R

			
κ ¼ 0

¼ K
st
R;2 ¼

k211 0 k214 0

0 k233 0 k236
k214 0 k211 0

0 k236 0 k233

2
666664

3
777775 ð32Þ

K
st'''
R

			
κ ¼ 0

¼ K
st
R;3 ¼

0 k313 0 k316
k313 0 �k316 0

0 �k316 0 �k313
k316 0 �k313 0

2
666664

3
777775 ð33Þ

where

k011 ¼ cotðηÞ k014 ¼ �cscðηÞ
k033 ¼ cotðαηÞ=α k036 ¼ �cscðαηÞ=α

8<
: ð34Þ

k113 ¼ cscðηÞcscðαηÞ� cotðηÞcotðαηÞ� �
=α�2

k116 ¼ cotðηÞcscðαηÞ�cscðηÞcotðαηÞ� �
=α

8<
: ð35Þ

k211 ¼
2 sin ðαηÞ cos ðαηÞ 1þ cos ðηÞ2ð Þþα ηþ sin ðηÞ cos ðηÞð Þ sin ðαηÞ2 �4 sin ðαηÞ cos ðηÞ

α sin ðηÞ2 sin ðαηÞ2

k214 ¼
2 sin ðαηÞ 1þ cos ðηÞ2ð Þ�α sin ðηÞþη cos ðηÞð Þ sin ðαηÞ2 �4 sin ðαηÞ cos ðηÞ cos ðαηÞ

α sin ðηÞ2 sin ðαηÞ2

k233 ¼
2α sin ðηÞ cos ðηÞ 1þ cos ðαηÞ2ð Þþ αηþ sin ðαηÞ cos ðαηÞð Þ sin ðηÞ2 �4α sin ðηÞ cos ðαηÞ

α3 sin ðηÞ2 sin ðαηÞ2

k236 ¼
2α sin ðηÞ 1þ cos ðαηÞ2ð Þ� sin ðαηÞþαη cos ðαηÞð Þ sin ðηÞ2 �4α sin ðηÞ cos ðηÞ cos ðαηÞ

α3 sin ðηÞ2 sin ðαηÞ2

8>>>>>>>>><
>>>>>>>>>:

ð36Þ

and 0 denotes derivative with respect to κ. Since the complexity of
these coefficients increases rapidly with the derivation order, to
simplify the resulting expressions they are expanded in η. Conse-
quently, and for the purpose of maintaining the expansion validity,
a maximum value of this parameter is defined from which the
layer must be subdivided into sub-layers as is done in the thin-
layer method. Such maximum value adopted in numerical exam-
ples presented later is η¼π/2. At the same time, the proposed
expansion allows to avoid numerical problems associated with
inherent limitations of the computer accuracy that arise during the
valuation of the exact expressions.

In the case of SH waves, the exact layer matrix and its first
derivatives for κ¼0 are:

K
st
L

			
κ ¼ 0

¼ K
st
L;0 ¼

k022 k025
k025 k022

2
4

3
5 ð38Þ

K
st0
L

			
κ ¼ 0

¼ K
st
L;1 ¼

0 0
0 0


 �
ð39Þ

K
st''
L

			
κ ¼ 0

¼ K
st
L;2 ¼

k222 k225
k225 k222

2
4

3
5 ð40Þ

K
st'''
L

			
κ ¼ 0

¼ K
st
L;3 ¼

0 0
0 0


 �
ð41Þ

K
st iv
L

			
κ ¼ 0

¼ K
st
L;4 ¼

k422 k425
k425 k422

2
4

3
5 ð42Þ

K
st v
L

			
κ ¼ 0

¼ K
st
L;5 ¼

0 0
0 0


 �
ð43Þ

K
st vi
L

			
κ ¼ 0

¼ K
st
L;6 ¼

k622 k625
k625 k622

2
4

3
5 ð44Þ

K
st vii
L

			
κ ¼ 0

¼ K
st
L;7 ¼

0 0
0 0


 �
ð45Þ

where

k022 ¼ cos ðηÞ= sin ðηÞ
k025 ¼ �1= sin ðηÞ

8<
: ð46Þ

k222 ¼ η� sin ðηÞ cos ðηÞ� �
= sin ðηÞ2

k225 ¼ sin ðηÞ�η cos ðηÞ� �
= sin ðηÞ2

8<
: ð47Þ

k422 ¼ 3 cos ðηÞð2η2� sin ðηÞ2Þ�η sin ðηÞ
� �

= sin ðηÞ3

k425 ¼ 3 ð1þη2Þ sin ðηÞ2þη sin ðηÞ cos ðηÞ�2η2
� �

= sin ðηÞ3

8><
>: ð48Þ

k622 ¼ 15 2η3ð1þ2 cos ðηÞ2Þ�3ðηþ sin ðηÞ cos ðηÞÞ sin ðηÞ2
� �

= sin ðηÞ4

k625 ¼ 15 3 sin ðηÞ2ð sin ðηÞþη cos ðηÞÞ�η3 cos ðηÞð5þ cos ðηÞ2Þ
� �

= sin ðηÞ4

8><
>:

ð49Þ

Sub-matrices Ki of the approximation proposed in Eq. (24) are
obtained in the following form:

~K
st
R=L

			
κ ¼ 0

¼ K
st
R=L;0 ¼ K0 ) K0 ¼ K

st
R=L;0

~K
st0
R=L

			
κ ¼ 0

¼ K
st
R=L;1 ¼ K1 ) K1 ¼ K

st
R=L;1

~K
st00
R=L

			
κ ¼ 0

¼ K
st
R=L;2 ¼ �2K �1

2 ) K2 ¼ �2 K
st
R=L;2

� ��1

~K
st 000
R=L

			
κ ¼ 0

¼ K
st
R=L;3 ¼ 6K �1

2 K3K
�1
2 ) K3 ¼ 1=6� K2K

st
R=L;3K2

~K
st iv
R=L

			
κ ¼ 0

¼ �24K �1
2 K3K

�1
2 K3þK �1

4

� �
K �1
2 ) K4 ¼…

ð50Þ

A practical and numerically efficient calculation of sub-matrices
Ki for high order derivatives consists in gradually completing
matrices KA and KB from Eq. (25) taking into account that the
terms where these sub-matrices appear for the first time present

k313 ¼
3

8α cos ðηÞ cos ðαηÞþ 1þα2
� �

sin ðηÞ sin ðαηÞ 1� cos ðηÞ cos ðαηÞð Þ�⋯

2α 1þ cos ðηÞ2
� �

1þ cos ðαηÞ2
� �

�αη sin ðηÞ�α sin ðαηÞð Þ cos ðηÞ� cos ðαηÞð Þ

0
@

1
A

α3 sin ðηÞ2 sin ðαηÞ2

k316 ¼

3

4α cos ðαηÞ 1þ cos ðηÞ2
� �

þ 1þα2
� �

sin ðηÞ sin ðαηÞ cos ðηÞ� cos ðαηÞð Þ�⋯

4α cos ðηÞ 1þ cos ðαηÞ2
� �

�αη sin ðηÞ�α sin ðαηÞð Þ 1� cos ðηÞ cos ðαηÞð Þ

0
B@

1
CA

α3 sin ðηÞ2 sin ðαηÞ2

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð37Þ
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the following pattern:

~K
st iv
R=L

			
κ ¼ 0

¼…�4!K �1
2 K �1

4 K �1
2 ) K4 ¼…

~K
st v
R=L

			
κ ¼ 0

¼…þ5!K �1
2 K �1

4 K5K
�1
4 K �1

2 ) K5 ¼…

~K
st vi
R=L

			
κ ¼ 0

¼…�6!K �1
2 K �1

4 K �1
6 K �1

4 K �1
2 ) K6 ¼…

~K
st vii
R=L

			
κ ¼ 0

¼…þ7!K �1
2 K �1

4 K �1
6 K7K

�1
6 K �1

4 K �1
2 ) K7 ¼…

~K
st viii
R=L

			
κ ¼ 0

¼…�8!K �1
2 K �1

4 K �1
6 K �1

8 K �1
6 K �1

4 K �1
2 ) K8 ¼…

ð51Þ
The proposed formulation implies by definition the exact

values for κ¼0. It also leads to exact values for κ-1 if the last
sub-matrix of the approximation is calculated, depending on the
adopted value of n, as follows:

n¼ 3-K5 ¼ ðK3�ðK1�K
st
R=L;1Þ�1Þ�1

n¼ 4-K7 ¼ ðK5�ðK3�ðK1�K
st
R=L;1Þ�1Þ�1Þ�1

n¼ 5-K9 ¼ ðK7�ðK5�ðK3�ðK1�K
st
R=L;1Þ�1Þ�1Þ�1Þ�1

ð52Þ

where

K
st
R;1 ¼ κ�1K

st
R

� �			
κ-1

¼

k111 k113 0 0
k113 k133 0 0
0 0 k111 �k113
0 0 �k113 k133

2
66664

3
77775

K
st
L;1 ¼ κ�1K

st
L

� �			
κ-1

¼
k122 0
0 k122

" #
ð53Þ

and

k111 ¼ k133 ¼
2

ð1þα2Þ k113 ¼
�2α2

ð1þα2Þ k122 ¼ 1 ð54Þ

In this way, this formulation turns out to be doubly-asymptotic.
Fig. 2 shows the degree of matching achieved with this
procedure for ν¼1/3, together with the curves obtained using
the thin-layer method (TLM), after rescaling the stiffness coeffi-
cients as follows:

K
st

R ¼ϒ �1=2
R K

st
Rϒ

�1=2
R

K
st

L ¼ϒ �1=2
L K

st
L ϒ

�1=2
L ð55Þ

with

ϒ R ¼ diag ½ ðk011þκk111Þ ðk033þκk133Þ ðk011þκk111Þ ðk033þκk133Þ �
� �

ϒ L ¼ diag ½ ðk022þκk122Þ ðk022þκk122Þ �
� �

ð56Þ

The degree of approximation shown in Fig. 2 is also represen-
tative of that obtained for other values of the Poisson coefficient.
Moreover, plotting these curves for different values of the non-
dimensional thickness shows that the stiffness components are
virtually independent of the thickness for ηo0.1 by assigning the
abscissa the value κη. Even though the approximation is satisfac-
tory even for much higher thicknesses, it seems advisable to
take η¼π/2 as upper bound before dividing into sub-layers since
the exact flexibility coefficients present abrupt variations after
this value.

The proposed formulation for the stiffness coefficients departs
from the exact solution only for high wave numbers, and therefore
may lead to inaccuracies only in rather special situations. The
critical issue regarding the need for subdividing the thickness of
layers occurs when the loaded area is small compared with the

layer thickness, as is the case of point loads. In any event, as shown
in what follows, the requirements for refinement of layers in the
proposed formulation are less restrictive than in the thin-layer
method. In fact, in the case of a point load applied on a layer
supported on a rigid half-space, the proposed formulation does
not present any appreciable difference with the exact solution
except in the vicinity of the applied load.

Table 1 shows the κη values below which the thin-layered
method and the proposed formulation depart less than 1% from
the exact coefficients. It is observed that for the first few coefficients,
particularly those of the main diagonal, the proposed formulation is
notoriously more accurate than the thin-layer method.

Fig. 2 shows that convergence of the proposed formulation
oscillates for increasing values of n and that for n¼4 the approx-
imation is satisfactory in the complete range of wave numbers. On
this basis, it is concluded that n¼4 is a recommendable value for
the present formulation, which is used in all numerical examples
presented here.

3.2. Half-space stiffness matrices

The half-space stiffness matrices are obtained by adjusting the
exact flexibility coefficients in wave number domain through an
experimental modal analysis technique. Ceballos and Prato [7] has
developed a technique to obtain second-order stiffness matrices for
the half-space that can be assembled with the layer matrices
of the thin-layer method for calculating the eigenvalues of the
complete profile. In that approach, both real and imaginary flex-
ibility components were adjusted adding a small amount of
hysteretic damping. This approximation allows to consider the
radiation damping through the half-space, but does not provide
satisfactory results for the response in the range of relatively low
exciting frequencies.

In the present work, the adjustment of the half-space flexibility
is performed with the same technique used in [7] but with first-
order modal parameters and without addition of material damping.
These parameters are defined so as to enforce that the flexibility
coefficients tend to the exact values when the wave number κ tends
both to zero and to infinity. In this way, the stiffness matrix of the
complete soil profile retains the doubly-asymptotic characteristic.

As a first step, the unbounded amplitudes of the half-space
flexibility matrix are eliminated discounting the exact Rayleigh
wave propagation mode. This mode is added to the modal basis in
the final stage of the adjustment process. Using auxiliary
degrees of freedom as in the case of the layer matrices allows to
obtain a square matrix of mode shapes. The half-space modal
matrices are then transformed into physical matrices that can be
assembled directly with the layer matrices obtained in the
previous section.

The procedure described in what follows should be applied for
each value of interest of Poisson coefficient ν in order to construct
a data-base with the parameters adjusted in each instance.

3.2.1. SV-P waves
The Rayleigh waves propagation mode in a homogeneous half-

space may be derived form the flexibility matrix obtained invert-
ing the stiffness matrix of Eq. (21):

F
hs
R ¼ K

hs
R

� ��1
¼ 1
κð4rs�s4�2s2�1Þ

s ð1�s2Þ 1þs2�2rs
1þs2�2 r s rð1�s2Þ

" #

ð57Þ

The wave number associated with the Rayleigh mode κ0¼VS/VR

is obtained as the single root of the common denominator of the
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Fig. 2. Approximation of the exact layer stiffness components (ν¼1/3, ηo0.10).
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flexibility coefficients:

4 r s�s4�2 s2�1¼ 0 ð58Þ
Multiplying by κ4 and simplifying, the following frequency

equation is obtained:

4 κ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2�α2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2�1

p
�κ2þ1

� �
�1¼ 0 ð59Þ

The unbounded amplitude of the half-space flexibility coeffi-
cients are related to the Rayleigh waves propagation mode that
may be expressed in terms of a single second-order mode, or of
two first-order modes:

F
hs
0 ¼

ψρ;0 i ψρ;0

ψ z;0 � i ψ z;0

" #
κ�κ0 0
0 κþκ0

" #�1 ψρ;0 ψ z;0

i ψρ;0 � i ψ z;0

" #

¼ 1
κ2�κ20

ϕ2
ρ;0 κ=κ0 �ϕρ;0ϕz;0

κ=κ0 �ϕρ;0ϕz;0 ϕ2
z;0

2
4

3
5 ð60Þ

where

ϕρ;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ20�1

q
=A0

r
ϕz;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ20�α2

q
=A0

r
ð61Þ

ψρ;0 ¼ϕρ;0=
ffiffiffiffiffiffiffiffi
2κ0

p
ψ z;0 ¼ϕz;0=

ffiffiffiffiffiffiffiffiffi
2 κ0

p
ð62Þ

A0 ¼
8κ40�6κ20ðα2þ1Þþ4α2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ20�α2
q ffiffiffiffiffiffiffiffiffiffiffiffiffi

κ20�1
q �8κ20þ4 ð63Þ

The “remaining” half-space flexibility matrix is obtained by
substracting the contribution of the Rayleigh waves propagation
mode from the exact flexibility matrix. The proposed function for
adjusting this remaining flexibility matrix consists of a polynomic
matrix fraction whose companion matrix form is expressed
through first-order eigenvalues:

~F
hs
R ¼ F

hs
R �F

hs
0

� Q0þκQ1þκ2Q2þ⋯þκnQnþκnþ1I
� ��1

R0þκR1þκ2R2þ⋯þκnRn
� �

ð64Þ
This technique was used by Wolf [8] in the frequency domain

and in cases of one d.o.f. as is the case for SH waves. Matrix R0 is
forced to take the value of the remaining flexibility matrix for
κ¼0:

R0 ¼ F
hs
R

			
κ ¼ 0

�F
hs
0

			
κ ¼ 0

¼ � i 0
0 � iα


 �
þ 1
κ20

ϕ2
ρ;0 0

0 ϕ2
z;0

2
4

3
5 ð65Þ

while matrix Q0 is set as the identity matrix in order to ensure that
the approximate flexibility matrix remains exact at κ¼0. Further-
more, matrix Rn is set equal to the remaining flexibility matrix for
κ-1:

Rn ¼ κF
hs
R

� �			
κ-1

� κF
hs
0

� �			
κ-1

¼ 1
2ð1�α2Þ

1 α2

α2 1

" #
� 1
κ0

0 ϕρ;0ϕz;0

ϕρ;0ϕz;0 0

" #

ð66Þ

3.2.2. SH waves
Adjustment to the exact half-space flexibility for SH waves

follows a similar path:

~F
hs
L ¼ Q0þκQ1þκ2Q2þ⋯þκnQnþκnþ1I

� ��1
R0þκR1þκ2R2þ⋯þκnRn
� �

ð67Þ
Coefficient R0 takes on the exact value for κ¼0:

R0 ¼ F
hs
L

			
κ ¼ 0

¼ � i ð68Þ

while coefficient Q0 is taken as unity. Moreover, the coefficient Rn
takes on the exact values of the flexibility for κ-1:

Rn ¼ κF
hs
L

� �			
κ-1

¼ 1 ð69Þ

3.2.3. Adjustment procedure
From Eqs. (64) or (67) one may obtain:

~F
hs
R=LþκQ1

~F
hs
R=Lþκ2Q2

~F
hs
R=Lþ⋯þκnQn

~F
hs
R=Lþκnþ1 ~F

hs
R=L ¼ R0þκR1

þκ2R2þ⋯þκnRn ð70Þ

κR1þκ2R2þ⋯þκn�1Rn�1�κQ1
~F
hs
R=L�κ2Q2

~F
hs
R=L�⋯�κnQn

~F
hs
R=L ¼ ~P

ð71Þ
where ~F

hs
R=L represents ~F

hs
R or ~F

hs
L , and:

~P ¼ ~F
hs
R=Lþκnþ1 ~F

hs
R=L�R0�κnRn ð72Þ

Adjustment of the approximation coefficients is carried out
considering m discrete points for wave number κ. Closeness
between these points increases as required by sharp variations
in the flexibility coefficients. In this way one arrives at:

~U ~K ¼ ~P ) ~U ¼ ~P ~K
† ð73Þ

where † denotes pseudo-inverse (least squares fit) while:

~U ¼ R1 R2 ⋯ Rn�1 Q1 Q2 ⋯ Qn
� � ð74Þ

~K ¼

κ1I κ2I ⋯ κmI
κ21I κ22I ⋯ κ2mI
⋯ ⋯ ⋯ ⋯

κn�1
1 I κn�1

2 I ⋯ κn�1
m I

�κ1 ~F 1 �κ2 ~F 2 ⋯ �κm ~Fm

�κ21 ~F 1 �κ22 ~F 2 ⋯ �κ2m ~Fm

⋯ ⋯ ⋯ ⋯
�κn1 ~F 1 �κn2 ~F 2 ⋯ �κnm ~Fm

2
666666666666664

3
777777777777775

ð75Þ

~P ¼ ~P1
~P2 ⋯ ~Pm

h i
ð76Þ

The companion matrix form associated with the polynomic
fraction in (64) or (67) results:

~F ¼ ~C κI� ~A
� ��1

~B ~C ¼ 0 0 ⋯ 0 I
� �

~B ¼

R0

R1

R2

⋯
Rn

2
6666664

3
7777775

~A ¼

0 0 ⋯ 0 � I
I 0 ⋯ 0 �Q1

0 I ⋯ 0 �Q2

⋯ ⋯ ⋯ ⋯ ⋯
0 0 ⋯ I �Qn

2
6666664

3
7777775

ð77Þ

The resolution of the following eigenvalue problem:

~Aϒ ¼ϒΛ ð78Þ
allows expressing the half-space flexibility matrix through

Table 1
Limiting values of κη below which differences between approximate and exact
coefficients are less than 1%.

K11 K33 K13 K16 K14 K36 K22 K25

TLM 0.23 0.23 0.10 0.17 0.24 0.23 0.88 0.84
n¼3 3.74 3.27 1.14 1.83 1.09 1.52 1.59 1.34
n¼4 7.06 5.82 3.82 2.91 2.48 2.76 3.85 2.43
n¼5 9.98 9.14 6.42 4.14 3.96 4.05 7.47 3.64
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first-order modal parameters:

~F ¼Ψ l κI�Λ
� ��1Ψ r ð79Þ

where

Λ¼ϒ �1 ~Aϒ Ψ r ¼ϒ �1 ~B Ψ l ¼ ~Cϒ ð80Þ

In the case of SV-P waves, the resulting approximate flexibility
matrix in general is non-symmetric so a symmetrization process
may be applied to transform the mode shapes matrices by left Ψl

and by right Ψr so that they become the transpose of the other:

Ψ l ¼Ψ2Ψ r ¼Ψ T ð81Þ

A procedure that allows performing this symmetrization with
minimal loss of the accuracy obtained with the polynomial matrix
fraction begins with the definition of the following symmetric
matrix Hm for each mode m:

Hm ¼ 0:5� ψ l;mψ r;mþψ T
l;mψ

T
r;m

� �
ð82Þ

This matrix should be singular if the mode shapes by left and
by right have the same relationship between their components.
The singular value decomposition (SVD) of Hm and the use of the
largest singular value leads to a symmetrized mode shape for
mode m with a minimal distortion:

Um; Sm;Vm½ � ¼ SVD Hmð Þ- ~Hm ¼Um
1:2;1S

m
1;1V

m;T
1:2;1-ψm ¼ ~H

m
1:2;x=

~H
m
x;x

ð83Þ

where x represents the index of the component on the main
diagonal of ~Hm with greater absolute value.

A fine-fitting process for the modal parameters may also be
applied to compensate for both the linearization effects produced
by applying Eq. (71) and an eventual symmetrization process.
Techniques to adjust modal parameters, which can be adapted to
this case by replacing the exciting frequency with the wave
number, and the experimental receptance with the exact flex-
ibility, are presented by Maia and Silva [9].

The proposed iterative fine-fitting process involves six correc-
tion factors for each mode: real (ℜ) and imaginary (ℑ) parts of the
eigenvalue κm and the mode shapes components ψρ,m and ψz,m.
The correction of the components of the remaining half-space
flexibility matrix is performed by the following non-dimensional
adjustment parameters (“p-values”):

~F
corr
ρρ ¼ ∑

M

m ¼ 1

ψℜ
ρ;mð1þpℜρ;mÞþ iψℑ

ρ;mð1þpℑρ;mÞ
� �2
κ� κℜmð1þpℜκ;mÞþ iκℑmð1þpℑκ;mÞ
� � ð84Þ

~F
corr
zz ¼ ∑

M

m ¼ 1

ψℜ
z;mð1þpℜz;mÞþ iψℑ

z;mð1þpℑz;mÞ
� �2
κ� κℜmð1þpℜκ;mÞþ iκℑmð1þpℑκ;mÞ
� � ð85Þ

~F
corr
ρz ¼ ∑

M

m ¼ 1

ψℜ
ρ;mð1þpℜρ;mÞþ iψℑ

ρ;mð1þpℑρ;mÞÞðψℜ
z;mð1þpℜz;mÞþ iψℑ

z;mð1þpℑz;mÞ
� �

κ� κℜmð1þpℜκ;mÞþ iκℑmð1þpℑκ;mÞ
� �

ð86Þ

The linearization of these equations for each wave number κ is
performed keeping only the first terms of the partial derivatives
shown below:

~F
corr
ρρ � ~F ρρþ ∑

M

m ¼ 1

∂ ~F ρρ
∂pℜκ;m

pℜκ;mþ ∂ ~F ρρ
∂pℜρ;m

pℜρ;mþ ∂ ~F ρρ
∂pℑκ;m

pℑκ;mþ ∂ ~F ρρ
∂pℑρ;m

pℑρ;m

 !

ð87Þ

~F
corr
zz � ~F zzþ ∑

M

m ¼ 1

∂ ~F zz

∂pℜκ;m
pℜκ;mþ ∂ ~F zz

∂pℜz;m
pℜz;mþ ∂ ~F zz

∂pℑκ;m
pℑκ;mþ ∂ ~F zz

∂pℑz;m
pℑz;m

 !

ð88Þ

~F
corr
ρz � ~F ρzþ ∑

M

m ¼ 1

∂ ~F ρz
∂pℜκ;m

pℜκ;mþ ∂ ~F ρz
∂pℜρ;m

pℜρ;mþ ∂ ~F ρz
∂pℜz;m

pℜz;mþ…

∂ ~F ρz
∂pℑκ;m

pℑκ;mþ ∂ ~F ρz
∂pℑρ;m

pℑρ;mþ ∂ ~F ρz
∂pℑz;m

pℑz;m

0
BB@

1
CCA ð89Þ

Applying a technique of constrained linear least-squares at
each iteration allows limiting the maximum value of p-values to
maintain the validity of the linearization and incorporating the
appropriate restrictions to maintain the exact values for the
doubly-asymptotic condition related with Eqs. (65) and (66). The
contribution of the Rayleigh waves propagation mode is finally
added to the adjusted modal basis.

Physical matrices of the half-space are obtained by adding
auxiliary degrees of freedom in order to accommodate the varia-
tion of the flexibility components in the wave number domain as
was done for the layers matrices. An alternative to adding the
auxiliary degrees of freedom is as follows:

~Ψ ¼
Ψ
I 0
� �" #

ð90Þ

where the identity and zero matrices must have the appropriate
dimensions so that the extended mode shapes matrix have a
square shape. The complete half-space stiffness matrices can then
be obtained as:

K
� hs

A ¼ �Ψ
� �T

ΛΨ
� �1

K
� hs

B ¼Ψ
� �T

Ψ
� �1

ð91Þ

Transforming the auxiliary degrees of freedom, half-space
matrices take the following form:

ð92Þ

ð93Þ

The mathematical structure of these matrices is similar to
those of the layers, so that their assembly leads to the complete
profile matrices. Fig. 3 shows the quality of fit obtained with the
described procedure.

3.3. Eigenvalue problem of the soil profile stiffness matrix

The stiffness matrix of the complete soil profile is obained by
assembling physical matrices of layers given by Eqs. (27) and (28)
with those of the half-space by Eqs. (92) and (93). The contribution
to the flexibility of a generic mode m of the second-order
approximation (thin-layer method) can be expressed as a combi-
nation of two modes of the first-order approach proposed in the
present work. These two groups of modes for SV-P waves are
related by:

~Fm ¼
ψρ;m i ψρ;m

ψ z;m � i ψ z;m

" #
κ�κm 0

0 κþκm

" #�1 ψρ;m ψ z;m

i ψρ;m � i ψ z;m

" #
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¼ 1
κ�κm

ψ2
ρ;m ψρ;mψ z;m

ψ z;mψρ;m ψ2
z;m

2
4

3
5þ 1

κþκm

�ψ2
ρ;m ψρ;mψ z;m

ψ z;mψρ;m �ψ2
z;m

2
4

3
5

¼ 1
κ2�κ2m

ðκþκmÞ
ψ2
ρ;m ψρ;mψ z;m

ψ z;mψρ;m ψ2
z;m

2
4

3
5

0
@

þðκ�κmÞ
�ψ2

ρ;m ψρ;mψ z;m

ψ z;mψρ;m �ψ2
z;m

2
4

3
5
1
A

¼ 2κm
κ2�κ2m

ψ2
ρ;m κ=κm � ψρ;mψ z;m

κ=κm � ψ z;mψρ;m ψ2
z;m

2
4

3
5

¼ 1
κ2�κ2m

ϕ2
ρ;m κ=κm �ϕρ;mϕz;m

κ=κm �ϕz;mϕρ;m ϕ2
z;m

2
4

3
5 ð94Þ

where

ϕρ;m ¼
ffiffiffiffiffiffiffiffiffi
2κm

p
� ψρ;m

ϕz;m ¼
ffiffiffiffiffiffiffiffiffi
2κm

p
� ψ z;m ð95Þ

This relationship between first and second-order modes is
identical to that of the Rayleigh waves propagation mode given
by Eq. (60).

A particular feature of the first-order approximation is that the
eigenvalues of the soil profile appear in the four quadrants of the

complex plane, unlike the second-order approximation where it is
possible to “choose” the eigenvalues with non-positive imaginary
part (3rd and 4th quadrants). However, the contribution
to the spatial response of the second-order mode in Eq. (94) is
identical to the combination of the two first-order associated
modes, expressing the contribution of the mode with eigenvalues
with non-positive imaginary part through a Hankel function of
second kind, and that of the mode with eigenvalue with positive
imaginary part through a Hankel function of first kind, as shown in
[10].

Another characteristic of the approach proposed here is that
not all modes have an associate mode with an eigenvalue with the
opposite sign. These single modes are required to reproduce the
exact coefficients for κ-1, and to achieve the capacity to
adequately represent the static response of the soil profile.

Note that material hysteretic damping β may be introduced
through the eigenvalues:

κn

m ¼ κm
1þ iβm

� � ð96Þ

The relationship between dimensional and non-dimensional
modal parameters is:

sm ¼ ω
VS
κm φm ¼ 1ffiffiffi

ρ
p

VS
ψm ð97Þ
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Fig. 3. Approximation of the exact components of the half-space stiffness (ν¼1/3).

M.A. Ceballos, C.A. Prato / Soil Dynamics and Earthquake Engineering 67 (2014) 273–289 281



The soil profile flexibility given by Eq. (8) at the jth interface
results:

FðkÞj ¼

∑
M

m ¼ 1

φ2
ρ;m

k�sm
0 ∑

M

m ¼ 1

φρ;m φz;m

k�sm

0 ∑
N

n ¼ 1

φ2
θ;n

k�sn
0

∑
M

m ¼ 1

φz;m φρ;m

k�sm
0 ∑

M

m ¼ 1

φ2
z;m

k�sm

2
66666666664

3
77777777775

ð98Þ

while for the static case this flexibility is:

FðkÞj
		
ω ¼ 0 ¼

1
k

∑
M

m ¼ 1
φ2
ρ;m 0 ∑

M

m ¼ 1
φρ;m φz;m

0 ∑
N

n ¼ 1
φ2
θ;n 0

∑
M

m ¼ 1
φz;m φρ;m 0 ∑

M

m ¼ 1
φ2

z;m

2
6666666664

3
7777777775

ð99Þ

4. Spatial response for three-dimensional problems

The capacity of the proposed formulation to describe the
response of a soil profile to different loads is analyzed through
comparisons with known exact solutions (see Kausel [11]) and
numerical solutions obtained with a commercial program based
on the thin-layer method.

4.1. Point loads

The first kind of analyzed cases is that of harmonic point loads
at the surface of different soil profiles. For a vertical point load,

matrices C and T of Eqs. (3) and (4) take on the form (μ¼0):

C ¼
� J1ðkρÞ 0 0

0 � J1ðkρÞ 0
0 0 � J0ðkρÞ

2
64

3
75 T ¼

1 0 0
0 0 0
0 0 1

2
64

3
75 ð100Þ

The transformation of the corresponding load to the wave
number domain leads to:

P1 ¼
δðρÞ
ρ

0
0
1

2
64

3
752P1 ¼ � 1

2π

0
0
1

2
64

3
75 ð101Þ

where δ(ρ) is the Dirac delta function. The static displacements at
the surface according to (99) are:

U1 ¼ � 1
2π

1
k

∑
M

m ¼ 1
φρ;mφz;m

0

∑
M

m ¼ 1
φ2

z;m

2
6666664

3
7777775
2U1 ¼

1
2π

R1
0 J1ðkρÞdk� ∑

M

m ¼ 1
φρ;m φz;m

0R1
0 J0ðkρÞdk� ∑

M

m ¼ 1
φ2

z;m

2
6666664

3
7777775
ð102Þ

Therefore, the vertical displacement at the surface is:

Uz;1 ¼
1
2π

1
ρ

∑
M

m ¼ 1
φ2

z;m ð103Þ

According to the restriction imposed by Eq. (66) for a homo-
geneous half-space, the summation term in (103) is:

∑
M

m ¼ 1
φ2

z;m ¼ 1
2ð1�α2Þ

1

ρV2
S

ð104Þ

and therefore:

Uz;1 ¼
1

4πð1�α2Þ
1

ρV2
S

1
ρ

ð105Þ

This result is also found in classic books of elastodynamics such
as Ewing et al. [12].

The dynamic displacements at the surface according to (98) are
given by:

U ¼ � 1
2π

∑
M

m ¼ 1

φρ;m φz;m

k�sm
0

∑
M

m ¼ 1

φ2
z;m

k�sm

2
6666664

3
7777775
2U ¼ 1

2π

UρzðρÞ
0

UzzðρÞ

2
64

3
75 ð106Þ

UρzðρÞ ¼ ∑
M

m ¼ 1
φρ;mφz;m

Z 1

0

kJ1ðkρÞ
k�sm

dk ð107Þ

UzzðρÞ ¼ ∑
M

m ¼ 1
φ2

z;m

Z 1

0

kJ0ðkρÞ
k�sm

dk ð108Þ

Integrals in (107) and (108) for Re(sm)r0 are:R1
0

kJ1ðkρÞ
k� sm

dk¼ sm 1�π
2 H1ð�smρÞ�Y1ð�smρÞ
� �� �

R1
0

kJ0ðkρÞ
k� sm

dk¼ 1
ρþπsm

2 H0ð�smρÞ�Y0ð�smρÞ
� �

8<
: ð109Þ

while for Re(sm)40, starting from Eq. (94), they are found to be:

where q¼1 is for eigenvalues in the first quadrant, and q¼2 is for
the fourth quadrant including the positive real axis.

In the case of a horizontal point load, matrices C and T in Eqs.
(3) and (4) take on the form

(μ¼1):

C ¼
J0ðkρÞ� J1ðkρÞ=ðkρÞ J1ðkρÞ=ðkρÞ 0

J1ðkρÞ=ðkρÞ J0ðkρÞ� J1ðkρÞ=ðkρÞ 0
0 0 � J1ðkρÞ

2
64

3
75

T ¼
cos ðθÞ 0 0

0 � sin ðθÞ 0
0 0 cos ðθÞ

2
64

3
75 ð111Þ

The transformation of the corresponding load to the wave
number domain leads to:

P ¼ δðρÞ
2πρ

cos ðθÞ
� sin ðθÞ

0

2
64

3
752P ¼ 1

2π

1
1
0

2
64
3
75 ð112Þ

R1
0

kJ1ðkρÞ
k� sm

dk¼ 2
R1
0

k2 J1ðkρÞ
k2 � s2m

dk� R10 kJ1ðkρÞ
kþ sm

dk¼ ð�1Þq�1iπsmH
ðqÞ
1 ðsmρÞþsm 1� π

2 H1ðsmρÞ�Y1ðsmρÞð Þ� �
R1
0

k J0ðkρÞ
k� sm

dk¼ 2sm
R1
0

k J0ðkρÞ
k2 � s2m

dkþ R10 k J0ðkρÞ
kþ sm

dk¼ ð�1Þq�1iπsmH
ðqÞ
0 ðsmρÞþ1

ρ�πsm
2 H0ðsmρÞ�Y0ðsmρÞð Þ

8><
>: ð110Þ
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The dynamic displacements at the surface are calculated as:

U ¼ 1
2π

∑
M

m ¼ 1

ϕ2
ρ;m

k�sm

∑
N

n ¼ 1

ϕ2
θ;n

k�sn

∑
M

m ¼ 1

ϕz;mϕρ;m

k�sm

2
66666666664

3
77777777775
2U ¼ 1

2π

UρxðρÞ � cos ðθÞ
UθxðρÞ � sin ðθÞ
UzxðρÞ � cos ðθÞ

2
64

3
75 ð113Þ

UρxðρÞ ¼ ∑
M

m ¼ 1
ϕ2
ρ;m

Z 1

0

k J0ðkρÞ
k�sm

dk�1
ρ

Z 1

0

J1ðkρÞ
k�sm

dk
� 

þ ∑
N

n ¼ 1
ϕ2
θ;n

1
ρ

Z 1

0

J1ðkρÞ
k�sn

dk

ð114Þ

UθxðρÞ ¼ ∑
N

n ¼ 1
ϕ2
θ;n

1
ρ

Z 1

0

J1ðkρÞ
k�sn

dk�
Z 1

0

k J0ðkρÞ
k�sn

dk
� 

� ∑
M

m ¼ 1
ϕ2
ρ;m

1
ρ

Z 1

0

J1ðkρÞ
k�sm

dk

ð115Þ

UzxðρÞ ¼ � ∑
M

m ¼ 1
ϕz;mϕρ;m

Z 1

0

k J1ðkρÞ
k�sm

dk ð116Þ

Comparing (107) with (116) if follows that:

UzxðρÞ ¼ �UρzðρÞ ð117Þ
The integral in (114) and (115) that does not appear in (109) is

for Re(sm)r0 given by:

Z 1

0

J1ðkρÞ
k�sm

dk¼ 1�π
2

H1ð�smρÞ�Y1ð�smρÞ
� �� 1

smρ
ð118Þ

while, after manipuating Eq. (94), it is for Re(sm)40 given by:Z 1

0

J1ðkρÞ
k�sm

dk¼ 2 sm

Z 1

0

J1ðkρÞ
k2�s2m

dkþ
Z 1

0

J1ðkρÞ
kþsm

dk

¼ ð�1Þq�1iπHðqÞ
1 ðsmρÞþ1�π

2
H1ðsmρÞ�Y1ðsmρÞ
� �� 1

smρ
ð119Þ

where q¼1 applies for eigenvalues in the first quadrant, and
q¼2 for those in the fourth quadrant including the positive
real axis.

To evaluate the accuracy of the approximation for the half-space,
Figs. 4 and 5 show the response at the surface of a homogenous
half-space for ν¼1/3 obtained for a vertical and horizontal
point load, respectively. Displacements and radial coordinates are
non-dimensionalized as:

u¼ 2π
ρ V3

S

ω
U;ρ0 ¼

ω
VS
ρ ð120Þ

The accuracy of the approximation obtained for the layers is
shown through the response at the surface of a layer supported on
a rigid half-space. Fig. 6 corresponds to the case of a layer with
non-dimensional thickness η¼0.49π for which the dynamic
flexibility coefficients do not present singularities and the imagin-
ary part of the displacements is null. The nature of response
changes starting form η¼π/2 when the layer begins to dissipate
energy by radiation. Fig. 7 corresponds to the case of a layer with
thickness η¼1.01π, where the dynamic flexibility coefficients
present two singularities associated with surface waves
propagation modes.

The exact solutions for point loads were obtained from the
exact matrices given in (11), (21) and (23). The singularities of the
flexibility coefficients are eliminated substracting the modes with
real eigenvalues obtained with FODAP. These modes are then
analytically transformed to the space domail, while the remaining
flexibility by numerical integration from κ¼0 to κ¼50, the latter

being the value of κ for which are sufficiently closed to their
assymptotic values, and analitically from κ¼50 up to infinity. The
flexibility coefficient K

hs
L may be analytically transformed without

difficulty to the space domain. It may be observed that the
approximation obtained for both analyzed profiles turns out
excellent.

4.2. Disk loads

The second kind of cases analyzed here corresponds to
harmonic distributed loads applied at a circular area on the
surface of different soil profiles. For vertical loads, matrices C
and T are identical to those of Eq. (100). The load vector in this
case is:

P1 ¼
0
0
1

2
64
3
75 2 P1 ¼ �R

k
J1ðkRÞ

0
0
1

2
64

3
75 ð121Þ

where R is the radius of the disc (circular area). The static
displacement vector at the surface results:

U1 ¼ � R

k2
J1ðkRÞ

∑
M

m ¼ 1
φρ;m φz;m

0

∑
M

m ¼ 1
φ2

z;m

2
6666664

3
7777775
↔U1 ¼

R
R1
0

J1ðkρÞJ1ðkRÞ
k dk� ∑

M

m ¼ 1
φρ;m φz;m

0

R
R1
0

J0ðkρÞJ1ðkRÞ
k dk� ∑

M

m ¼ 1
φ2

z;m

2
6666664

3
7777775

ð122Þ

Thus, the vertical displacement at the surface is:

Uz;1 ¼
2R
π Eðρ=RÞ ∑

M

m ¼ 1
φ2

z;m ρrR

2ρ
π EðR=ρÞ� 1�ðR=ρÞ2

� �
KðR=ρÞ

� �
∑
M

m ¼ 1
φ2

z;m ρZR

8>>>><
>>>>:

ð123Þ

where E and K are functions known as complete elliptic integrals
(for example, see [13]). Note that the expression for ρZR in Eq.
(123) takes the form of Eq. (105) dividing by the disk area and
taking limit for R-0.

The general form of the Hankel transform to calculate the
contribution of a generic mode of eigenvalue s to the dynamic
displacements in cylindrical coordinates is:

Vαβγðρ;R; sÞ ¼
Z 1

0

JβðkρÞJγðkRÞ
kαðk�sÞ dk ð124Þ

Response along coordinate ρ has a non-oscillating nature when
the real part of s is negative (2nd and 3rd quadrants). In this case,
the integrand has no unbounded values and the integrals are
solved numerically with good accuracy through series expansions
as shown by Hemsley [14]. The numerical solutions are based on
substitutions of the type:

J0ðkρÞJ0ðkRÞ ¼ 1
π

R π
0 J0ðkrÞdθ

J1ðkρÞJ1ðkRÞ ¼
kρR
π

Z π

0
J1ðkrÞ

sin 2θ
r

dθ ð125Þ

where

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þR2�2ρR cos θ

q
ð126Þ

The more complex integrals of (124) may be expressed in terms
of simpler integrals such as:

V001ðρ;R; sÞ ¼ 1
ρV111ðρ;R; sÞþ ∂

∂ρV111ðρ;R; sÞ
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V010ðρ;R; sÞ ¼
1
R
V111ðρ;R; sÞþ

∂
∂R

V111ðρ;R; sÞ ð127Þ

The nature of the reponse is oscillating along coordinate ρ
when the real part of s is positive (1st and 4th quadrants), and the
integrals are handled as follows. According to (94), the terms
related with the main diagonal of the flexibility matrix (direct

terms) are calculated as:

Vαβγðρ;R; sÞ ¼ 2s
Z 1

0

JβðkρÞJγðkRÞ
kαðk2�s2Þ

dkþ
Z 1

0

JβðkρÞJγðkRÞ
kαðkþsÞ dk ð128Þ

while the terms related with the coefficients outside the main
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Fig. 5. Displacements at surface of a half-space due to a harmonic horizontal point load.
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Fig. 6. Displacements at surface of a layer due to a vertical point load (η¼0.49π).
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Fig. 4. Displacements at surface of a half-space due to a harmonic vertical point load.
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diagonal of the flexibility matrix (cross terms) are obtained
through:

Vαβγðρ;R; sÞ ¼ 2
Z 1

0

JβðkρÞJγðkRÞ
kα�1ðk2�s2Þ

dk�
Z 1

0

JβðkρÞJγðkRÞ
kαðkþsÞ dk ð129Þ

First terms of Eqs. (128) and (129) are solved analytically, while
second terms are computed numerically as performed for 2nd and
3rd quadrants. The oscillating part of these integrals is due to the
first terms, which are identical to those arising from the second-
order approach (see Kausel [15] for the solution of some of these
integrals).
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Fig. 8. Dynamic flexibility components of a rigid disc with relaxed boundary conditions.
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The flexibility of the rigid circular plates resting on different
soil profiles is calculated by inversion of the stiffness matrix
obtained with the ring method ([16]). Reponse for each anular
load is obtained as the difference between that of two disks of
different diameter subject to uniform load of different sign. Since
the stresses have a singularity at the disk edges, the ring widths
are gradually reduced near the edges to smoothen the effect of
such unbounded value. In the analyzed cases, 50 rings are used.
The excitation frequency is defined as:

Ω¼ R
VS

�ω ð130Þ

where VS is the shear wave velocity at the free surface. All cases are
for ν¼1/3.

In the first analysed cases, relaxed boundary conditions are
assumed for the compatibility conditions at the center of the rings,
thus allowing a comparison of results between the proposed
formulation to the exact ones presented by Luco and Westman
[17]. Some valuable details associated with the numerical evaluation
of these curves were present by Veletsos andWei [18], andWei [19].
In fact, to obatin the flexibility component αρρ it is required a
special treatment for the numerical integration of functions with
singularities and discontinuities, so have been taken for this case
the values tabulated in these last works. Fig. 8 shows the excellent
agreement between the exact solutions and those provided
by FODAF.

At this point it is considered worthwhile to remark some
difficulties of the TLM to adequately represent the elastic half-
space. With this aim, the dynamic flexibility of disks obtained
with the commercial program SASSI [20], which is based
precisely on the TLM, are presented in what follows, assuming
welded contact for the compatibility conditions at the center of
the rings.

Three different cases are analyzed: (1) homogeneous half-
space, (2) homogeneous stratum of thickness equal to the disk
diameter, resting on a rigid half-space, and (3) same as Case 2 but
with an elastic half-space of shear wave velocity equal to 2.5 times
that of the stratum.

Figs. 9–11 present a comparison of the flexibility curves, where
non-dimensional form is adopted with reference to the static
flexibility of Case 1. In general, very good agreement is obtained
for all cases. The αρρ component in Case 1 for the homogeneous
half-space presents oscillations about values obtained with FODAF.
Components αzz and αθθ show for high frequencies differences in
the real part that reach up to a factor of about 2. Nevertheless,
these differences are much smaller when the comparison is drawn
on the basis of the modulus of the flexibility due to the influence
of the imaginary part in those frequencies. It is worth pointing out
that no radiation damping is found in Case 2 for frequencies below
the fundamental frequency of the stratum, as represented by zero
imaginary part of αρρ for frequencies below Ω¼π/4, and less
rigorously for αzz and αθθ for frequencies below Ω¼π/2.
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Fig. 9. Dynamic flexibility components for Case 1.
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Of particular interest is the location of the soil profile eigenva-
lues in the complex plane for different excitation frequencies.
Fig. 12 shows the eigenvalues for Case 3 for SV-P waves and
excitation frequencies in the range 0–5 with increments of 0.25.
The left part of Fig. 12 shows the general pattern of eigenvalues,
while the right part is a blow-up of the same graphic near the
origin. First quadrant eigenvalues corresponding to oscillating
modes are relatively few and are far from the positive real axis,
so that the corresponding modes attenuate quickly away from the
source in the spatial domain. Eigenvalues on the positive real axis
should be considered belonging to the 4th quadrant and corre-
spond to oscillating modes that attenuate only due to radiation
damping. The correct separation between eigenvalues of the 1st
and 4th quadrant is mandatory due to abrupt changes in the
solution of integrals (128) and (129). This effect is due to the real
part of these solutions is symmetric about the real axis, while the
imaginary part is anti-symmetric taking on non-zero values near
the positive real axis. The approximation of the half-space stiffness
may generate small numerical inaccuracies that send some eigen-
values from the positive real axis to the first quadrant, therefore it
is necessary to eliminate the imaginary part of these eigenvalues
to force them to contribute to the correct solution. The observa-
tions made above about this case are representative of what
happens in the other cases.

5. Conclusions

An approximate formulation to the direct stiffness method has
been presented that provides an alternative to the thin-layer
method using first-order modal parameters instead of second-
order ones, and in so doing results doubly-asymptotic in nature
since it tends to the exact solution for wave numbers tending both
to zero and to infinity. In this formulation, as in the exact solution,
the stiffness coefficients of the underlying half-space are complex
retaining the capacity to represent radiation damping without the
need to consider artificial additional terms. The proposed formula-
tion is more accurate as compared to previously available alter-
natives, and also allows obtaining the static solution as a
particular case.

Exact solutions and rigid disk examples resting on typical
soil profiles illustrate excellent capacity to represent the known
exact solution cases, suggesting the potential of this formulation
for application in other more complex elastodynamic problems.
Other potential applications of the proposed approach are:
(a) site characterization by wave propagation methods, (b) wave
amplification through layered media, (c) determination of the
dynamic stiffness of rigid foundations for a wide range of fre-
quencies, and (d) study of dynamic soil–structure interaction
problems.
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Fig. 10. Dynamic flexibility components for Case 2.
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Fig. 11. Dynamic flexibility components for Case 3.
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