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How to know the fungi:
combining field inventories and
DNA-barcoding to document
fungal diversity

How many fungi?

The fungi kingdom is among the most diverse eukaryotic lineages
on Earth with estimates of several million extant species (O’Brien
et al., 2005; Blackwell, 2011; Taylor et al., 2014). Fungi play
critical roles in carbon andnutrient cycling of terrestrial and aquatic
ecosystems, and they are important pathogens and mutualists
(Read & Perez-Moreno, 2003; Taylor et al., 2012; Grossart et al.,
2016). More than 80% of plant species form symbioses with fungi
and these symbioses have been crucial to the colonization of
terrestrial ecosystems (Field et al., 2015a; Selosse et al., 2015).
Despite their impacts on primary ecosystem functions, assessments
of fungal biodiversity estimate that only c. 10% of fungal species
have been described (Bass & Richards, 2011; Hibbett et al., 2011).

Traditionally, specimen-based taxonomic studies have been the
only way to discover new species. Because most fungi have
microscopic life-stages and convergent morphological features
(Rivas-Plata & Lumbsch, 2011; Wynns, 2015), many fungal
groups remain severely undersampled. DNA-barcoding and high-
throughput sequencing methods have provided a new framework
for studying fungal biodiversity (Fierer et al., 2012; Schoch et al.,
2012; Myrold et al., 2014), and diversity estimates based on
environmental sequences have increased exponentially. Although
these ‘sequence-based classification and identification’ methods are
a powerful means to rapidly detect hidden diversity, careful
interpretation of these data is needed to make accurate inferences
(K~oljalg et al., 2013; Lindahl et al., 2013; Nguyen et al., 2015;
Hibbett et al., 2016). In particular, many environmental sequences
cannot be associated with a known fungal species or lineage. This
remains a major challenge to decipher fungal community compo-
sition and understand ecological roles of fungi in leaf litter, soil, or
inside plants (Yahr et al., 2016). In some cases, these fungi are truly
undescribed and their ecological roles are unknown but in other
cases they represent described taxa for which no sequence is
available (Nagy et al., 2011; Nilsson et al., 2016). DNA barcoding
of herbarium specimens and culture collections is extremely
valuable to link unidentified sequences to known taxa (e.g. Brock
et al., 2009; Nagy et al., 2011; Osmundson et al., 2013; Garnica
et al., 2016).DNA sequences have been generated from fungal type
specimens > 200 years old (Larsson & Jacobsson, 2004), but in

many cases obtaining sequences from historical material is
challenging (Dentinger et al., 2010).

Today’s threats to biodiversity from habitat loss and climate
change are occurring at an unprecedented scale, and it is possible
that many species may become extinct before they have been
discovered (Costello et al., 2013; Monastersky, 2014). In the need
to describe and protect as many species as possible we addressed the
following questions: what are the best methods to rapidly
document fungal biodiversity? Are traditional, specimen-based
approaches still useful?

Exploring the unknown

The Southern Hemisphere harbors many unique fungal lineages
that are absent from theNorthernHemisphere (Tedersoo&Smith,
2013; Tedersoo et al., 2014). In southern South America, recent
studies based on environmental sequences have detected several
previously unknown fungal lineages, thereby demonstrating that
fungal diversity is probably much higher than presently known
(Nouhra et al., 2013; Geml et al., 2014; Roy et al., 2017).

As part of a project investigating ectomycorrhizal (ECM) fungi
of southern SouthAmerica, our team collected 1430 fungal fruiting
bodies during four collecting expeditions, equaling c. 50 dwith 3–4
collectors per day (Supporting Information Methods S1). We
primarily collected ECM fungi in temperate forests dominated by
Nothofagaceae but also opportunistically collected nonECM
fungi. Vouchered specimens were photographed and dried for
future study. Internal transcribed spacer rDNA sequences (ITS, e.g.
ITS1-5.8S-ITS2) were obtained from a representative selection of
957 specimens using the Extract-N-AmpPlant kit (Sigma-Aldrich)
for rapid DNA extraction and amplification. ITS sequences were
clustered into operational taxonomic units (OTUs) at 97–99%
similarity against the UNITE ‘species hypothesis’ dynamic
database (Abarenkov et al., 2010a; K~oljalg et al., 2013) using
QIIME 1.9.1 (Caporaso et al., 2010). Sequences that did not
correspond to an existing ‘species hypothesis’ in the reference
database were subsequently clustered de novo at 97% similarity
(Methods S1). One representative sequence per OTU was
subsequently compared to UNITE+INSD (UNITE and the
International Nucleotide Sequence Databases) using MEGABLAST

on the PLUTOF workbench (Abarenkov et al., 2010b).
We generated 439OTUs (Table S1), of which 308 (c. 70%) did

notmatch theUNITEdynamic database at 97–99%similarity, and
thus did not correspond to any of the ‘species hypothesis’ currently
in UNITE. The efforts of our research group were modest when
compared to the high volume and novelty of the data. Although
most of these ITS sequences were generated by our research team
over a two-year period, they correspond to c. 1.5% of the total
diversity in UNITE (19 698 representative sequences in v.7.1,
August 2016). Comparisons between our dataset and the full
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UNITE database (which also includes singleton sequences) did not
alter the number of newOTUswe detected. For comparison, in the
one-yearperiodbefore this study (betweenAugust 2015andAugust
2016) the global efforts of the scientific community contributed
only 360 unique ‘species hypotheses’ to the UNITE database.

Working with fresh specimens was extremely efficient. The
Extract-N-Amp method rapidly generated ITS sequences with a
success rate of c. 80% (including extraction, amplification and
sequencing). The success rate improved to c. 90%when partial ITS
sequences (e.g. ITS1 + 5.8S only) were included. Success rate of
DNA sequencing varies among fungal groups, according to the age
of specimens, and based on how they were preserved. Sequencing
from type specimens and important historical collections remains
the gold standard to link DNA sequences to species names (e.g.
Liimatainen et al., 2014; S�anchez-Garc�ıa et al., 2014; Schoch et al.,
2014). However, generating sequence data from historical vouch-
ers may be challenging in some groups (25–50% success rate for
specimens > 10 years old according to Dentinger et al., 2010).
Working with old herbarium specimens is also more time-
consuming and sensitive to contamination. It is thus more
expensive because it requires more rigorous DNA extraction and
purification procedures as well as PCR troubleshooting (Brock
et al., 2009; Osmundson et al., 2013). For generating high
throughput data, fresh or recently collected specimens are clearly
advantageous when compared to preserved herbarium materials.

Morphological examination of specimens combined with BLAST

searches helped identify most vouchers to genus level (Table S1).
Thirty-two OTUs could only be identified to family (14), order
(14), or class (4), mostly because they belong to groups that require
extensive systematic revision (e.g. Helotiales). Due to our focus on
Nothofagaceae-dominated forests, we collected mostly ECM
species (66%), but also many saprobes (31%), and fungi for which
the trophic mode is unknown (3%). Agaricales (Basidiomycota)
were diverse, abundant, easily sampled and therefore conspicuous
in our dataset (Fig. 1c). We also found a large number of Pezizales

and Helotiales (Ascomycota), many of which had low similarity to
any known sequences.Within Agaricales, Cortinarius was the most
diverse genus in both species richness and abundance, constituting
c. 33% of all OTUs (Fig. 1c). The high diversity of Cortinarius
lineages corroborates previous studies carried out in other
southern temperate forests with Nothofagaceae (Tedersoo et al.,
2008; Dickie et al., 2009; Nouhra et al., 2013; Fernandez et al.,
2015; Horton et al., 2017). In addition, our dataset revealed
surprisingly high species diversity in some fungal lineages where
only a handful of species have been described from South America
(e.g. /austropaxillus, /descolea – Peintner et al., 2001; Skrede et al.,
2011). Similar to previous results based on ECM root tips
(Nouhra et al., 2013), we detected relatively low diversity in
several ECM lineages that are hyperdiverse in other regions of the
world (e.g. /amanita, /boletus, /russula-lactarius). We also found
several Northern Hemisphere exotic species in South American
Nothofagaceae forests, including Inocybe ochroalba (MES1236),
Hebeloma mesophaeum (MES1358) and Amanita muscaria
(MES1647). All three of these taxa putatively fall into the category
of ‘introduced species that spread to local hosts’ as outlined by
Vellinga et al. (2009). Evidence of a native South American
Inocybe species (MES1895) fruiting in pure Pseudotsuga planta-
tions suggests that this species may be a potential invasive species
in the Northern Hemisphere. We are actively engaged in
taxonomic work to compare our collections with described species
and formally describe novel taxa (Kneal & Smith, 2015;
Trierveiler-Pereira et al., 2015; Kumar et al., 2017).

Approximately one quarter of our OTUs (Fig. 1a, 23–32%
according to percent BLAST similarity) matched environmental
sequences in UNITE+INSD with no available voucher specimen
(Table S1; note that in some cases the closest BLAST match was a
GenBank sequence with no corresponding UNITE ‘species
hypothesis’). In addition, 43 OTUs were < 90% similar to any
ITS sequence in UNITE+INSD. It is likely that our assessments
may still underestimate the total number of species in some groups

(a) (b) (c)

Fig. 1 BLAST sequence similarity of the operational taxonomic units (OTUs) generated by our collections with the UNITE+INSD sequence database (a): OTUs
with a closest match to a vouchered specimen are in blue whereas those with a closest match to an environmental sequence are in orange. Geographic
distribution of the closest BLAST matches from the UNITE+INSD sequence database (b): most OTUs had a closest BLAST match from South America (grey) or
Australasia (dark green), with fewer BLAST matches from other regions (light green); number of corresponding OTUs in white. Phylogenetic affiliations of the
OTUs generated in this study depicted by taxonomic order (c): Basidiomycota (blue colors) were highly abundant whereas Ascomycota (orange colors) and
Mucoromycota (green and yellow) were less frequent. The species-rich order Agaricales includes many genera but was dominated by the genus Cortinarius
(grey), which comprised 147 OTUs and represented 33% of the diversity in our dataset.

New Phytologist (2017) � 2017 The Authors

New Phytologist� 2017 New Phytologist Trustwww.newphytologist.com

LetterForum

New
Phytologist2



(a)

(b)

Fig. 2 Maximum likelihood phylogenies with thick bars indicating bootstrap support (BS) ≥ 70 and corresponding posterior probabilities (PP) ≥ 0.95 from
Bayesian analysis (in black); BS≥ 60andPP≥ 0.90 (in grey). Phylogenetic placementof novel plant-associated fungi fromsouthernSouthAmerica basedon18S
and 28S rDNA showing (a) the phylogenetic placement of two novel Tremellodendropsis species (in bold) in the order Tremellodendropsidales
(/agaricomycetes1 in Tedersoo& Smith, 2013); and (b) the phylogenetic placement of an ‘Endogone-like’ specimen (in bold) in the Sphaerocreas-Densospora
clade within the Mucoromycotina. Environmental sequences of fungal symbionts were detected from liverworts (black circles), hornworts (grey circles),
ectomycorrhizal or ‘arbuscular-like’ roots of vascular plants (white circles).
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for which ITS is very similar among divergent species, for example
many Cortinarius species (Ryberg, 2015; Garnica et al., 2016).
Most OTUs (46%) matched sequences originating from South
America, but c. 20% had a closest match to a sequence from
Australasia (Fig. 1b), highlighting both the shortage of sequences
from South America and the historical biogeographic connection
of these two regions. This biogeographic pattern was particularly
striking within some fungal lineages. For example, we found the
first evidence of truffle-like species of Ruhlandiella, Amylascus and
Gymnohydnotrya (Pezizales) in South America, despite the fact that
described members of these genera are so far known only from
Australasia (Table S1).

Examples of novel plant-symbiotic fungi

Among the 309uniqueOTUsdetected,we identified two examples
of distinctive plant-associated fungi that illustrate the exciting data
generated from our collections. In the first case, we collected two
small coralloid fungal specimenswhose ITS sequences (KY462416,
KY462417)were c. 80%similar toeachother.Theclosest ITSBLAST

matches for these twoOTUswere sequences fromECMroot tips of
Nothofagaceae that corresponded to an anomalous ECM lineage
identified by Tedersoo & Smith (2013) as /agaricomycetes1. We
subsequently sequenced 18S and 28S rDNA (Methods S1) and
found that these specimens are phylogenetically affiliated with
Tremellodendropsis tuberosa (Fig. 2a). Berbee et al. (2016) recently
showed that T. tuberosa belongs to a unique Agaricomycete lineage
in the order Tremellodendropsidales. Our rDNA phylogenies
suggest that Tremellodendropsidales includes diverse ECM
fungi that associate with a wide range of angiosperms (including
Fagus, Eucalyptus, Lithocarpus, andNothofagaceae) across the globe
(Figs 2a, S1; Table S2). Together with T. tuberosa, our vouchered
specimens will provide new insights into the morphology and
ecology of this group. They will also allow the description of new
species and provide fresh material for the phylogenomic placement
of Tremellodendropsidales within the Agaricomycetes.

A second case of unique plant-associated fungi was an Endogone-
like specimen (KY462475) whose closest ITS BLAST matches are
fungal symbionts of nonvascular plants (liverworts and hornworts –
Bidartondo et al., 2011; Desiro et al., 2013; Yamamoto et al.,
2015) with no corresponding fungal specimens.We generated 18S
and 28S rDNA sequences and placed this OTU in theMucoromy-
cotina (Fig. 2b; Table S2). Our specimen is nested in a large clade
composed of multiple lineages, including specimens ofDensospora
solicarpa fromAustralia and Sphaerocreas pubescens from Japan.The
Sphaerocreas-Densospora clade is sister to the Endogonales, which
comprises Endogone species and additional sequences of early-
diverging plant symbionts. Somemembers of the Endogonales and
the Sphaerocreas-Densospora clade are associated with early-
diverging plants (Bidartondo et al., 2011; Desiro et al., 2013),
whereas others are ectomycorrhizal (Yamamoto et al., 2015, 2016)
or ‘arbuscular-like’ symbionts of vascular plants (Orchard et al.,
2016). These fungi have recently been documented from many
hosts, habitats, and geographic locations, suggesting that the
diversity of species and trophicmodes ofMucoromycotina is much
higher than previously understood. Because of their inconspicuous

habit and the difficulties with culturing and DNA sequencing
(Berch & Fortin, 1983; Tedersoo et al., 2016; Yamamoto et al.,
2016), these fungi remain poorly represented in sequence
databases, culture collections and herbaria, despite the growing
evidence that species of Mucoromycotina may have played critical
roles in the early colonization of terrestrial habitats (Strullu-
Derrien et al., 2014; Field et al., 2015b, 2016; Rimington et al.,
2015).

Back to the basics: the power of a collect-and-
sequence approach

The examples mentioned earlier are among the most illustrative in
our dataset but are by no means the only discoveries. They
demonstrate that systematic collecting, documenting, and
sequencing from fresh specimens in undersampled regions are
efficient and viable methods to capture unknown fungal diversity
and provide substantial improvements to publicDNA repositories.
This approach is particularly relevant to ‘fill the gap’ of knowledge
from geographic regions where comparatively fewer collections
exist (e.g. South America – Roy et al., 2017) and this remains an
efficient approach to obtain new fungal data at any site.

Although environmental sequencing can rapidly detect diversity
and elucidate ecological patterns, these approaches depend on
informative sequence databases for fungal identification (Costello
et al., 2013). Due to our current lack of knowledge, a large portion
of environmental sequences cannot be identified at a meaningful
taxonomic level (Nilsson et al., 2016). There is currently a
movement to identify and classify fungi known only from
sequences (Hibbett et al., 2016). Although we agree that it is
critical to compile and validate high-quality environmental
sequences, we nonetheless argue that ‘traditional’ methods should
be considered irreplaceable and complementary to ‘next-
generation’ approaches. Unfortunately, in the quest for cutting-
edge science it is sometimes the case that ‘traditional’ methods are
viewed negatively by funding agencies. We argue that, along with
barcoding herbarium collections, high-throughput collect-and-
sequence inventories are highly effective to document fungal
diversity and are instrumental for future studies of plant–fungal
symbioses. Herbarium vouchers provide much more than just
DNA barcodes. Fresh well-documented specimens remain critical
to reconstruct robust phylogenies, link sequence data to morphol-
ogy, and supply ecological data on hosts and substrate associations
(Peay, 2014). Specimens can also be used for stable isotopic
analyses (Hobbie et al., 2001) and genomic studies (Tedersoo et al.,
2016) in a way that environmental samples cannot. Given the
increasing threats to biodiversity from habitat loss and climate
change, responsibly collecting vouchered specimens with asso-
ciated data and openly sharing these resources are more
necessary today than ever before (Costello et al., 2013; Rocha
et al., 2014).
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