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1 Introduction

The gauge/gravity correspondence [1–3] provides a useful tool to study quantum field

theories in the strongly coupled regime. In the last years, this was applied to describe the

behavior of condensed matter systems (see [4–7] for nice reviews). In the present work we

will study the hydrodynamic modes of a p-wave superconductor using holography. In [8]

the authors for a studied this system in QFT.

The order parameter for this class of superconductors is a vector field. Its gravity

dual was proposed in the probe limit in [9] and the backreaction on the metric was an-

alyzed in [10–12]. Holographically the p− wave superconductor [9] can be modeled with

an asymptotically AdS black hole with a SU(2) gauge field living on it. The boundary

behavior of this gauge field gives the chemical potential and the order parameter of the

superconductor. In particular, the chemical potential breaks the SU(2) gauge group to a

U(1) subgroup and the condensate spontaneously breaks this U(1) subgroup and rotational

symmetry. In this work we are going to take into account the probe limit approximation

in which the gauge field doesn’t deform the geometry of the space-time. Roughly speaking

this approximation means that we have a small amount of charged (under the gauge group)

degrees of freedom compared to the total number of degrees of freedom of the QFT.

The hydrodynamic theory studies the conservation equations for whatever symmetry

the system has. In particular the conservation of the stress energy tensor and, if the system
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has some global symmetry, the conservation of the associated Noether current. The ansatz

that solves these systems are called constitutive equations and because hydrodynamics is

an effective theory they are functions of the derivatives of the temperature, the local ve-

locity and the chemical potential. From those equations we can compute some transport

properties like the diffusion constant, the first and second sound velocity, the charge con-

ductivity, the charge density and the shear and bulk viscosities. Linear response theory

allow us to know the dispersion relation for the hydrodynamics modes through the poles

of the retarded Green function (see [13] for a nice review on relativistic hydrodynamics).

Since we will work in the probe limit, we will only have information about the fluctuations

of the modes associated to the Noether current. A more complete study of the system with

backreaction could enlighten us about the stress energy tensor fluctuations.

As was shown in [14] the retarded Green function can be obtained holographically

through the study of the quasinormal modes (QNM’s) of the dual gravity background

(see [15, 16] for reviews on the computation of QNM’s in black hole geometries). Pre-

vious works on holographic hydrodynamics compute the hydrodynamic modes of N = 4

SYM [17, 18]. The aim of the present work is to analyze the hydrodynamic modes of the

p−wave superconductor through the study of the quasinormal modes spectrum of its holo-

graphic dual. In other words, we are going to study the poles of the current-current two

point functions 〈jai j
a
i 〉 in the probe limit approximation. Here, the current j1x is the order

parameter of the p−wave superconductor. Moreover we are interested in the computation

of the second sound of the superconductor. In the two fluid model of superconductivity the

system is divided in two components, the normal fluid that contains elementary excitations

like the phonon and roton and the superfluid that consists on the condensate. This model

predicts the existence of a second sound mode which is the de-phased collective motion of

the two fluids. We are going to use holography to compute this second sound in a p−wave

superconductor (see [19, 20] for previous work on this direction). Moreover we are going

to obtain diffusive and pseudo-diffusive modes.

In [21] the authors did a Gaussian quench in the order parameter of the gravity dual of

a s−wave superfluid [22, 23]. They showed that a universal late time behavior of the system

is described by the poles of the retarded Green function that lie the closest to the real axis.

Furthermore, it is discussed in [24] that the dynamical phase diagram can be extracted

from the information of the QNM at equilibrium. Then, this is another application of our

study of the quasinormal modes. They will describe the late time behavior of the quenched

p−wave superconductor.

The program is the following. In section 2 we are going to review the gravity dual to

the p−wave superconductor in the probe limit proposed on [9]. In section 3 we study the

quasinormal spectrum and describe the second sound, the diffusive and pseudo-diffusive

modes. Finally, the results are summarized in section 4.

2 Holographic p−wave superconductor

In this section we are going to review the gravity dual found in [9] for a holographic p−wave

superfluid.
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The order parameter in conventional superconductors comes from electron pairs that

couple forming Cooper pairs. The state describing this pair must be symmetric and then

only certain combinations are allowed. The p−wave superconductor is the name for those

systems in which the relative orbital angular momentum between the electrons forming the

Cooper pair is l = 1. The superfluid 3He−A is a real world example of a system with this

order parameter.

We will work in the simplest set up and consider SU(2) as the gauge group. We will

consider the system charged under the U(1) inside SU(2). This will explicitly break SU(2)

down to U(1). The p-wave superconductor ansatz, breaks the remaining U(1) symmetry

and the SO(2) symmetry associated to spatial rotations in the bidimensional boundary

theory. The gravity solution that describes the strong coupling dynamics is as follows: a

charged superconducting layer develops outside the horizon due to the interplay between

the electric repulsion and the gravitational potential of the asymptotically AdS geometry.

At high enough temperatures there is no hair outside the black hole and the solution is just

a charged AdS black hole. Below a critical temperature Tc a non-trivial gauge field with

non-vanishing chemical potential on the boundary of the geometry and a sourceless non-

vanishing condensate in the bulk appears, breaking the remaining U(1) gauge symmetry.

An alternative formulation for a p−wave superfluid can be found in [25].

2.1 The model

The Einstein-Yang-Mills action fixed by the gauge symmetry reads

S =
1

2κ2

∫

d4x

(

R−
1

4
(F a

µν)
2 +

6

L2

)

, (2.1)

where κ is the gravitational constant in four dimensions and Fµν is the field strength of an

SU(2) gauge field

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gYMǫ

abcAb
µA

c
ν . (2.2)

Here the index a runs through the three SU(2) generators. We are going to work in the

probe limit, that is large
g
YM
κ

. By scaling the gauge field as Ã = A
g
YM

we see that the large

gYM limit corresponds to the probe (non-backreacting) limit of the gauge field. Roughly

speaking one can think that 1

g2
YM

counts the degrees of freedom of the dual field theory that

are charged under the SU(2) gauge group and 1

κ2
(4)

counts the total number of degrees of

freedom. Then the probe limit means that we have a small number of charged degrees of

freedom with respect to the total number. Moreover, taking this limit allow us to decouple

the metric fluctuations from the gauge field fluctuations. This means that we are going to

study the retarded Green functions for current-current expectation values, GR
jj , and we are

not going to catch up the transport coefficients that comes from the stress-energy tensor

conservation. In this limit, the proposed background geometry reads

ds2 =
r2

L2

(

−f(r)dt2 + dx2 + dy2
)

+
L2

r2f(r)
dr2, (2.3)

with f(r) = 1 −
r3
h

r3
and rh standing for the location of the black hole horizon. From now

on we set the scale rh = 1. The asymptotically AdS boundary is located at r = ∞ and the
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temperature of the horizon is Th = 3

4πL2 . The ansatz for the gauge field has the form

A = φ(r)τ3dt+ w(r)τ1dx. (2.4)

Here A = Aa
µτ

adxµ with τa = σa

2i
and σa the usual Pauli matrices. These SU(2) generators

satisfy the standard algebra [τa, τ b] = ǫabcτ c. A solution developing w(r) 6= 0 in the gauge

field ansatz breaks the remaining U(1) gauge symmetry associated with rotations around

τ3 (usually called U(1)3). We are looking for solutions that break this U(1)3 symmetry

spontaneously and we are going to achieve this imposing a non trivial regular profile for

the gauge field.

We will redefine our fields φ̃(r) = gYML
2φ(r), w̃(r) = gYML

2w(r) in order to simplify

the equations. This is equivalent to set gYM = L = 1. The Maxwell equations DµF
µν = 0

on this geometry read

φ̃′′(r) +
2

r
φ̃′(r)−

w̃(r)2φ̃(r)

r4f(r)
= 0 , (2.5)

w̃′′(r) +

(

f ′(r)

f(r)
+

2

r

)

w̃′(r) +
w̃(r)φ̃(r)2

r4f(r)2
= 0 . (2.6)

The system (2.6) has the following behavior near the horizon

φ̃(r) ≈ φh
1(r − 1), r → 1 ,

w̃(r) ≈ wh
0 + wh

2 (r − 1)2, r → 1 . (2.7)

On the other hand the near the boundary behavior for these equations reads

φ̃(r) = µ+
ρ

r
, r → ∞ ,

w̃(r) =
< j1x >

r
, r → ∞ . (2.8)

where µ is the chemical potential and ρ the charge density of the dual field theory. The

expectation value of the current < j1x > is the order parameter of the superfluid phase.

We will express our results in the grand canonical ensemble, i.e. at fixed chemical

potential. Then the physical temperature of the system will be determined by the following

re-scaled dimensionless magnitude T = Th/µ.

Note that in order to have a gravity dual of a spontaneously broken symmetry we

need to have the leading term wb
0 r

0 = 0 in the boundary behavior of w̃(r) because this

is, according to the AdS/CFT dictionary, the source for < j1x >. The solution is found

using a shooting technique and the desired solution is obtained for values of the horizon

coefficients φh
1 , w

h
0 that satisfy wb

0(φ
h
1 , w

h
0 ) = 0.

Exploring the space of parameters we find that a solution with w(r) 6= 0 only exist

for low enough temperatures, which translates into a phase transition from a normal to a

broken phase characterized by the order parameter < j1x >, as shown in figure 1.

The free energy for this solution was computed in [9], certifying that the broken phase

is indeed thermodynamically preferred. When going to lower temperatures than those

shown in figure 1 the probe limit breaks down and backreaction on the metric must be

considered [10–12]. For analytical computations in this system see [26]

In what follows of this section we are going to consider fluctuations of the gauge field.
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Figure 1. Re-scaled order parameter < j1x > /µ2 as a function of the temperature showing a

second order phase transition for low enough temperatures.

2.2 Gauge field fluctuations

In order to study the QNM spectrum of this background we are going to consider the

following fluctuations of the SU(2) gauge field

A =

(

φ(r)τ3 + λ
3
∑

i=1

δAi
t(t, x, y, r)τ

i

)

dt+

(

w(r)τ1 + λ
3
∑

i=1

δAi
x(t, x, y, r)τ

i

)

dx

+λ
3
∑

i=1

δAi
y(t, x, y, r)τ

idy , (2.9)

where we fix the gauge air = 0 and λ is the expansion coefficient. Since we are interested

in the QNM spectrum we will work at linear order in λ.

To have simpler equations of motion for this fluctuations we can divide them in different

modes. In particular we are going to study modes that propagate in a longitudinal or

transverse direction with respect to the direction of the condensate.1

Longitudinal modes.

δAi
t,x,y(t, x, y, r) = ait,x,y(r)e

−iωt+ikxx , (2.10)

Transverse modes.

δAi
t,x,y(t, x, y, r) = ait,x,y(r)e

−iωt+ikyy , (2.11)

Analyzing the modes in an arbitrary direction in the fashion of [27, 28] would be

interesting but would require a bigger computational power.

In the next section we are going to study the solution to the equations of motion for

the fluctuations ait,x,y(r) imposing ingoing boundary conditions at the horizon of the black

1Note that both sectors should coincide in the zero momentum limit and differences should arise only

when considering k 6= 0.
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hole2 of the form

aix, y ≈ aixh, yh
(r − 1)−

iω
3 + · · · , (2.12)

ait ≈ aith(r − 1)−
iω
3
+1 + · · · . (2.13)

At the boundary we are going to impose that the leading behavior vanishes. This require-

ment will quantize the frequency, giving us the quasinormal spectrum of the system.

These quasinormal frequencies are the poles of the retarded Green function in the dual

field theory. Furthermore, we are going to study the small momentum regime of these

modes, which will give us the hydrodynamic regime of the p−wave superfluid.

Generically the equations of motion for the perturbations will appear coupled in sec-

tors. To deal with this issue we will use the determinant method developed in [20] in order

to solve the system. The desired quasinormal frequencies ω(ki) are obtained from the roots

of the determinant of the matrix formed with solutions to the equations evaluated at the

boundary. In order to get an squared matrix, we will need an independent solution for

each coupled equation.

Typically the number of linearized equations of motion for the fluctuations is greater

than the number of free horizon parameters. This is due to constraint equations that

relate some near horizon parameters. When this happens we will take advantage of the

existence of (algebraic) pure gauge solutions in order to get as many independent solutions

as equations of motion.

3 Quasinormal modes

In this section we are going to find the spectrum of exitations of the p−wave superconductor

in the hydrodynamic limit. The analysis of these hydrodynamics modes can be done

studying the QNM frequencies of the gravity dual. Here we are going to study the QNM

spectrum of the geometry reviewed in section 2 and we will numerically solve the equations

of motion for the fluctuations (2.10) and (2.11). In particular we are going to study its

solutions in the unbroken (normal) and broken (superfluid) phase. As a first step we will

study the normal phase which is going to give us information about the number of modes

that we have. In a second step we will follow this modes in the superconducting phase and

study their behavior.

3.1 Longitudinal modes

In this subsection we are going to study the following fluctuations of the gauge field:

δAj
x(t, r, x) = ajx(r)e

ikxx−iωt, (3.1)

δAj
y(t, r, x) = ajy(r)e

ikxx−iωt, (3.2)

δAj
t (t, r, x) = ajt (r)e

ikxx−iωt (3.3)

where j runs over the three SU(2) index. As we shall see the equations of motion for the

δAj
y fluctuation decouples and can be analyzed separately.

2This ensures that we are dealing with retarded Green functions. On the other hand, outgoingness at

the horizon corresponds to the holographic computation of the advanced Green functions.
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3.1.1 Unbroken phase

In the normal phase, where w(r) = 0, the 6 equations of motion for the fluctuations (3.1)

and (3.3) decouple in 2 (background independent) equations for a3t , a
3
x and 4 equations

coupling a1x, a
2
x, a

1
t , a

2
t .

The sector with color indices 1 − 2 gives us the mode that will drive the instability

towards the superfluid phase. Following this mode through the phase transition, it will

become the Goldstone mode of the broken phase.

On the other hand, the sector with color index 3, gives the diffusive mode of the normal

phase with a dispersion relation ω = −ik2 [29]. Going further from the origin in the ω

complex plane, the quasinormal frequencies at zero momentum are know analytically to

be [29] ω = −i3
2
n, with n being a positive integer number. The fate of these modes in the

broken phase will be address in the following sections.

The behavior in the near horizon limit of the four equations of the 1− 2 sector allows

to fix two of the horizon parameters in term of the others. In order to have a solution for

this system we must use two pure gauge solutions (see eq. (3.5)). Instead, for the 3-sector

we need just one pure gauge solution a3t = −ω, a3x = k in order to determine the system.

On the other hand, the 3 equations for the fluctuations in the y component (3.2) are

separated in one equation for a3y (which is temperature independent) and two coupled

equations for a1y, a
2
y. In this case there is no reason to search for pure gauge solutions

because the system is well defined. The equation for a3y was previously studied in [29]

and was shown that there is no a solution satisfying the Dirichlet condition at the AdS

boundary compatible with the hydrodynamic approximation. Then, these set of equations

give two modes coming from the 1−2 sector. One of them is going to give a diffusive mode

in the broken phase and the remaining mode is going to be a pseudo-diffusive.

Note that at zero momentum there is no distinction between x and y sectors since the

rotational symmetry is not broken yet.

3.1.2 Broken phase for ax, at sector

Now, with a non vanishing condensate we must solve the following system with 6 equations

and 6 unknowns

a3 ′′t +
−w(2ikx a

2
t + 2 a1xφ+ iω a2x)− 2r3fa3 ′t + a3t

(

w2 + k2x
)

+ kx ω a3x
r4f

= 0 ,

a2 ′′t −
−2r3fa2 ′t + a2tw

2 + k2xa
2
t − i(2kxa

3
tw + kxa

1
xφ) + ωa3xw) + kxωa

2
x

r4f
= 0 ,

a3 ′′x −
a1twφ− ω(i a2tw + kxa

3
t + ωa3x)− f r3a3 ′x (rf ′ + 2f)

r4f2
= 0 ,

a1 ′′x +
kx ω a1t + φ(ikxa

2
t + 2 a3tw + 2iωa2x) + r3fa1 ′x (rf ′ + 2f) + a1x

(

φ2 + ω2
)

r4f2
= 0 ,

a2 ′′x +
−i(φ(kxa

1
t + 2ωa1x) + ωa3tw) + kxωa

2
t + r3fa2 ′x (rf ′ + 2f) + a2x

(

φ2 + ω2
)

r4f2
= 0 ,

a1 ′′t −
k2xa

1
t − 2r3fa1 ′t + kx ω a1x + φ(−a3xw + ikxa

2
x)

r4f
= 0 , (3.4)

– 7 –
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where prime means derivative with respect to the radial coordinate r. The near horizon

behavior of the equations allow us to fix 3 of the IR parameters. Then we need to use 3

pure gauge solutions in order to have a well posed system of equations. The pure gauge

solutions are parametrized by λi and read

a1x = −λ2kx , a2x = iλ1w(r) , a3x = −λ1kx − iλ3w(r) ,

a1t = λ2ω + iλ3φ(r) , a2t = −iλ2φ(r) + λ3ω , a3t = λ1ω . (3.5)

We found two kind of hydrodynamic modes in this sector: two sound modes and a diffu-

sive mode.

Sound modes. We have two sound modes that satisfy the dispersion relation

ω(kx) = ±vxkx − iΓxk
2
x . (3.6)

In a superfluid the ordinary sound is due to fluctuations of the density. The hydrodynamic

equations for the two fluid model predicts the existence of a different sound produced by

temperature or entropy fluctuations. This sound is called second sound and it depends

strongly on the temperature. Along this work the second sound velocity is going to be

denoted with vi, with i being the spatial direction index. The function Γx(T ) gives the

imaginary part of the dispersion relations (3.6). It is called second sound attenuation, and

is related with the mean free path of the quasiparticles.

In figure 2 we plot the second sound velocity as function of the temperature. Since we

have a second order phase transition we expect everything to match at one and the other

side of the critical point. The notion of second sound only makes sense in the two component

fluid model of superconductivity, then is expected the vanishing sound velocity at T = Tc

where just normal fluid remains and there is no superfluid component. Furthermore, in

the normal phase this QNM becomes massive.

Another interesting feature of figure 2 is the change in the slope for T/Tc ∼ 0.45. This

is similar to the results obtained in experiments with 4He in [30, 31] and theoretically using

a variational approach in [32].

In the right panel of figure 2 we can see the temperature dependence of the second sound

attenuation. Note that there is a non vanishing attenuation at the critical temperature

(Γs = 0.273131Tc for T = 0.9992Tc) and it vanishes for very low temperatures. Similar

behavior for the attenuation near the critical temperature was obtained in [33] for the

normal sound of an N = 2 plasma and in [20] for the second sound in the gravity dual of

an s−wave superconductor.

Diffusive modes. These modes satisfy the following relation

ω(kx) = −iDxk
2
x, (3.7)

with Dx the diffusive constant. The diffusion modes are expected in a two fluid model of

superfluidity because they are naturally related with the normal fluid component. As was

mentioned before in the discussion of the unbroken phase this diffusive mode comes from

the a3x, a
3
t sector of the equations of motion.

– 8 –
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Figure 2. Second sound velocity (left) and attenuation coefficient (right) as a function of the

temperature. The sound velocity vanishes (as expected) at the critical temperature.
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Figure 3. (Left) Spectrum for the diffusive mode. The blue curves correspond to the imaginary

part of ω(k) while the red curves to its real part. The lowest lying of the blue curves corresponds to

the first excited mode. We observe that at some value of k = kc it meets the hydrodynamic mode

and they acquire a non-vanishing real part. (Right) Value of the momentum for which the diffusive

and first excited mode meets as a function of the temperature.

Figure 3 shows the dispersion relation for the diffusive modes at T = 0.77458Tc. The

red lines are the real part of ω and the blue lines its imaginary part. The branch with the

lowest imaginary part corresponds to the first excited mode. Note that at some critical

value of k = kc it meets the diffusive mode and they both acquire a real part. This critical

value of k is temperature dependent and its non vanishing at T = Tc. This is because the

blue “bubble” is made of the hydrodynamic mode and the first excited mode. We will see

that kc(T ) has a different behavior for the diffusive modes in the transverse fluctuations.

Interestingly in [34–37] this kind of “bubble” behavior for the hydrodynamic diffusive mode

was observed for geometries originated from different brane configurations.

It is interesting to discuss the existence of this kc considering the discussion in [21, 24].

Since we expect these modes to rule the late time behavior of a quench, we can interpret

this result as follows: during an inhomogeneous quench with a characteristic wavelength

k, the order parameter will have an oscillatory or purely decaying behavior depending on

weather k is larger or smaller than kc at the final temperature of the quench.
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Figure 4. (Left) Diffusive and pseudo-diffusive mode for the ay fluctuations. The blue and red

curves correspond to the imaginary and real part of the dispersion relation. (Right) Dependence

on the temperature of the critical value kc where the two poles meet and acquire a non-vanishing

real part.

3.1.3 Broken phase for ay sector

The equations of motion for the the aiy fluctuations decouple from the aix perturbations

previously analyzed and reads

a3 ′′y −
a3y
(

f
(

w2 + k2x
)

− ω2
)

− f
(

r3a3 ′y (r f ′ + 2f)− 2 i kxa
2
yw
)

r4f2
= 0 ,

a1 ′′y +
r3fa1 ′y (rf ′ + 2f) + a1y

(

φ2 − f k2x + ω2
)

+ 2iωa2yφ

r4f2
= 0 , (3.8)

a2 ′′y +
−2iωa1yφ− f r3a2 ′y (rf ′ + 2f) + a2y

(

f
(

w2 + k2x
)

− φ2 − ω2
)

− 2ikxa
3
yfw

r4f2
= 0 .

The lowest lying solutions are a pseudo-diffusive mode of the form

ω(kx) = −iD̃xk
2
x − iγ(T ) (3.9)

and a proper diffusive mode with γ = 0. Here D̃x is the diffusive constant and γ is a real

parameter that shifts the pole from its unbroken phase position. Then, at zero momentum

we have a non-vanishing ω(kx).

A typical solution is shown in figure 4 for T = 0.7745Tc but its qualitative behavior is

independent of the temperature. The blue curves correspond to the imaginary part of ω(k)

while the red ones correspond to the real part of ω(k). The diffusive mode comes from

the a3y fluctuation in the unbroken phase and the coupled equations for a1,2y gives the lower

blue branch of the plot. Note the similitude with the diffusive mode for the longitudinal

fluctuation shown in figure 3. This similitude is just apparent because in the present case

the two blue branches correspond to a diffusive and a pseudo-diffusive mode. In figure 3

instead, the branches correspond with a diffusive mode and the firs exited mode. Again

we have a critical value for the momentum k where the modes meet and acquire non zero

real part. Figure 4 shows how this critical value kc depends on the temperature.

The fact that the diffusive mode acquires a mass in the broken phase was previously

observed in [20] in the context of holographic s−wave superfluids. On the other hand, the
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coupling between different (pseudo)diffusive modes, allows them to acquire a real part in

their mass or dispersion relation. A similar behavior was observed in [24] in the context of

s−wave U(2) superfluids.

3.2 Transverse modes

In this section we are going to study the fluctuations that propagate in the transversal

direction with respect to the condensate, i.e. those given by equation (2.11). Due to the

rotational symmetry of the unbroken phase we expect the same number of hydrodynamic

modes that in the longitudinal case.

In this case we have two sets of fluctuations that can be consistently solved. The first

one (which we are going to call sector I) reads

δAj
x(t, r, y) = ajx(r)e

ikyy−iωt , (3.10)

δA3
y(t, r, y) = a3y(r)e

ikyy−iωt , (3.11)

δA3
t (t, r, y) = a3t (r)e

ikyy−iωt , (3.12)

with j = 1, 2. From this sector we will find two sound modes and one diffusive mode.

The second consistent fluctuations (called sector II from now on) read

δA3
x(t, r, y) = a3x(r)e

ikyy−iωt , (3.13)

δAj
y(t, r, y) = ajy(r)e

ikyy−iωt , (3.14)

δAj
t (t, r, y) = ajt (r)e

ikyy−iωt , (3.15)

with j = 1, 2 and they lead to one diffusive and one pseudo-diffusive modes.

3.2.1 Unbroken phase

Since we defined our transverse or parallel modes according to the direction of the mo-

mentum with respect to the condensate, the transverse and parallel modes coincide in the

normal phase. Nevertheless we will review them again here and discuss them according on

how they couple in the broken phase. This is important since the continuity of the QNM

across the phase transition will be one of our checks to the results obtained numerically.

For sector I we have two sets of equations. One of them couples the fluctuations a3t , a
3
y

and are temperature independent. In [29] was shown that they give a diffusive mode. The

remaining two equations couples a1x, a
2
x and we found that they give the mode that drives

the instability and evolves into the Goldstone mode when T < Tc. This Goldstone mode

is of course massless and will give us at fine momentum a sound velocity. Thats why we

will call it also sound mode.

For the sector II we have one decoupled equation for the a3x fluctuation and four

coupled equations for the remaining fluctuations. The decoupled equation was previously

studied in [29] and was shown that it does not give a solution satisfying the boundary

conditions compatible with the hydrodynamic limit, but just massive modes. The remain-

ing equations are going to give two modes in the broken phase, one diffusive and one

pseudo-diffusive mode.
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Figure 5. Second sound velocity (left) and attenuation coefficient (right) in the transversal direc-

tion as a function of the temperature. The sound velocity vanishes (as expected) at the critical

temperature.

3.2.2 Broken phase — sector I

The equations of motion related to this sector read

a3 ′′y −
−kyωa

3
t − f

(

r3a3 ′y (rf ′ + 2f) + ika2xw
)

+ a3y
(

fw2 − ω2
)

r4f2
= 0 ,

a3 ′′t −
−2r3fa3 ′t + a3t

(

w2 + k2y
)

+ w(2g a1xφ+ iωa2x) + kyωa
3
y

r4f
= 0 ,

a1 ′′x +
2φ(a3tw + iωa2x) + r3fa1 ′x (rf ′ + 2f) + a1x

(

φ2 − f k2y + ω2
)

r4f2
= 0 ,

a2 ′′x −
−a2x

(

φ2−f k2y + ω2
)

+ i
(

ω a3tw + 2ωa1xφ+ ir3fa2 ′x (rf ′ + 2f)+ ky a
3
yf w

)

r4f2
= 0 . (3.16)

We again need to find a pure gauge solution

a1x = 0 , a2x = −iw(r) , a3y = −ky , a3t = ω (3.17)

in order to use the determinant method. Then, we find from (3.16) two sound modes and

one diffusive mode.

Sound modes. We have two sound modes that satisfy the dispersion relation

ω(ky) = ±vsky − iΓyk
2
y , (3.18)

in the hydrodynamic limit

In figure 5 we plot the second sound velocity as a function of the temperature. Again,

we observe the expected vanishing behavior at T = Tc. On the other hand, in the low

temperature limit we see that it has the same value that in the longitudinal case. In figure 5

we observe the transverse second sound attenuation as a function of the temperature. Note

that as in the longitudinal case it tend to zero in the low temperature limit and takes a

finite value at the critical temperature (Γy = 0.4175Tc at T = 0.9992Tc). This behavior is

analog to what was found in [20] for the s−wave case.
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Diffusive mode. The low momentum dispersion relation for a diffusive mode reads

ω(ky) = −iDyk
2
y (3.19)

and the qualitative behavior is analog to that in figure 3 where the lowest blue line is the

imaginary part of the first excited mode and the upper blue line is the pseudo-diffusive

mode. Again, they meet at some critical value kc and its qualitative behavior is similar to

the one shown in figure 3.

3.2.3 Broken phase — sector II

The equations of motion for this sector read

a3 ′′x +
−a1twφ+ iωa2tw + r4fa3 ′x f ′ + 2r3f2a3 ′x + a3x

(

ω2 − k2yf
)

+ ikya
2
yf w

r4f2
= 0 ,

a1 ′′y +
kyωa

1
t + iφ(kya

2
t + 2ωa2y) + r3f a1 ′y (rf ′ + 2f) + a1y

(

φ2 + ω2
)

r4f2
= 0 ,

a2 ′′y +
−iφ(kya

1
t+2ωa1y)+ kyωa

2
t−ikya

3
xf w + r3fa2 ′y (rf ′+2f)+a2y

((

φ2−f w2
)

+ω2
)

r4f2
= 0 ,

a1 ′′t −
−2r3f a1 ′t + k2ya

1
t + φ(−a3xw + ikya

2
y) + kyωa

1
y

r4f
= 0 ,

a2 ′′t −
−2r3fa2 ′t + a2t

(

w2 + k2y
)

− i(ωa3xw + kya
1
yφ) + kyωa

2
y

r4f
= 0 .

(3.20)

Solving this equations of motions and using the pure gauge solutions

a3x = 0 , a1y = −λ1ky , a2y = −λ2ky , a1t = λ1ω + iλ2φ(r) , a2t = −iλ1φ(r) + λ2ω ,(3.21)

we find a pseudo-diffusive and a diffusive mode in the hydrodynamic regime.

Pseudo-diffusive mode. As in the longitudinal case, we have pseudo-diffusive and dif-

fusive mode (γy = 0 in the eq. below) for the system obtained from the ansatz (3.15). As

before, the dispersion relation reads

ω(ky) = −iDyk
2
y − iγy(T ). (3.22)

In figure 6 we plot these pseudo-diffusive modes of the transverse fluctuations at T =

0.2732Tc. Again we have the “bubble” behavior, i.e. the meeting of two modes at certain

value k = kc and the analysis of the spectrum is analog to that performed for the ay
fluctuations in the longitudinal mode. Figure 6 also shows how this critical value kc depends

on the temperature. It has a maximum value at the temperature at which the two diffusive

modes are the furthest one from the other at zero momentum. Moreover, at very low

temperatures and near the critical temperature they are almost at the same place on the

imaginary axis. This fact produces a small kc in those regimes.
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Figure 6. (Left) (Pseudo-)diffusive modes for the transverse sector II fluctuations at T = 0.2732Tc.

(Right) Critical value of k as a function of the temperature.

4 Conclusions

In this paper we look for hydrodynamic modes of a 2 + 1 dimensional p−wave superfluid.

In order to obtain this modes we review its dual gravity background in the probe limit,

which is an asymptotically AdS planar charged black hole with a SU(2) gauge field living

on it. We work in the non-backreacting limit and we use holography to compute the poles

of the current-current retarded Green functions of the dual field theory. Note that in this

bottom-up approach we can not say anything about the microscopic theory that originate

the superconducting character of the material but we can study its phenomenology. The

AdS/CFT dictionary allow us to obtain the poles of the retarded Green function through

the computation of the QNM of the gravity dual. Then with this plain in mind we computed

the QNM in the geometry dual to the p−wave superconductor. We separate the fluctuations

of the gauge field in two sectors which we called longitudinal and transverse because they

propagate parallel or orthogonal with respect to the direction of the condensate respectively.

As expected by the rotational symmetry present in the unbroken phase we have the same

number of hydrodynamic modes in both sectors. For the longitudinal modes we find two

subsystem of equations, the first one presents one diffusive mode and two sound modes.

We computed the velocity of the second sound for these modes and its attenuation as a

function of the temperature. We noted that the diffusive mode meets an excited mode at

some value of the momentum kc and we made a plot of its temperature dependence. The

second subsystem leads to one pseudo-diffusive and one diffusive modes. We observe that

the behavior of kc(T ) for this modes is different that in the cases where the diffusive modes

meet the first excited mode. On the other hand, we obtain the same kind of modes in the

transverse sector. One diffusive mode and two sound modes for what was called sector I

and one pseudo-diffusive and one diffusive modes for sector II. Again, we plot the second

sound velocity as a function of the temperature and observe that it has the same behavior

that in the longitudinal case at low temperatures and at T ∼ Tc.

In view of the work [21], the modes found on the present paper can be viewed as

responsible of the late time behavior of a p−wave superconductor. In particular we noticed

a phase transition from a non oscillatory regime to an oscillatory one for inhomogeneous
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quenches with a characteristic wave number greater than kc and followed the behavior of

kc as a function of the temperature. As a future work it would be interesting to explicitly

check this affirmation by quenching the p−wave and computing its late time behaviour.

Moreover it could be interesting to see if the hydrodynamic modes that we found could

also be obtained using the hydrodynamic equations of [8].

Another possible extension to this work would be to analize the quasinormal modes of

the so called s+ p−wave phase introduced in [38]. This model arises naturally in the low

temperature regime of [24] and field theory calculations made in [39] suggest that roton-like

exitations may be found.
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