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Résumé. Soit (D, Jat) un site atomique et j : Sh(D, Jat)→ D̂ le topos
des faisceaux associé. Tout foncteur φ : C → D induit un morphisme
géométrique Ĉ → D̂ et, en prenant le produit fibré le long de j, un mor-
phisme géométrique q : F → Sh(D, Jat). Nous donnons une condition
suffisante sur φ pour que q satisfasse le Nullstellensatz et la Cohésion
Suffisante au sens de la Cohésion Axiomatique. Ceci est motivé par les
exemples où Dop est une catégorie d’extensions finies d’un corps.

Abstract. Let (D, Jat) be an atomic site and j : Sh(D, Jat)→ D̂ be
the associated sheaf topos. Any functor φ : C → D induces a geometric
morphism Ĉ → D̂ and, by pulling-back along j, a geometric morphism
q : F → Sh(D, Jat). We give a sufficient condition on φ for q to satisfy the
Nullstellensatz and Sufficient Cohesion in the sense of Axiomatic Cohesion.
This is motivated by the examples where Dop is a category of finite field
extensions.
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1. Introduction and outline

The first paragraph of Section II in [13] explains that the contrast of cohesion
with non-cohesion (expressed by a geometric morphism p : E → S with cer-
tain special properties) can be made relative, so that S may be an ‘arbitrary’
topos. The inverted commas should be taken seriously because reasonable
hypotheses on the geometric morphism p imply strong restrictions on the
base S. Having said this, the base is not forced to be the category Set of
sets and functions. As an example, it is proposed loc. cit. that in the case
of algebraic geometry the base topos S may be usefully taken as the Ga-
lois topos of Barr-atomic sheaves on finite extensions of the ground field.
What does ‘usefully’ mean here? To give a concrete idea let E be the (Gros)



Zariski topos of a field k. If k is algebraically closed, the canonical geomet-
ric morphism E → Set satisfies certain simple intuitive axioms (formalized
in Definitions 1.1 and 1.3 below). These axioms do not hold if k is not
algebraically closed, but may be restored by changing the base as suggested.

The purpose of the present paper is to give a detailed construction of
sufficiently cohesive pre-cohesive toposes over Galois bases. We recall some
of the basic definitions and results but the reader is assumed to be familiar
with [13]. (See also [12, 9].) For general background on topos theory see
[16, 7] and for atomic toposes in particular see also [3].

Let E and S be cartesian closed extensive categories.

Definition 1.1. The category E is called pre-cohesive (relative to S) if it is
equipped with a string of adjoint functors

E
p!
��

p∗
��

S

p∗

OO

p!

OO

with p! a p∗ a p∗ a p! and such that:

1. p∗ : S → E is full and faithful.

2. p! : E → S preserves finite products.

3. (Nullstellensatz) The canonical natural transformation θ : p∗ → p! is
(pointwise) epi.

For brevity we will say that p : E → S is pre-cohesive. The notation is
devised to be consistent with that for geometric morphisms. Indeed, if E
and S are toposes then the functors above determine a geometric morphism
p : E → S with direct image p∗. On the other hand, if p : E → S is a geomet-
ric morphism between toposes then we call p pre-cohesive if the adjunction
p∗ a p∗ extends to one p! a p∗ a p∗ a p! making E pre-cohesive over S.

Definition 1.2. A pre-cohesive p : E → S is called cohesive if the canonical
natural p!(X

p∗W )→ (p!X)W is an iso for all X in E and W in S. (This is
the ‘continuity’ property in Definition 2 in [13].)



We still do not fully understand the Continuity property defining cohe-
sive categories and for this reason we introduce and concentrate on pre-
cohesive ones. It is relevant to stress that most of the results in [13] hold
for pre-cohesive p; Theorem 1 loc. cit. being the most important exception.

Let p : E → S be pre-cohesive. An object X in E is called connected if
p!X = 1. An object Y in E is called contractible if Y A is connected for all
A.

Definition 1.3. The pre-cohesive p : E → S is called sufficiently cohesive if
for every X in E there exists a monic X → Y with Y contractible. (We may
also say that p satisfies Sufficient Cohesion.)

Useful intuition about sufficiently cohesive categories is gained by con-
trasting them with an opposing class of pre-cohesive categories.

Definition 1.4. The pre-cohesive p is a quality type if θ : p∗ → p! is an iso.
(See Definition 1 in [13].)

In other words, p is a quality type if the (full) reflective subcategory
p∗ : S → E is a quintessential localization in the sense of [6]. Quality types
and sufficiently cohesive categories are contrasting in the precise sense given
by Proposition 3 in [13]: if p : E → S is both sufficiently cohesive and a
quality type, then S is inconsistent. (Although stated for cohesive categories,
it is clear from the proof that it also holds for pre-cohesive ones.) Loosely
speaking, Sufficient Cohesion positively ensures that E and S are decidedly
different. In particular, assuming that 0→ 1 is not an iso in S , Sufficient
Cohesion implies that p∗ : E → S cannot be an equivalence.

There are many examples of sufficiently cohesive pre-cohesive toposes
over Set, including the topos of simplicial sets and the Zariski toposes deter-
mined by algebraically closed fields. As already mentioned in the first para-
graph, the main contribution of the present paper is the detailed construction
of a class of sufficiently cohesive pre-cohesive p : E → S over toposes S
different from Set, namely the Galois toposes of (non algebraically closed)
perfect fields. The construction will make evident what is the connection
between the Nullstellensatz condition in Definition 1.1 and Hilbert’s clas-
sical result. The reader will see that each of these geometric morphisms
p : E → S is induced by the inclusion of the category of finite extensions
of a given field into a category of finitely presented algebras over the same



field. It is then reasonable to expect that the same examples can be more
directly constructed using a characterization of the morphisms of sites that
induce sufficiently cohesive pre-cohesive geometric morphisms; but since
we do not have such a characterization at present, we take a more indirect
route using some results from [8] which studies the Nullstellensatz in the
context of connected and locally connected geometric morphisms.

Notice that any string of adjoint functors p! a p∗ a p∗ : E → S with fully
faithful p∗ : E → S determines a canonical natural θ : p∗ → p! and then it
is fair to say that the string of adjoints satisfies the Nullstellensatz if θ is
epi. We will need to use this generality for such a string of adjoints given
by a connected essential geometric morphism p : E → S. (Recall that p is
connected if p∗ is full and faithful and it is essential if p∗ has a left adjoint,
typically denoted by p! : E → S.)

It is also relevant to briefly explain the relation with local connected-
ness. Recall that a geometric morphism p : E → S is locally connected if p∗

has an S-indexed left adjoint p! : E → S. Such geometric morphisms are,
of course, essential. Theorem 3.4 and Proposition 3.5 in [8] imply that if
S has a natural number object (nno) and p : E → S is bounded, connected,
locally connected and satisfies the Nullstellensatz then p is pre-cohesive.
(Connected locally connected geometric morphisms satisfying the Nullstel-
lensatz are called ‘punctually locally connected’ in [8] but we will stick to
the terminology of [13].) Reorganizing the hypotheses of these results we
obtain the following fact.

Corollary 1.5. If S has a nno and p : E → S is bounded, connected and
locally connected, then p is pre-cohesive if and only if p satisfies the Null-
stellensatz.

In the case that S = Set there is of course a stronger result because p! is
automatically indexed. Recall that a site (C, J) is locally connected if every
covering sieve is connected (as a subcategory of the corresponding slice).
Such a site is called connected if C has a terminal object.

Proposition 1.6. If p : E → Set is bounded then the following are equiva-
lent:

1. p is pre-cohesive,



2. p is connected, essential and satisfies the Nullstellensatz,

3. E has a connected and locally connected site of definition (C, J) such
that every object of C has a point.

Proof. By Corollary 1.5 above and Proposition 1.4 in [8].

We now outline the main results in the paper. In Section 2.2 we prove
the following characterization of sufficiently cohesive pre-cohesive toposes
over Set.

Corollary 1.7. Let (C, J) be a connected and locally connected site such
that every object has a point and let p : Sh(C, J)→ Set be the induced pre-
cohesive geometric morphism. Then p is sufficiently cohesive if and only if
there is an object in C with (at least) two distinct points.

There is a precedent to both results above. In the last paragraph of p. 421
of [11] Lawvere states that it follows from a remark in Grothendieck’s 1983
Pursuing Stacks that product preservation of p! and Sufficient Cohesion “will
be satisfied by a topos of M -actions if the generic individual I (= M acting
on itself) has at least two distinct points”.

A little trick will allow us to apply Corollary 1.7 to prove Sufficient Co-
hesion over other bases; so it remains to explain how to build pre-cohesive
toposes over bases that are not Set. In order to sketch the main ideas fix
a geometric morphism p : E → S, a Lawvere-Tierney topology j in S and
consider the following pullback

F
q

��

i // E
p

��

Sj j
// S

of toposes. We are interested in conditions on p and j implying that q is pre-
cohesive. Assume for simplicity that all toposes involved are Grothendieck
and that p is connected and locally connected. Then q is also connected
and locally connected by Theorem C3.3.15 in [7]. Corollary 1.5 leads us to
consider conditions on p and j implying that q satisfies the Nullstellensatz.

The pullback stability result for locally connected geometric morphisms
also shows that the (Beck-Chevalley) natural transformation p∗j∗ → i∗q

∗ is



an iso. Taking left adjoints we obtain an iso j∗p! → q!i
∗; pre-composing with

i∗ we get another iso j∗p!i∗ → q!i
∗i∗ and we can use the counit of i∗ a i∗ to

get the canonical iso j∗p!i∗ → q!i
∗i∗ → q! that appears in the next result.

Lemma 1.8. Given the pullback diagram above, the following diagram

j∗p∗i∗

j∗θi∗
��

= // j∗j∗q∗
counit // q∗

θ′

��
j∗p!i∗ ∼=

// q!i
∗i∗ ∼=

// q!

commutes, where θ′ : q∗ → q! is the natural transformation associated to the
connected essential q.

This result is probably folklore but we give a detailed proof in Sec-
tion 3.1.

As suggested in [15], we denote the image of the map θX : p∗X → p!X
by HX → p!X . This is an “invariant of objects in the bigger category,
recorded in the smaller”.

Definition 1.9. Let us say that p satisfies the Nullstellensatz relative to j if
for every X in E , the mono HX → p!X is j-dense.

Combining the above we obtain the following fact.

Lemma 1.10. If, in the pullback diagram above, p : E → S satisfies the
Nullstellensatz relative to j then q : F → Sj is pre-cohesive.

Proof. By hypothesis, the image H(i∗X)→ p!(i∗X) of the canonical map
θi∗X : p∗(i∗X)→ p!(i∗X) is j-dense; so the canonical θ′ : q∗X → q!X is epi
by Lemma 1.8.

In the examples that motivate this work, S is the topos D̂ of presheaves
on a category D that can be equipped with the atomic topology (inducing a
Lawvere-Tierney topology j in D̂) and p is induced by a functor φ : C → D
that has a fully faithful right adjoint ι. Also, the fact that p satisfies the
Nullstellensatz relative to j naturally follows from a more concrete related
condition that holds for the adjunction φ a ι.



Definition 1.11. A full reflective subcategory ι : D → C is said to satisfy the
primitive Nullstellensatz if for every C in C there exists a map ιD → C for
some D in D.

For example, if C has a terminal object then the inclusion ι : 1→ C of
the terminal object is reflective and it satisfies the primitive Nullstellensatz
if and only if every object of C has a point. In contrast notice that if C
has initial object then the inclusion ι : 1→ C of the initial object trivially
satisfies that for every C in C there exists a map ιD → C for some D in D,
but the subcategory is not reflexive (unless D is trivial). In other words, the
requirement of a left adjoint to ι excludes the situation just described from
the examples of the primitive Nullstellensatz.

We now discuss how the primitive Nullstellensatz relates to Hilbert’s
classical result. Lawvere suggests that the relation is better explained by
the conjunction of two facts: “traditionally, the heart of Hilbert’s result is
the existence of points, and that is merely a consequence of Zorn’s Lemma”;
the other fact is that that fields k have, as rings, the property that finitely-
generated k-algebras that happen to be fields are in fact finitely-generated
k-modules. (See also Tholen’s analysis in [17], which is particularly well
suited for our puroposes.)

Fix a field k. A classical commutative algebra textbook may formulate
the two facts above as follows.

Lemma 1.12. Let A be a k-algebra.

1. If A is not trivial then it has at least one maximal ideal.

2. IfA is finitely generated as a k-algebra andM ⊆ A is a maximal ideal
then k → A→ A/M is a finite algebraic extension.

Proof. The first item is proved in Theorem 1.3 in [2] as a “standard appli-
cation of Zorn’s lemma”. The second item is Corollary 7.10 in [2] and it is
referred to as the ‘weak’ version of Hilbert’s Nullstellensatz.

A k-algebra is called connected if it has exactly two idempotents. Let
Con be the category of finitely presented and connected k-algebras. Denote
the full subcategory of separable extensions of k by Ext→ Con.

Lemma 1.13. The full inclusion Ext→ Con has a right adjoint.



Proof. This does not seem to be very well-known so we recall the proof
taken from Proposition I, §4, 6.5 in [5]. Let A in Con and choose a maximal
ideal M ⊆ A. Since A is connected every separable sub(k-)algebra K → A
is a field and [K : k] ≤ [A/M : k]. That is, the degrees of all possible such
K are bounded; so the filtered system of suchK ⊆ Amust have a maximum.

We recall this, of course, because the primitive Nullstellensatz holds as
explained below.

Example 1.14. Assume that k is perfect to avoid complications with separa-
ble extensions. Lemma 1.12 implies that for anyA in Con there exists a map
A→ A/M with A/M in the subcategory Ext→ Con. This means that the
full reflective Extop → Conop satisfies the primitive Nullstellensatz. If k is
algebraically closed then this says that every object of Conop has a point.

Fix a small category C and a full reflective subcategory ι : D → C with
reflector φ : C → D. The geometric morphism φ : Ĉ → D̂ induced by the
reflector is essential, connected and local and so induces a string of functors

Ĉ
φ!
��

φ∗
��

D̂

φ∗

OO

φ!

OO

with φ! a φ∗ a φ∗ a φ! and φ∗ : D̂ → Ĉ fully faithful. That is, a structure
analogous to that in Definition 1.1 except that φ! need not preserve products
and the Nullstellensatz may not hold.

Assume now that D satisfies the (right) Ore condition so that it can
be equipped with the atomic topology Jat. Denote the resulting Lawvere-
Tierney topology on D̂ by jat. In Section 3.2 we prove the following.

Lemma 1.15. If φ a ι : D → C satisfies the primitive Nullstellensatz then
the geometric morphism φ : Ĉ → D̂ satisfies the Nullstellensatz relative to
jat.

Lemmas 1.10 and 1.15 imply the first part of the next result. The second
part will be proved in Section 3.2.



Proposition 1.16. Let the following diagram be a pullback

F
q

��

i // Ĉ
φ

��

Sh(D, Jat) j
// D̂

of toposes. If φ : Ĉ → D̂ is locally connected and φ a ι : D → C satisfies
the primitive Nullstellensatz then q : F → Sh(D, Jat) is pre-cohesive. If,
moreover, C has a terminal object and some object with two distinct points
then q is sufficiently cohesive.

In Section 4 we discuss how to apply Proposition 1.16 to Example 1.14
and we also give a presentation of the theory classified by F in the case of
k = R.

2. Sufficient Cohesion

Here we characterize sufficiently cohesive pre-cohesive toposes E → Set.
The strategy to analyse Sufficient Cohesion is suggested by the following
result.

Proposition 2.1. Let p : E → S be a pre-cohesive topos. Then p is suffi-
ciently cohesive if and only if the subobject classifier of E is connected (i.e.
p!Ω = 1).

Proof. Simply observe that the proof of Proposition 4 in [13] does not need
the Continuity condition.

Let p : E → S be an essential geometric morphism. As usual we denote
the left adjoint to p∗ by p! : E → S, the subobject classifier of E by Ω and the
top and bottom elements of its canonical lattice structure by >,⊥ : 1→ Ω.

Lemma 2.2. If p! : E → S preserves finite products then p!Ω = 1 if and only
if the maps p!>, p!⊥ : p!1→ p!Ω are equal.

Proof. One direction is trivial (and does not require that p! preserves finite
products). On the other hand, if p! preserves products then p!Ω is equipped
with a lattice structure with p!> and p! ⊥ as top and bottom elements respec-
tively. Since they are equal, p!Ω = 1.



So the consideration of Sufficient Cohesion naturally leads to essential
geometric morphisms whose leftmost adjoint preserves finite products. For
example, recall that a small category D is sifted if and only if the colimit
functor SetD → Set preserves finite products [1] and that this holds if and
only if D is nonempty and the diagonal D → D ×D is final. So, if we let
p : Ĉ → Set be the (essential) canonical geometric morphism then p! pre-
serves finite products if and only if C is cosifted. To characterize those such
p that satisfy p!Ω = 1 the following terminology will be useful.

Definition 2.3. A cospan A→ B ← C in a category is said to be disjoint if
it cannot be completed to a commutative square.

The next source of examples will also be relevant. (See the proof of
Proposition 1.6(iii) in [8] for details.)

Lemma 2.4. If C has a terminal object and every object of C has a point
then C is cosifted.

2.1 The case of presheaf toposes

Let C be a small category and p : Ĉ → Set the canonical (essential) geomet-
ric morphism. Let us recall a description of p! : E → Set.

Fix a presheaf P in Ĉ. A cospan C
σl // U C ′

σroo is said to connect
the elements x ∈ PC and x′ ∈ PC ′ if there is a y ∈ PU such that x = y · σl
and x′ = y · σr. In this case we may denote the situation by the following
diagram

x y�oo � // x′

C σl
// U C ′σr
oo

or simply write xσx′.
A path from C to C ′ is a sequence of cospans σ1, σ2, . . . , σn as below

C0 σ1,l
// U1 C1σ1,r
oo

σ2,l
// U2 C2σ2,r
oo Cn−1 σn,l

// Un Cnσn,r
oo

with C0 = C and Cn = C ′. Such a path connects elements x ∈ PC and
x′ ∈ PC ′ if there exists a sequence (xi ∈ PCi | 0 ≤ i ≤ n) of elements such



that x0 = x ∈ PC, xn = x′ ∈ PC ′ and for every 1 ≤ i ≤ n, xi−1σixi. We
say that x ∈ PC and x′ ∈ PC ′ are connectable if there is a path from C to
C ′ that connects x and x′. An element in p!P is given by a ‘tensor’ x⊗ C
with x ∈ PC. Two such tensors x⊗ C and x′ ⊗ C ′ are equal if and only if
they are connectable.

We now concentrate on the set p!Ω whose elements are of the form S ⊗ C
with S a sieve onC. LetMC be the maximal sieve onC and ZC be the empty
sieve on C. We will sometimes writeM instead ofMC and similarly for ZC .

Lemma 2.5. A cospan C
σl // U C ′

σroo is disjoint if and only if it con-
nects M ∈ ΩC and Z ∈ ΩC ′.

Proof. If the cospan is disjoint, the sieve on U generated by σl witnesses the
fact that the cospan connects MC and ZC′ . Conversely, if S is a sieve on
U such that S · σl = MC and S · σr = ZC′ then σl ∈ S and there is no map
h : D → C ′ such that σrh is in S. In particular, there is no h such that σrh
factors through σl. So the cospan in the statement is disjoint.

A path σ1, . . . , σn as above is called singular at i (for some 1 ≤ i ≤ n)
if the cospan

Ci−1

σi,l
// Ui Ci

σi,r
oo

is disjoint. We say that the path is singular if it is singular at some i.

Lemma 2.6. If the cospan C
σl // U C ′

σroo connects a non-empty sieve
S ∈ ΩC and the empty sieve ZC′ ∈ ΩC ′ then there exists a singular path
from C to C ′.

Proof. By hypothesis there is a sieve T on U as in the diagram below

S T�oo � // Z

C σl
// U C ′σr
oo

and, since S is non-empty, T is also non-empty. Let τ : D → U a map in T .
Since, T · σr = Z, the cospan (τ, σr) is disjoint and so, the path below

C σl
// U Dτ
oo

τ
// U C ′σr
oo

from C to C ′ is singular.



The main technical fact of the section is the following.

Lemma 2.7. For any C and C ′, MC is connectable with ZC′ if and only if
there exists a singular path from C to C ′.

Proof. Consider a path σ1, . . . , σn from C to C ′. Assume first that this path
is singular at i. By Lemma 2.5, the cospan σi connects the maximal sieve on
Ci−1 with the empty sieve on Ci. Now observe that any path connects the
maximal sieves on its ‘extremes’, and it also connects the empty sieves on its
extremes. In particular, the path σ1, . . . , σi−1 connects MC with MCi−1

and
the path σi+1, . . . , σn connects ZCi

with ZC′ . So the whole path σ1, . . . , σn
connects MC and ZC′ .

For the converse assume that the path σ1, . . . , σn connects MC and ZC′ .
Then there exist sieves S0, . . . , Sn such that S0 = M , Sn = Z and for every
1 ≤ i ≤ n, Si−1σiSi. So there exists a k such Sk = Z and Sk−1 is non-empty.
By Lemma 2.6 there exists a singular path from Ck−1 to Ck. Of course, this
path can be extended to (a singular) one from C to C ′.

If C is an object of C and we let the terminal object 1 in Ĉ be such that
1C = {∗} then the morphisms p!>, p! ⊥: p!1→ p!Ω map ∗ ⊗ C to MC ⊗ C
and ZC ⊗ C respectively.

Proposition 2.8. If C is connected then the maps p!>, p! ⊥: p!1→ p!Ω are
equal if and only if C contains a disjoint cospan.

Proof. As C is connected, there is an object C in C and also: C has a dis-
joint cospan if and only if there is a singular path from C to C. Now, the
maps p!>, p! ⊥: 1→ p!Ω are equal if and only if MC ⊗ C = ZC ⊗ C. By
Lemma 2.7, this holds if and only if there exists a singular path from C to
C.

Since cosifted categories are connected the next result follows.

Corollary 2.9. Let C be cosifted and p : Ĉ → Set the canonical geometric
morphism. Then p!Ω = 1 if and only if C contains a disjoint cospan.

We can now characterize the sufficiently cohesive pre-cohesive presheaf
toposes. For this it is convenient to state the presheaf version of Proposi-
tion 1.6 and, in fact, it is worth sketching a direct proof.



Proposition 2.10. Let C be a small category whose idempotents split. The
canonical p : Ĉ → Set is pre-cohesive if and only if C has a terminal object
and every object of C has a point.

Proof. The canonical p : Ĉ → Set is essential and p!C = 1 for every repre-
sentable C in Ĉ. Example C3.6.3(b) in [7] shows that p is local if and only
is C has a terminal object. In this case, of course, p is connected. So we
can assume that C has a point and then p∗X = Ĉ(1, X) = X1 for every X in
Ĉ. If the Nullstellensatz holds then C(1, C) = p∗C → p!C = 1 is epi and so
every object of C has a point. For the converse assume that every object of C
has a point and let P in Ĉ. Recall that an element of p!P may be described as
a ‘tensor’ x⊗ C with x ∈ PC. The natural transformation θ : p∗P → p!P
sends each y ∈ P1 to the tensor y ⊗ 1. Since every C in C has a point, any
tensor x⊗ C is equal to one of the form y ⊗ 1. Finally, p! preserves finite
products by Lemma 2.4.

If C has a terminal object and every object has a point then the exis-
tence of a disjoint cospan is equivalent to the existence of an object with two
distinct points, so the next result follows from Corollary 2.9 and Proposi-
tion 2.10.

Corollary 2.11. Let C be a small category whose idempotents split and let
p : Ĉ → Set be pre-cohesive. Then p is sufficiently cohesive if and only if
there is an object in C with two distinct points.

2.2 The case of sheaves

Proposition 1.3 in [8] proves a characterization of the bounded locally con-
nected p : E → Set such that p! preserves finite products. In this section we
characterize, among these, those which satisfy p!Ω = 1. Some key ingredi-
ents may be isolated as basic facts about dense subtoposes and we treat them
first.

Recall that a subtopos i : F → E is dense if i∗ : F → E preserves the
initial object 0 (see A4.5.20 in [7]). For any subtopos i : F → E consider the
split mono i∗ΩF → ΩE presenting the subobject classifier of F as a retract



of that of E . The diagram on the left below

i∗1

∼=
��

i∗> // i∗ΩF

��

i∗1

∼=
��

i∗⊥ // i∗ΩF

��

1
>

// ΩE 1
⊥

// ΩE

always commutes. On the other hand, the square on the right above com-
mutes if and only if the subtopos is dense.

Lemma 2.12. Let p : E → S be an essential geometric morphism. If the
geometric i : F → E is a dense subtopos then the maps on the left below

p!i∗1
p!(i∗>)

//

p!(i∗⊥)
// p!(i∗ΩF) p!1

p!> //

p!⊥
// p!ΩE

are equal if and only if the ones on the right above are.

Proof. Since i : F → E is dense, the map ⊥: 1→ ΩE factors through the
retract i∗ΩF → ΩE . Then the diagram below

p!1

p!>

$$

p!⊥

::

p!(i∗>)
//

p!(i∗⊥)
// p!(i∗ΩF) // p!ΩE

commutes and the result follows because p!(i∗ΩF)→ p!ΩE is (split) mono.

This is applied in the next result where the subtopos is dense as a result
of a stronger condition.

Lemma 2.13. Consider a diagram

F

q
��

i // E
p

��

S



with i an inclusion. If p∗ factors through i∗ (in the sense that the canonical
p∗ → i∗i

∗p∗ = i∗q
∗ is an iso) then i is a dense subtopos and q is essential.

If, moreover, p! preserves finite products then so does q!. Also, in this case,
p!ΩE = 1 if and only if q!ΩF = 1.

Proof. Start with the iso p∗ → i∗q
∗. Since p∗ and q∗ preserve 0 then so

does i∗. It is straightforward to check that the functor p!i∗ : F → S is left
adjoint to q∗ : S → F so q is essential and we can define q! = p!i∗ : F → S.
Clearly, if p! preserves finite products then so does q!. It remains to prove
that p!ΩE = 1 if and only if q!ΩF . By Lemma 2.2 it is enough to prove that
p!> = p!⊥ : 1→ p!ΩE if and only if q!> = q!⊥ : 1→ q!ΩF . Since q! = p!i∗
the result follows from Lemma 2.12.

One of the equivalences in Proposition 1.3 of [8] states that if the canon-
ical p : E → Set is bounded and locally connected then, p! preserves finite
products if and only if E has a locally connected site of definition (C, J) with
C cosifted.

Proposition 2.14. Let (C, J) be a locally connected site with C cosifted and
q : Sh(C, J)→ Set be the induced geometric morphism. Then q!Ω = 1 if
and only if C contains a disjoint cospan.

Proof. We have a diagram

F = Sh(C, J)

q
''

i // Ĉ = E
p

��

Set

where p and q are locally connected, p! and q! preserve finite products and
i : Sh(C, J)→ Ĉ is a subtopos. In the proof of Proposition 1.3 in [8] it is
observed that if a site (C, J) is locally connected then constant presheaves
on C are J-sheaves. That is, p∗ : Set→ Ĉ factors through the embedding
Sh(C, J)→ Ĉ, so Lemma 2.13 applies. Therefore q!ΩF = 1 if and only if
p!ΩE = 1. The result follows from Corollary 2.9.

Corollary 1.7 follows from Proposition 2.14 and Lemma 2.4.



3. The Nullstellensatz

In Section 3.1 we prove Lemma 1.8 and then the proof of Lemma 1.10 will
be complete. In Section 3.2 we show Lemma 1.15 and complete the proof
of Proposition 1.16.

3.1 Proof of Lemma 1.8

As already mentioned in Section 1, this result is probably folklore. It should
follow from 2-categorical generalities about morphisms of adjunctions, but I
have failed to find the necessary machinery in the material I have access to,
so I give here a simple minded proof. I try to keep the notation in Section 2
of [8].

Let F a R : E → S and denote its unit and counit by η and ε respec-
tively. In parallel, consider another adjunction F ′ a R′ : E ′ → S ′ with unit
and counit denoted by η′ and ε′. Fix also a commutative diagram

E ′

R′

��

i∗ // E
R
��

S ′
j∗
// S

with i∗ and j∗ having left adjoints denoted by i∗ and j∗ respectively. We
denote the unit and counit of i∗ a i∗ by u and c, and those of j∗ a j∗ by u′

and c′.
Because left adjoints are essentially unique there exists a canonical iso-

morphism ϕ : i∗F → F ′j∗ such that the following diagram

Id

u′

��

η
// RF

RuF // Ri∗i
∗F

Ri∗ϕ
��

j∗j
∗
j∗η′j∗

// j∗R
′F ′j∗ =

// Ri∗F
′j∗

commutes. (The top map is the unit of the composite adjunction i∗F a Ri∗.)
The transposition of ϕ is the composite

Fj∗
uFj∗ // i∗i

∗Fj∗
i∗ϕj∗ // i∗F

′j∗j∗
i∗F ′c′ // i∗F

′



and will be denoted by ζ : Fj∗ → i∗F
′. We call it the Beck-Chevalley natu-

ral transformation. Trival calculations show the following.

Lemma 3.1. The diagrams

i∗F

ϕ
**

i∗Fu′ // i∗Fj∗j
∗ i∗ζj∗

// i∗i∗F
′j∗

cF ′j∗

��

j∗

j∗η′
))

η
// RFj∗

Rζ
// Ri∗F

=

��

F ′j∗ j∗RF

commute.

Assume from now on that F has a left adjoint L : E → S and denote the
unit of L a F by α : Id→ FL.

Lemma 3.2. If i∗ is full and faithful then the following diagram

i∗i
∗i∗

i∗c

��

i∗i∗αi∗ // i∗i
∗FLi∗

i∗ϕLi∗
��

i∗ αi∗
// FLi∗

Fu′Li∗

// Fj∗j
∗Li∗ ζj∗Li∗

// i∗F
′j∗Li∗

commutes.

Proof. The transposition of the top-right map is

i∗i∗i
∗i∗

ci∗i∗ // i∗i∗
i∗αi∗ // i∗FLi∗

ϕLi∗ // F ′j∗Li∗

while that of the left-bottom one is

i∗i∗i
∗i∗

i∗i∗c // i∗i∗
i∗αi∗ // i∗FLi∗

ϕLi∗ // F ′j∗Li∗

by Lemma 3.1. But ci∗i∗ = i∗i∗c : i∗i∗i
∗i∗ → i∗i∗ because c : i∗i∗ → Id is

an iso by hypothesis.

We say that the Beck-Chevalley condition holds if ζ : Fj∗ → i∗F
′ is an

iso. (See A4.1.16 in [7].)



Lemma 3.3. Assume the Beck-Chevalley condition holds and that i∗, j∗ and
F are full and faithful. Then F ′ is full and faithful and has a left adjoint
defined by L′ = j∗Li∗ : E → S.

Proof. First calculate:

E ′(F ′X,F ′Y ) ∼= E(i∗F
′X, i∗F

′Y ) ∼= E(Fj∗X,Fj∗Y ) ∼= S ′(X, Y )

to show that F ′ is full and faithful. To prove that L′ a F ′ notice that:

S ′(L′X,S) ∼= E(i∗X,Fj∗S) ∼= E(i∗X, i∗F
′S)

by adjointness and Beck-Chevalley. So S ′(LX, S) ∼= E ′(X,F ′S) because i∗
is full and faithful.

Assume from now on that the hypotheses of Lemma 3.3 hold and that
L′ : E ′ → S is defined as in that statement. Moreover, let α′ denote the unit
of L′ a F ′.

Lemma 3.4. The composition

Id
c−1
// i∗i∗

i∗αi∗ // i∗FLi∗
ϕLi∗ // F ′j∗Li∗ = F ′L′

equals the unit α′ : Id→ F ′L′ of L′ a F ′.

Proof. If we chase the identity L′ → L′ in the proof of Lemma 3.3 then we
obtain that the unit of L′ a F ′ is the top-right composition in the diagram
below:

Id c−1
// i∗i∗

i∗αi∗ // i∗FLi∗

ϕLi∗
++

i∗Fu′Li∗// i∗Fj∗j
∗Li∗

i∗ζj∗Li∗// i∗i∗F
′j∗Li∗

c

��

F ′j∗Li∗

and the triangle commutes by Lemma 3.1.

The units α and α′ may be related as follows.



Lemma 3.5. The following diagram

i∗

αi∗
��

i∗α′ // i∗F
′L′

ζ−1
L′ // Fj∗L

′

=

��

FLi∗
Fu′Li∗

// Fj∗j
∗Li∗

commutes.

Proof. Post-composing with ζL′ and replacing α′ with its expression given in
Lemma 3.4 the statement is equivalent to the commutativity of the diagram

i∗

αi∗
��

i∗c−1
// i∗i
∗i∗

i∗i∗αi∗ // i∗i
∗FLi∗

i∗ϕLi∗
��

FLi∗
Fu′Li∗

// Fj∗j
∗Li∗ ζj∗Li∗

// i∗F
′j∗Li∗ = i∗F

′L′

but pre-composing with i∗c : i∗i
∗i∗ → i∗ this is equivalent to Lemma 3.2.

Following [8] define θ = (ηL)−1(Rα) : R→ L and θ′ : R′ → L′ analo-
gously.

Lemma 3.6. The diagram

j∗Ri∗

j∗θi∗
��

= // j∗j∗R
′ c′

R′ // R′

θ′

��

j∗Li∗ =
// L′

commutes.

Proof. Start from the top-right and calculate:

j∗Ri∗

j∗Ri∗α′

��

= // j∗j∗R
′

j∗j∗R′α′

��

c′
R′ // R′

R′α′

��

j∗Ri∗F
′L′

j∗R(ζL′ )
−1

��

= // j∗j∗R
′F ′L′

c′ //

j∗j∗(η′L′ )
−1

��

R′F ′L′

(η′
L′ )
−1

��

j∗RFj∗L
′
j∗(ηj∗L′ )

−1
// j∗j∗L

′
cL′

// L′



where the bottom-left square commutes by Lemma 3.1. Now observe that,
by Lemma 3.5, the left-edge equals the composition

j∗Ri∗
j∗Rαi∗// j∗RFLi∗

j∗RFu′Li∗ // j∗RFj∗L
′

which, followed by the bottom edge, equals j∗θi∗ .

To complete the proof of Lemma 1.8 just observe that the pullback dia-
gram

F
q

��

i // E
p

��

Sj j
// S

discussed there satisfies all the hypotheses used in this section: we have al-
ready mentioned that, by Theorem C3.3.15 in [7], q is connected and locally
connected and the square is Beck-Chevalley; also, i is a subtopos by Exam-
ple A4.15.14(e) loc. cit.

3.2 Proof of Proposition 1.16

Here we prove Lemma 1.15 and Proposition 1.16. Fix small categories C
and D.

Definition 3.7. A functor ι : D → C is said to satisfy the (right) Ore condi-
tion if for every C in C and diagram as on the left below

C

f

��

ιD2

ιf ′

��

h // C

f

��

ιD1 ιg
// ιD0 ιD1 ιg

// ιD0

in C, there exists a map f ′ : D2 → D1 in D and a map h : ιD2 → C in C
such that the diagram on the right above commutes.

Clearly, a categoryD satisfies the right Ore condition in the usual sense if
and only if the identity functorD → D does so in the sense of Definition 3.7.
We now relate this condition to the one defining the primitive Nullstellensatz
(Definition 1.11).



Lemma 3.8. If ι : D → C is full and satisfies that for every C in C there is a
map ιD → C for some D in D then the first item below:

1. D satisfies the Ore condition in the usual sense,

2. ι satisfies the Ore condition in the sense of Definition 3.7,

implies the second. If, moreover, ι is faithful then the converse holds.

Proof. Consider a diagram as on the left below

C

f

��

ιD

ιt
""

h // C

f

��

ιD1 ιg
// ιD0 ιD0

in D. By hypothesis there is a map h : ιD → C for some D and, because
ι is full, there is a map t : D → D0 in D such that the diagram on the right
above commutes. As D satisfies the Ore condition, there is a diagram as on
the left below

D2

t′

��

w // D

t

��

ιD2

ιt′

��

ιw // ιD

ιt
!!

h // C

f

��

D1 g
// D0 ιD1 ιg

// ιD0

inD. The diagram on the right above shows that ι satisfies the Ore condition.
For the converse consider a cospan g : D → E ← D′ : g′ in D. As ι sat-

isfies the Ore condition there is an f ′ : D2 → D in D and an h : ιD2 → ιD′

in C such that the diagram on the left below

ιD2

ιf ′

��

h // ιD′

ιg′

��

D2

f ′

��

h′ // D′

f

��

ιD ιg
// ιE D g

// E

commutes. Because ι is full there is an h′ : D2 → D′ such that ιh′ = h and,
since ι is faithful, the diagram on the right above commutes.



We can now prove Lemma 1.15. Let D be a small category satisfying
the right Ore condition and let (D, Jat) be the resulting atomic site. Fix a
full reflective subcategory φ a ι : D → C satisfying the primitive Nullstel-
lensatz. Lemma 1.15 states that the induced (essential connected) geometric
morphism φ : Ĉ → D̂ satisfies the Nullstellensatz relative to the Lawvere-
Tierney topology in D̂ induced by Jat. Concretely this means that for any
P in Ĉ, the image HP → φ!P of θP is Jat-dense. This holds if and only
if the map θP : φ∗P → φ!P is locally surjective. (Recall that a morphism
α : F → G in D̂ is locally surjective w.r.t. Jat if for each D in D and each
y ∈ GD, there is map e : D′ → D such that y · e is in the image of αD′ . See
Corollary III.7.6 in [16].)

Proof of Lemma 1.15. For any P in Ĉ andD inD, (φ!P )Dmay be expressed
as the following coequalizer:

∑
C,C′ PC × C(C ′, C)×D(D,φC ′)

l //

r
//

∑
C PC ×D(D,φC) // (φ!P )D

where for x ∈ PC, u : C ′ → C and a′ ∈ D(D,φC ′), l(x, u, a′) = (x · u, a′)
and r(x, u, a′) = (x, (φu)a′). The equivalence class determined by a pair
(x, a) with x ∈ PC and a : D → φC will be denoted by x⊗ a ∈ (φ!P )D.
(Theorem VII.2.2 in [16].) Also, (φ∗P )D = P (ιD) for any P in Ĉ and D in
D, and θ : φ∗P → φ!P assigns to each x ∈ (φ∗P )D = P (ιD) the element
(x⊗ ε−1) ∈ (φ!P )D where ε : φ(ιD)→ D is the counit of φ a ι.

As explained above we must prove that the map θP : φ∗P → φ!P is lo-
cally surjective. So let x⊗ d ∈ (φ!P )D with d : D → φC and x ∈ PC. By
Lemma 3.8 the functor ι : D → C satisfies the right Ore condition. So there
exists a diagram in C as below

ιD′

ιe

��

h // C

η

��

ιD
ιd
// ι(φC)

where η is the unit of φ a ι. We claim that (x⊗ d) · e = x⊗ (de) in (φ!P )D
equals θ(x · h) = (x · h)⊗ ε−1 = x⊗ ((φh)ε−1). For this, it is enough to
prove that de = (φh)ε−1 in D. Since the counit is an iso, it is enough to



prove that deε = φh. So apply φ to the square above, post-compose with ε
to obtain

φ(ιD′)

φ(ιe)

��

φh
// φC

φη

��

id

$$

φ(ιD)
φ(ιd)
// φ(ι(φC)) ε

// φC

and observe that the left-bottom composition equals deε.

To complete the proof of Proposition 1.16 assume that the connected
geometric morphism φ : Ĉ → D̂ is locally connected so that if we take the
pullback

F
q

��

i // Ĉ
φ

��

Sh(D, Jat) j
// D̂

of toposes then q : F → Sh(D, Jat) is connected and locally connected.
Lemmas 1.10 and 1.15 imply that q is pre-cohesive. So it remains to show
that if C has a terminal object and has an object with two distinct points then
q is sufficiently cohesive. Denote Ĉ by E and its subobject classifier by ΩE .

Lemma 3.9. If φ!> : 1 = φ!1→ φ!ΩE is j-dense then q!ΩF = 1.

Proof. By Lemma 3.3 we can assume that q! = j∗φ!i∗ : F → Sh(D, Jat).
We know that i∗ΩF is a retract of ΩE so j∗(φ!(i∗ΩF)) = q!ΩF is a retract of
j∗(φ!ΩE). Hence, j∗(φ!ΩE) = 1 implies q!ΩF = 1.

Now recall that a mono in D̂ is dense (for the atomic topology) in D if
and only if it is locally surjective.

Lemma 3.10. Let f : D̂ → Set be the canonical geometric morphism to
Set. For any α : X → Y in D̂, if f!α : f!X → f!Y is epi in Set then α is
locally surjective in D̂.

Proof. Let y ∈ Y D. Then (y ⊗D) ∈ f!Y and, by hypothesis, there exists
an (x⊗ E) ∈ f!X such that (f!α)(x⊗ E) = (αEx)⊗ E = (y ⊗D) ∈ f!Y .
Because of the Ore condition this is equivalent to the existence of a span

E A
loo r // D



in D such that (αEx) · l = y · r ∈ Y A. So αA(x · l) = y · r, showing that y
is locally in the image of α.

Finally let g : Ĉ → Set be the canonical geometric morphism, so that
f!φ! = g! : E = Ĉ → Set. If C is cosifted and has a disjoint cospan then
g!> = f!(φ!>) : 1→ f!(φ!ΩE) is an iso by Corollary 2.9, φ!> : 1→ φ!ΩE is
locally surjective by Lemma 3.10 and hence q!ΩF = 1 by Lemma 3.9. That
is, q is sufficiently cohesive, as we needed to prove.

4. Sufficient Cohesion over Galois toposes

Let k be a field. Let Con be the category of finitely presented connected
k-algebras and ` : Ext→ Con the full subcategory of separable extensions
of k. Lemma 1.13 shows that ` has a right adjoint ρ : Con→ Ext. It is
now relevant to mention a related fact. Let Alg be the category of finitely
presented k-algebras and ` : Sep→ Alg the full subcategory of separable
k-algebras. It is clear that ` : Ext→ Con is the restriction of ` along the
inclusion Ext→ Sep as displayed in the following diagram

Con //Alg

Ext

`

OO

// Sep

`

OO

and that ρ extends to a right adjoint ρ : Alg→ Sep to `.

Proposition 4.1. For any A in Alg and K in Ext, the canonical map
(ρA)⊗k K → ρ(A⊗k K) is an iso. In other words if the square on the
left below

A
in0 // A⊗k K ρA

ρ(in0)
// ρ(A⊗k K)

k

j

OO

b
// K

in1

OO

k

ρ(j)

OO

b
// K

ρ(in1)

OO

is a pushout in Alg then the square on the right is a pushout in Sep.

Proof. This is Proposition I, §4, 6.7 in [5].



Assume for the moment that ρ(j) : k → ρA is an iso in the right square
above. In particular, the largest separable subalgebra of A does not have
idempotents, soA is connected. Of course, ρ(in1) : K → ρ(A⊗k K) is also
an iso and, again, this implies that A⊗k K is connected. Let us stress this
fact, if A ∈ Con, ρA = k and K ∈ Ext then the algebra A⊗k K is also in
Con and ρ(A⊗k K) = K. Moreover, this is for every k.

Lemma 4.2. The geometric morphism [Con,Set]→ [Ext,Set] induced by
ρ : Con→ Ext is connected and locally connected.

Proof. As we have already mentioned, connectedness follows from the fact
that ρ has a full and faithful left adjoint. To prove local connectedness we
use a sufficient condition proved in [7]. This condition involves a category
Xρ = X of so called ρ-extracts. In general, its objects would be 4-tuples
(U, V, r, i) with U in the domain of ρ, V in the codomain, r : ρU → V a map
and i : V → ρU a section of r; and maps (U, V, r, i)→ (U ′, V ′, r′, i′) would
be pairs (a : U → U ′, b : V → V ′) such that r′(ρa) = br and i′b = (ρa)i. In
our concrete case, every map in the codomain of ρ : Con→ Ext is mono
and ρ has a full and faithful left adjoint ` so each object (U, V, r, i) is com-
pletely determined by a map j : `V → U such that ρj : ρ(`V )→ ρU is an
iso. It is convenient to drop ` from the notation and denote objects in
Ext with decorated K’s. Then the category X of ρ-extracts may be de-
scribed as follows: its objects are triples (U,K, j : K → U) with U in Con
such that ρj : K → ρU is an iso; and a map a : (U,K, j)→ (U ′, K ′, j′) is
just a map a : U → U ′ in Con. There is an obvious functor g : X → Ext
that sends (U,K, j) to K and a : (U,K, j)→ (U ′, K ′, j′) to the unique map
ga : K → K ′ making the following square

ρU
ρa
// ρU ′

K

ρj

OO

ga
// K ′

ρj′

OO

commute. For any K in Ext write X (K) for the fibre of g over K. Now, for
each b : K → K ′ in Ext and lifting of K to an object (U,K, j) in X define
the category YU,K,j,b = Y whose objects are liftings of b to a morphism of
X with domain (U,K, j) and whose morphisms are morphisms of X (K ′)



forming commutative triangles. Lemma C3.3.8 of [7] implies that: if for
each b and (U,K, j) as above, the associated category Y is connected then
[Con,Set]→ [Ext,Set] is locally connected. Let us first prove that Y is
nonempty. For this consider the pushout on the left below

U
in0 // U ⊗K K ′ ρU

ρ(in0)
// ρ(U ⊗K K ′)

K

j

OO

b
// K ′

in1

OO

K

ρ(j)

OO

b
// K ′

ρ(in1)

OO

calculated in the category of k-algebras. Since ρ(j) is iso by hypothe-
sis (recall that (U,K, j) is in X ) Proposition 4.1 implies that U ⊗K K ′ is
connected and that ρ(in1) : K ′ → ρ(U ⊗K K ′) is an iso. Hence, the map
in0 : (U,K, j)→ (U ⊗K K ′, K ′, in1) is an object in Y . Finally, consider
any object a : (U,K, j)→ (U ′, K ′, j′) in Y as displayed on the left below

U a // U ′ U
in0 //

a
$$

U ⊗K K ′

h
��

K ′

j′
zz

in1oo

K

j

OO

b
// K ′

j′

OO

U ′

and notice that the pushout property determines a unique h : U ⊗K K ′ → U ′

such that the triangles on the right above commute. So h is a map in Y
from in0 : (U,K, j)→ (U ⊗K K ′, K ′, in1) to a : (U,K, j)→ (U ′, K ′, j′).
It follows that Y is indeed connected.

After the proof of Lemma 4.2 we stress that we do not claim to have
found the most efficient way to present the examples. It is to be expected
that in a near future there will be simpler ways to explain how the inclusion
Ext→ Con determines a pre-cohesive topos. In any case, we have the
following result.

Proposition 4.3. If k is perfect, p : [Con,Set]→ [Ext,Set] is the geomet-
ric morphism induced by the coreflector ρ : Con→ Ext and the following
diagram

F
q

��

i // [Con,Set]

p

��

Sh(Extop, Jat) // [Ext,Set]



is a pullback of toposes then q : F → Sh(Extop, Jat) is pre-cohesive and
sufficiently cohesive.

Proof. The category D = Extop satisfies the right Ore condition (see ex-
ample 7 in [3]). Let C = Conop, ι : D → C the obvious full inclusion and
φ = ρop : C → D its left adjoint. Example 1.14 shows that the reflective sub-
category ι : D → C satisfies the primitive Nullstellensatz and φ : Ĉ → D̂ is
connected and locally connected by Lemma 4.2. Finally, the category C has
a terminal object and the two maps k[x]→ k in Con that send x to 0 and 1
in k respectively show that there is an object in C with two distinct points.
So we can apply Proposition 1.16.

The construction of examples in this section naturally leads to the fol-
lowing questions. Let C be an extensive category with finite products and
let Cs → C is its full subcategory of separable/decidable/unramified objects
[10, 4]. When is this category reflective? Assuming that C is small, when is it
the case that the left adjoint φ : C → Cs induces a locally connected Ĉ → Ĉs?
To prove this for our examples we used Proposition 4.1 which highlights a
special behaviour of tensor products in the category of k-algebras for a field
k. So we are led to a more specific problem. Consider a coextensive alge-
braic category V (such as those discussed in [14]) and let K be an object in
V . The category K/V is also algebraic and coextensive. If we let C be the
opposite of the category of finitely presentable objects in K/V then it would
be interesting to understand those K that make Cs → C reflective etc.

If k = C then Ext is terminal so the horizontal maps in the pullback
in the statement of Proposition 4.3 are equivalences and (the canonical)
p : [Con,Set]→ [Ext,Set] = Set is pre-cohesive. But we stress that, in
general, the canonical geometric morphism F → Set is not pre-cohesive.
This can be seen even in the simple case of k = R as we show in the next
section.

4.1 The case of the real field

Of course, Galois groups need not be finite. Moreover, if Galois theory is
to be done in an arbitrary ambient topos, then Galois groups are not internal
groups of automorphisms in the naive sense [18]. Having said this, I believe
that it is useful to illustrate the results in the previous sections in the simplest
possible non trivial (although finite) case over sets.



Indeed, let us consider the case of k = R in Set, so that Con is the cat-
egory of finitely presented connected R-algebras and ` : Ext→ Con is the
(finite) full subcategory determined by finite extensions of k. Of course, this
full subcategory is equivalent to that determined by the (the initial object)
R and C. The right adjoint ρ : Con→ Ext may be described as follows.
For A in Con, ρA is the R-subalgebra generated the square roots of −1.
Notice that ρA ∼= R if A does not have square roots of −1 and ρA ∼= C oth-
erwise. To check that this is well-defined observe that if i2 = −1 = j2 then
j = i or j = −i. (This follows from connectedness and the fact that ij+1

2
is

idempotent in A.)
The atomic topology Jat on D = Extop has essentially one non-trivial

sieve: that generated by the unique map R→ C in Ext. Also, since D is
essentially finite and all its idempotents are identities, Jat is rigid in the sense
C2.2.8 in [7] and Sh(D, Jat) is equivalent to the topos of presheaves on the
full subcategory of D determined by those objects which only have trivial
covers. That is, Sh(D, Jat) ∼= [C2,Set] where C2 → Ext is the full sub-
category determined by those objects iso to C. Of course, C2 is equivalent
to the cyclic group C2 of order two.

Let Con′ → Con be the full subcategory determined by those connected
R-algebras A such that ρA ∼= C or, equivalently, there is an R-algebra map
C→ A. The following diagram

Con′

��

// Con

��

C2
// Ext

is a pullback of categories an the next result shows that it is preserved when
passing to toposes of Set-valued functors.

Lemma 4.4. If we let [Con′,Set]→ [C2,Set] be the geometric morphism
induced by the full inclusion C2 → Con′ then the following diagram

[Con′,Set]

��

i // [Con,Set]

p

��

[C2,Set] // [Ext,Set]



is a pullback of toposes. (So [Con′,Set]→ [C2,Set] is pre-cohesive and
sufficiently cohesive.)

Proof. The subtopos [C2,Set]→ [Ext,Set] is open. Indeed, the sieve in
D generated by the unique morphism R→ C in Ext determines a subobject
U → 1 in the topos [Ext,Set]. More explicitly, UR = ∅ and UC = 1; and
[C2,Set] ∼= [Ext,Set]/U → [Ext,Set]. Since open subtoposes are closed
under pullback it follows that the subtopos F → [Con,Set] in Proposi-
tion 4.3 is equivalent to [Con,Set]/p∗U → [Con,Set] and hence F must
be a presheaf topos, say, of the form [Con′,Set] for some essentially small
Con′ determined by V = p∗U in [Con,Set]. In order to describe Con′ ex-
plicitly we first apply the general construction (see e.g. Proposition A1.1.7.).
The objects of Con′ are pairs (x,C) with x ∈ V C and C ∈ Con. A map
f : (x,C)→ (x′, C ′) in Con′ is a morphism f : C → C ′ in Con such that
(V f)x = x′. But V C = (p∗U)C = U(ρC) for each connected R-algebra C.
In other words, V C = (p∗U)C is terminal or initial depending on whether
there is an R-algebra map C→ C or not.

In order to give an explicit description of the Grothendieck topology on
Conop inducing F = [Con′,Set] we first isolate the following basic fact
(clearly related to the far more general Proposition 4.1).

Lemma 4.5. If the R-algebra A is connected and without square roots of
−1 then A[i] = A⊗R C is connected.

Proof. Let a+ bi in A[i] be idempotent. Then a2 − b2 = a and 2ab = b in
A. Now calculate

b2 = 4a2b2 = 4(a+ b2)b2 = 4ab2 + 4b4 = 2b2 + 4b4

an record that b2 + 4b4 = 0. So u = b2 satisfies 4u2 = −u in A. Then
(4u)2 = 16u2 = −4u and so c = 4u satisfies the equality c2 = −c. But then
(c+ 1)2 = c2 + 2c+ 1 = −c+ 2c+ 1 = c+ 1. That is, c+ 1 is idempotent
in A which means, under our hypotheses, that either c+ 1 = 0 or c+ 1 = 1;
so c = −1 or c = 0. If −1 = c = 4u = 4b2 = (2b)2 then we reach a contra-
diction (since we are assuming that A does not have a square root of −1). If
0 = c = 4b2 then b2 = 0 so a2 = a. Since A is connected a = 0 or a = 1. If
a = 0 then b = 2ab = 0. If a = 1 then b = 2b so b = 0. Altogether, a+ bi is
either 0 or 1.



We can now define a basis K for a Grothendieck topology on Conop

(in the sense of Exercise III.3 in [16]). We do this in terms of cocovers in
Con. First we state that the cocovering families consist of exactly one map,
so it is enough to say what maps cocover. First all isos cocover. Also, if
ρA ∼= R then a map A→ A′ also cocovers if it is iso over A to the canonical
A→ A[i]. (This makes sense by Lemma 4.5.)

Lemma 4.6. The function K that sends A in Conop to the collection of cov-
ering maps with codomain A is a basis and Sh(Conop, K) ∼= [Con′,Set]
as subtoposes of [Con,Set].

Proof. It is easy to check that K is indeed a basis. The main ingredient is
that ifA ∈ Con is such that ρA ∼= R andA→ A′ is in Con then there exists
a cocovering map A′ → B and a commutative square as below

A[i] // B

A

OO

// A′

OO

in Con. Indeed, if ρA′ ∼= C then we can take B = A′ and A′ → B to be the
identity. On the other hand, if ρA′ ∼= R then we can take B = A′[i] and the
canonical A′ → A′[i] = B.

To prove that Sh(Conop, K) = [Con′,Set] we use the notation in the
proof of Lemma 4.4. So the subobject U → 1 is the image of the map
Ext(C, )→ Ext(R, ) = 1 in [Ext,Set] and we denote the map p∗U → 1
by V → 1 in [Con,Set]. Recall that V C is terminal or initial depending
on whether there is an R-algebra map C→ C or not. For general rea-
sons, the dense subobjects for the associated open topology in [Con,Set]
are those monos X ′ → X such that the projection π0 : X × V → X factors
through X ′ → X . In particular, for any R-algebra A in Con and cosieve
S → Con(A, ), S is dense if and only if for every A′ in Con such that
V A′ = 1 (that is, ρA′ ∼= C), every A→ A′ is in the cosieve S. Notice that
if V A = 1 then the identity on A must be in S. In other words, if V A = 1
then the maximal cosieve is the only (co)covering one. On the other hand, if
V A = 0 (i.e. ρA = R) then, S is cocovering if and only if the mapA→ A[i]
is S. Altogether, a sieve on A is dense with respect to the open topology de-
termined by V → 1 if and only if it contains a cocovering map.



Now let Alg be the category of finitely presented R-algebras. The exten-
sive Algop may be equipped with the Gaeta topology and it is well-known
(see [14]) that the resulting topos of sheaves is equivalent to [Con,Set]. It
is also well-known that the Gaeta topology is subcanonical and that the re-
stricted Yoneda embedding Algop → [Con,Set] into the Gaeta topos pre-
serves finite coproducts.

Lemma 4.7. The restricted Yoneda embedding Algop → [Con,Set] fac-
tors through the subtopos inclusion F → [Con,Set] and the factorization
Algop → F preserves finite coproducts.

Proof. Let A in Alg. It is fair to write Con(A, ) for the non-representable
associated object in the Gaeta topos [Con,Set]. It is enough to prove that
every such Con(A, ) is aK-sheaf for the basis discussed in Lemma 4.6. We
need only worry about objects that have non-trivial covers so let C in Con
be such that ρC = R and consider the cocovering C → C[i]. A compatible
family consists of a map f : A→ C[i] satisfying that for any pair of maps
g, h : C[i]→ D in Con such that the diagram on the left below commutes

C // C[i]
g
//

h
// D A

f
// C[i]

g
//

h
// D

the diagram on the right above commutes too. But C → C[i] is the equalizer
(in Alg) of the identity on C[i] and conjugation. Hence there exists a unique
map f ′ : A→ C factoring f throughC → C[i]. This implies that Con(A, )
is a sheaf. To confirm that the factorization Algop → F preserves finite
coproducts just observe that since 1 + 1 in the Gaeta topos [Con,Set] is
actually in the image of Algop → [Con,Set] then it is also in the subtopos
F → [Con,Set].

In short, the geometric morphism F = [Con′,Set]→ [C2,Set] makes
F into a sufficiently cohesive pre-cohesive topos embedding the category
of ‘affine R-schemes’ Algop in such a way that finite coproducts are pre-
served. In contrast, the canonical geometric morphism f : F → Set is not
pre-cohesive. It is certainly locally connected because F is a pre-sheaf topos
but the leftmost adjoint f! : F → Set does not preserve finite products (and
hence the Nullstellensatz must fail). The simplest way to see this may be the
following.



Example 4.8. The object X = Con′(C, ) in F is connected in the sense
that f!X = 1 because it is representable but f!(X ×X) = 2 as the next cal-
culation shows. Since there are enough maps to C, f!(X ×X) is a quotient
of (X ×X)C = Con′(C,C)×Con′(C,C) ∼= C2 × C2. If κ : C→ C de-
notes conjugation then the pairs (id, id) and (κ, κ) induce the same element
in f!(X ×X). Similarly, (id, κ) and (κ, id) induce the same element; but
(id, id) and (id, κ) cannot be equivalent.

It seems relevant at this point to compare F with the Zariski topos. Let
Z be the basis on Algop determined by declaring that the cocovering fam-
ilies are (up to iso) those of the form (A→ A[s−1] | s ∈ S) with S ⊆ A a
finite subset not contained in any proper ideal of A in Alg. (See III.3 in
[16] or A2.1.11(f) in [7].) Denote the Zariski topos Sh(Algop, Z) by Z .
Clearly the basis Z contains the Gaeta one so the inclusion Z → [Alg,Set]
factors through the Gaeta subtopos [Con,Set]→ [Alg,Set]. The basis
Z is also subcanonical but we stress that the subtoposes Z → [Con,Set]
and F → [Con,Set] are incomparable. This is clear if we contrast the ba-
sis K of Lemma 4.6 with the Zariski basis defined above. Certainly, the
Grothendieck topology generated by K does not contain most of the sieves
generated by the ‘open’ covers of Z. On the other hand, R in Conop does
not have a non-trivial Z-cocover. Hence, the composite

Z → [Con,Set]→ [Ext,Set]

does not factor through the subtopos [C2,Set]→ [Ext,Set].
The discussion above suggests considering the intersection of F and Z

over [Con,Set]. Hopefully, the resulting topos would combine the benefits
of a pre-cohesive topos with the colimit preservation properties of the em-
bedding Algop → Z . Alternatively, one can consider in F the algebra ob-
ject R = Con(R[x], ) and the least Lawvere-Tierney topology that makes
the subobject

{a ∈ R | (∃b ∈ R)(ab = 1) ∨ (∃b ∈ R)((1− a)b = 1)} −→ R

dense. The two subtoposes of F suggested above may turn out to be the
same but, in any case, this will have to be treated elsewhere.

Still in the case that k = R; what does F = [Con′,Set] classify? As-
sume a standard presentation of the theory of R-algebras extending the usual



presentation of the theory of rings. The theory of connected R-algebras may
be presented by adding the axioms

0 = 1 ` ⊥ and x2 = x `x (x = 0) ∨ (x = 1)

and it is well-known (see [14]) that this induces the Gaeta topology on Algop

so the resulting topos of sheaves is equivalent to [Con,Set].

Lemma 4.9. The theory classified by F can be presented by adding the
axiom

` (∃x)(x2 = −1)

to the presentation of the theory of connected R-algebras described above.

Proof. To prove this is convenient to use the presentation of F given in
Lemma 4.6 because the basis K on Conop is clearly generated by the map
R→ C in Con; and this sieve covers if and only if the theory classified by
F satisfies the evident axiom.

Alternatively, one can start with the theory presented as in the statement
and regard it as a ‘quotient’ of the presentation of the theory of R-algebras. It
is well-known (see e.g. D3.1.10 in [7]) that one can construct the classifying
topos as the topos of sheaves on a site whose underlying category is the
opposite of the category of finitely presented algebras. Following this path
(and factoring through the Gaeta site) one arrives at the site (Conop, K).

For an arbitrary field the subtopos Sh(D, Jat)→ [Ext,Set] will not be
open but the description of the theory classified by F can probably be mod-
ified by adding an appropriate sequent for each map in Ext.

Lawvere suggested to discuss the classifying role of F over its natural
base. To do this recall (Theorem VIII.2.7 in [16]) that the base [C2,Set]
classifies C2-torsors, where C2 is cyclic group of order 2. For brevity let us
define a (C2-)torsored topos as a pair (T , T ) given by a topos T an a C2-
torsor T in it. A morphism g : (T , T )→ (T ′, T ′) of torsored toposes is a
geometric morphism g : T → T ′ such that g∗T ′ ∼= T .

Definition 4.10. A torsored algebra in a torsored topos (T , T ) is an inter-
nal R-algebra A in T together with a map T → A such that the following



diagram
T

��

// 1

−1

��

A
∆
// A× A ·

// A

is a pullback; where ∆ is the diagonal and · is the multiplication of the
algebra A.

The pre-cohesive F → [C2,Set] makes F into a torsored topos (F , F )
and the object R = Con(R[x], ) is a R-algebra in F = Sh(Conop, K).

Proposition 4.11. The R-algebra R in F may be equipped with a torsored
algebra structure in (F , F ) and it is the generic one. That is, (F , F, R)
classifies torsored algebras among torsored toposes.

Proof. The underlying object of the generic C2-torsor is the representable
C2(C, ) in [C2,Set]. The inverse image of the pre-cohesiveF → [C2,Set]
sends C2(C, ) to C2(C, ρ( )) ∼= Con(C, ) = F . The unique R-algebra
map R[x]→ C sending x to i determines a morphism F → R and since
the diagram below

x_

��

� // x2

R[x]

��

// R[x]

��

x_

��

−1 R // C i

is a pushout in Con, the map F → R in F makes R into a torsored algebra.
To prove that it is the generic one let (T , T ) be a torsored topos and let A be
a torsored algebra in T . The unique map T → 1 is epi because T is a torsor
and so, the condition defining torsor algebras implies that ` (∃x)(x2 = −1)
holds in T . By Lemma 4.9 there exists an essentially unique geometric
morphism g : T → F such that g∗R = A. Since g∗ preserves finite limits it
must be the case that g∗F ∼= T so g is a morphism of torsored toposes.
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