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We discuss the solutions of the Schroedinger equation for piecewise potentials, given by the

harmonic oscillator potential for jxj > a and by an arbitrary function for jxj < a, using elementary

methods. The study of this problem sheds light on usual errors made in discussions of the

asymptotic behavior of the eigenfunctions of the quantum harmonic oscillator and can also be

used for the analysis of the eigenfunctions of the hydrogen atom. We present explicit results for

the energy levels of a potential of this class, used to model the confinement of electrons in

nanostructures. VC 2017 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4994808]

I. INTRODUCTION

The Schroedinger equation for the linear harmonic oscilla-
tor reads

d2w
dz2
þ E � z2

4

� �
w ¼ 0 ; (1)

where z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mx=�h

p
x; E ¼ E=ð�hxÞ, x is the coordinate of

the oscillator, and m and x its mass and frequency, respec-
tively. The traditional approach for solving this equation
consists in proposing a solution of the form

wðzÞ ¼ e�z2=4
X
n�0

a2nz2n þ
X
n�0

a2nþ1z2nþ1
� �

� e�z2=4 a0 SevenðzÞ þ a1 SoddðzÞ½ � ; (2)

and obtaining recurrence relations for the coefficients

anþ2 ¼
n� E þ 1=2

nþ 1ð Þ nþ 2ð Þ an : (3)

Note that these are two sets of independent recurrence rela-
tions for the even and odd coefficients, which are fully deter-
mined once one fixes a0 and a1.

The energy eigenvalues are obtained by imposing the con-
dition that jwðzÞj2 should be integrable. In many text-
books,1–8 it is remarked for large n that a2nþ2=a2n ’ a2nþ3=
a2nþ1 ’ 1=ð2nÞ, which is also the behavior for the coeffi-
cients of the series of ez2=2. Then, it is (incorrectly) argued1–4

that, for large z,

Seven ’ Sodd=z ’ ez2=2 ; (4)

and therefore that jwðzÞj2 would not be integrable, unless the
series include only a finite number of terms. As a conse-
quence, the allowed energy eigenvalues are E ¼ nþ 1=2, for
some nonnegative integer n.

A long time ago it had been pointed out that, although
the conclusion for the eigenvalues is correct, the argument
is wrong.9 It is not true that, if two power series with

coefficients an and bn are such that anþ1=an ’ bnþ1=bn for
large n, then they have the same behavior for large argu-
ments. This is implicitly assumed in other textbooks,5–8

where it is pointed out that a2nþ2=a2n ’ 1=ð2nÞ is the
behavior of the coefficients of the series of zkez2=2 for any
value of k. This property is used to argue that the asymp-
totic behavior of the odd and even series should be of this
form for some particular values of k. Note that this claim is
at least incomplete, since zkez2=2 admits a representation in
powers of z (for all z) only if k is a natural number (or even-
tually an integer, if one considers also Laurent series).
Moreover, in principle there could exist other functions
with different asymptotic behavior and the same ratio
a2nþ2/a2n in the large n limit.

A correct reasoning is as follows.10 If anþ1/an> bnþ1/bn

and an, bn> 0 for n�N, then one can show that

X
n�0

anzn � k
X
n�0

bnzn þ PðzÞ; (5)

where k is a positive constant and P(z) is a polynomial of
degree N. One can use this bound to show that the odd and
even series in Eq. (2) diverge faster than eaz2

with a< 1/2,
unless they contain a finite number of terms. From this prop-
erty, one can derive the allowed eigenvalues for the har-
monic oscillator.

In the present paper, we discuss a related problem: the
Schroedinger equation in the presence of piecewise poten-
tials that coincide with the harmonic oscillator potential for
jxj > a. The analysis of this potential makes more evident
the usual mistakes in the discussions of the asymptotic
behavior of the wave functions, as the following (errone-
ous) argument shows: If E � 1=2 were not an integer, as the
odd and even series cannot cancel each other for z ! þ1
[Eq. (4)], the wave function would not be quadratically
integrable. Therefore, E � 1=2 must be a nonnegative inte-
ger, and the eigenvalues for the piecewise potentials would
coincide with those of the harmonic oscillator, irrespective
of the form of the potential for jxj < a. This is obviously
nonsense. The error in the argument goes back to the
assumed asymptotic behavior in Eq. (4). As we will see,
Seven/Sodd! const as z! þ1, for any value of E such that
E � 1=2 6¼ 0; 1; 2;…:

750 Am. J. Phys. 85 (10), October 2017 http://aapt.org/ajp VC 2017 American Association of Physics Teachers 750

http://dx.doi.org/10.1119/1.4994808
http://crossmark.crossref.org/dialog/?doi=10.1119/1.4994808&domain=pdf&date_stamp=2017-10-01


It is worth noting that for solving this problem it is not
enough to obtain a lower bound for the series: the leading
behavior of both series is needed. As this behavior is not
difficult to obtain, it will be useful even when discussing
the usual quantum harmonic oscillator. Moreover, when
considering the radial Schroedinger equation for the hydro-
gen atom, one also encounters vague arguments in the
analysis of the asymptotic behavior of the solutions. Our
results shed light on the discussion on this and related
problems.

Piecewise potentials involving the harmonic potential
have been considered before by other authors.11–15 In some
works,11–13 the harmonic part of the potential is restricted to
a bounded region (jxj < a in our notation), the opposite situ-
ation of the one considered here, and therefore the discussion
of the asymptotic behavior of the series Eq. (2) is not rele-
vant there. In other works,14,15 the authors consider the com-
bination of a harmonic potential for x> a and a finite
potential step for x< a. In this case, the analysis of the large-
x behavior of the solutions is relevant, and could be dis-
cussed using the elementary methods proposed below.
Alternatively, in Ref. 14 the problem is tackled by solving
the Schroedinger equation in terms of special functions,
while in Ref. 15 the eigenvalue equation is solved using an
integral representation method.

II. SCHROEDINGER EQUATION WITH PIECEWISE

HARMONIC POTENTIALS

Let us now consider the Schroedinger equation

d2w
dz2
þ E � V zð Þð Þw ¼ 0 ; (6)

with

V zð Þ ¼

1

4
zþ lð Þ2 z < �l;

f zð Þ �l < z < l;

1

4
z� lð Þ2 z > l;

8>>>>><
>>>>>:

(7)

where f(z) is an arbitrary function and l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mx=�h

p
a. The

potential is harmonic for jzj > l and arbitrary otherwise.
Let us first analyze the asymptotic behavior of the solu-

tions of Eq. (6). As the potential is defined in three different
regions, one can study the behavior for z < –l and z> l sepa-
rately. It will be enough to analyze the asymptotic behavior
in the region z> l. We introduce the notation y¼ z – l. Given
the form of the potential, one expects that, for y!þ1

wðyÞ ’ yceby2

; (8)

for some constants b and c. Indeed, inserting this ansatz into
Eq. (6) we obtain

4b2 � 1

4
þ y�2 E þ 2b 1þ 2cð Þð Þ þ O y�4

� �
¼ 0 ; (9)

that is satisfied, in the limit y� 1, when

b2 ¼ 1

16
c ¼ � 1

4b
E þ 2bð Þ: (10)

We conclude that the Schroedinger equation has a solution
that converges at y! þ1ðb ¼ �1=4; c ¼ E � 1=2Þ and a
linearly independent solution that diverges in the same limit
(b ¼ 1=4; c ¼ �E � 1=2). The analysis could be pursued
systematically by assuming

w yð Þ ’ yceby2

1þ c1

y
þ c2

y2
þ � � �

� �
; (11)

but this will not be necessary for what follows.
In the usual discussions of the asymptotic behavior of

the solutions of the harmonic oscillator, only the leading
term is kept in Eq. (9). This gives b¼61/4, and no informa-
tion on c.

We now propose a solution of Eq. (6) for y> 0 (z> l)
of the form given in Eq. (2), with y instead of z. As we
expect that the eigenvalues for the piecewise potentials
will differ from those of the usual harmonic oscillator, in
what follows we will assume that E � 1=2 6¼ 0; 1; 2;… :
The usual eigenvalues will be obtained in the limiting case
l! 0.

The bounds in Eq. (5) on the odd and even series imply
that both e�y2=4SevenðyÞ and e�y2=4SoddðyÞ diverge as y !
þ1. However, the existence of solutions with the asymp-
totic behavior given in Eq. (8) with b¼�1/4 implies that
there should be a unique choice of a1/a0 such that the
combination

wðyÞ ¼ e�y2=4 a0SevenðyÞ þ a1SoddðyÞ½ � (12)

converges as y ! þ1. When a1/a0� a* is properly chosen,
the linear combination of the two divergent series becomes
convergent. It is important to remark that this should happen
for any value of E. The value of a* is clearly unique, other-
wise one would obtain two convergent, linearly independent
solutions of the differential equation, and the divergent solu-
tions would not exist.

In Sec. II A, we will obtain the precise value of a*.
Assuming that this value is known, it is easy to find the set
of equations that determines the energy eigenvalues. We
introduce the notation

DE�1=2ðyÞ ¼ SevenðyÞ þ a�SoddðyÞ: (13)

In terms of this function, the quadratically integrable solu-
tion of Eq. (6) can be written as

wðzÞ¼
Ae�ðzþlÞ2=4DE�1=2ð�ðzþ lÞÞ z<�l;

Bw1ðzÞþCw2ðzÞ �l< z< l;

Fe�ðz�lÞ2=4DE�1=2ðz� lÞ z> l;

8>>><
>>>:

(14)

where w1 and w2 are two linearly independent solutions in
the region jzj < l, while A, B, C, and F are constants. The
wavefunction w and its first derivative should both be contin-
uous at z¼6l. These four conditions and the normalization
of the wavefunction determine the four constants and the
allowed values of the energy.

A. Calculation of a*

From the recurrence relation Eq. (3) one can see that
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a2 ¼
a0 �E þ 1=2ð Þ

2
¼ a0 �E=2þ 1=4ð Þ

2	 1=2
;

a4 ¼
a0 �E þ 1=2ð Þ 	 �E þ 1=2þ 2ð Þ

2	 3	 4
¼ a0 �E=2þ 1=4ð Þ 	 �E=2þ 1=4þ 1ð Þ

22 	 1=2	 3=2	 2
;

a6 ¼
a0 �E=2þ 1=4ð Þ 	 �E=2þ 1=4þ 1ð Þ 	 �E=2þ 1=4þ 2ð Þ

23 	 1=2	 3=2	 5=2	 2	 3
; (15)

and, in general,

a2n ¼
a0

2nn!

�E=2þ 1=4ð Þ 	 � � � 	 �E=2þ 1=4þ n� 1ð Þ
1=2	 3=2	 � � � 	 1=2þ n� 1ð Þ

¼ a0

2nn!

C 1=2½ �
C �E=2þ 1=4½ �

C �E=2þ 1=4þ n½ �
C 1=2þ n½ � ; (16)

where C[z] denotes the Gamma function. Note that in the
last equality we have made repeated use of the well known
identity C[zþ 1]¼ zC[z]. Following similar steps, we can
verify that

a2nþ1 ¼
a1

2nn!

C 3=2½ �
C �E=2þ 3=4½ �

C �E=2þ 3=4þ n½ �
C 3=2þ n½ � : (17)

The large-n behavior of the coefficients an can be analyzed
using Stirling’s approximation for the Gamma function at
large arguments16

C zþ 1½ � ’ zze�z
ffiffiffiffiffiffiffi
2pz
p

; (18)

from which we obtain

C nþ b½ �
C nþ c½ � ’ nb�c : (19)

Inserting this approximation into Eqs. (16) and (17) we
obtain, for large n,

a2n ’
a0

2nn!

C 1=2½ �
C �E=2þ 1=4½ � n

�E=2�1=4; (20)

a2nþ1 ’
a1

2nn!

C 3=2½ �
C �E=2þ 3=4½ � n

�E=2�3=4: (21)

From Eqs. (20) and (21), we see that the asymptotic
behavior of Seven and Sodd can be studied by considering the
series

S xð Þ ¼
X1
n¼1

n�rxn

n!
: (22)

Indeed, if two power series with positive coefficients An

and Bn are such that An/Bn ! 1 for n !1, then they have
the same asymptotic behavior. Hence, by virtue of Eq. (20),
putting x ¼ y2=2; r ¼ E=2þ 1=4 and multiplying by
a0 C½1= 2�=C½�E=2þ 1=4� on both sides of Eq. (22), we see
that

Seven yð Þ ’
C 1=2½ �

C �E=2þ 1=4½ � S
y2

2

� �
(23)

for large values of y. If, instead, we put r ¼ E=2þ 3=4 and
multiply by a1 C½3=2�=C½�E=2þ 3=4� on both sides of Eq.
(22), we obtain

Sodd yð Þ ’
y C 3=2½ �

C �E=2þ 3=4½ � S
y2

2

� �
(24)

for large y.
In order to study the asymptotic behavior of S(x), the key

observation is that, for a fixed large value of x, the
coefficients

cn xð Þ ¼ xn

n!
; (25)

have, as a function of n, a peak at n¼x. Moreover, the
width of the peak is much smaller than x. It is an interesting
exercise to verify these properties by plotting cn(x) as a
function of n for large values of x. We can prove them ana-
lytically using Stirling’s approximation Eq. (18) for the fac-
torial n!¼C[nþ 1], and evaluating for n ’ x. We obtain

n! ’
ffiffiffiffiffiffiffiffiffi
2px
p

e�nxnenln 1þ n�xð Þ
xð Þ : (26)

Expanding the logarithm in the exponential in powers of
(n – x)/x we get

cn xð Þ ’ exffiffiffiffiffiffiffiffiffi
2px
p e�

n�xð Þ2
2x : (27)

Therefore, for large (fixed) x, cn(x) is a Gaussian function
of n, with a peak at n¼x and width

ffiffiffiffi
x
p

. Thus, for the rele-
vant values of n we can approximate n�r by x�r in S(x)
obtaining, for large x,

S xð Þ ’ x�r
X1
n¼1

xn

n!
’ x�rex : (28)

We present a more rigorous proof of this asymptotic behav-
ior in the Appendix.

Taking into account Eqs. (23), (24), and (28) and we
obtain, for large y,

Seven yð Þ ’
C 1=2½ �

C �E=2þ 1=4½ �
y2

2

� ��E
2
�1

4

e
y2

2 ; (29)

Sodd yð Þ ’
ffiffiffi
2
p

C 3=2½ �
C �E=2þ 3=4½ �

y2

2

� ��E
2
�1

4

e
y2

2 : (30)

This calculation reproduces the asymptotic behavior of the
solutions anticipated in Eqs. (8) and (10). Both series lead to
linearly independent solutions to the Schroedinger equation
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that have the same asymptotic behavior with b¼þ1/4 and
c ¼ �E � 1=2 [see Eqs. (8) and (10)].

These two linearly independent solutions of the
Schroedinger equation are not quadratically integrable, and
therefore physically unacceptable. However, we know that a
linear combination of them should produce a solution with
the adequate behavior (b¼�1/4). A necessary condition for
this to happen is that the exponentially growing behavior of
both series should cancel each other. Therefore, using Eqs.
(12), (29), and (30) we obtain

a� ¼
a1

a0

¼ �
ffiffiffi
2
p C �E=2þ 3=4½ �

C �E=2þ 1=4½ � : (31)

With this result we can construct the function DE�1=2ðyÞ in
Eq. (13), and obtain the formal solution of the Schroedinger
equation Eq. (14).

We point out, for the advanced reader, that for this partic-
ular value of a* Eq. (12) reproduces the series expansion of
the parabolic Weber function Dr(y),14,17 which is the unique
solution of Eq. (6) that tends to zero as y!þ1.

III. EXAMPLE: A PARTICLE IN A “BATHTUB”

POTENTIAL

In order to illustrate the usefulness of the previous results,
we will consider the particular case of a particle in a box
bounded by harmonic walls, i.e., we will analyze the
Schroedinger equation with the potential given in Eq. (7)
with f(z)¼ 0. These so called “bathtub” potentials have been
used as confining potentials for electrons in nanostructures,
in particular when analyzing the quantum Hall effect.18–23

As the potential is an even function, it is convenient to
take as independent solutions in the region �l< z< l

w1ðzÞ ¼ cos
ffiffiffi
E
p

z;

w2ðzÞ ¼ sin
ffiffiffi
E
p

z ;
(32)

and look for solutions of the Schroedinger equation which
are either even or odd. For the even solutions we take C¼ 0
in Eq. (14) and impose continuity of the function and its first
derivative at z¼ l. The transcendental equation that deter-
mines the energy eigenvalues is

ffiffiffi
E
p

tan
ffiffiffi
E
p

l ¼ �
D0E�1=2 0ð Þ
DE�1=2 0ð Þ

¼ �a� : (33)

Similarly, for the odd solutions (B¼ 0) the condition reads

ffiffiffi
E
p

cot
ffiffiffi
E
p

l ¼
D0E�1=2 0ð Þ
DE�1=2 0ð Þ

¼ a� : (34)

In the limit l! 0 one recovers the eigenvalues of the har-
monic oscillator. On the one hand, for the even solutions, in
this limit the condition Eq. (33) reads a*¼ 0. As the Gamma
function does not have zeros for real arguments, and has
poles on the non-positive integers, from Eq. (31) we see that
the argument of the Gamma function in the denominator
must be a non-positive integer �n, and therefore E ¼ 2n
þ1=2, the usual eigenvalues for even eigenfunctions. On the
other hand, for the odd solutions the condition Eq. (34) is

a*¼1, which is satisfied for E ¼ 2nþ 1þ 1=2, i.e., the
usual energy levels for odd wave functions.

In Fig. 1, we plot the eigenvalues of the energy E as a
function of l. The eigenvalues start at the harmonic oscillator
values nþ 1/2 for l¼ 0, and are decreasing functions of l, as
suggested by the Heisenberg uncertainty principle. In Fig. 2,
we plot the wave function of the second excited state for
increasing values of l. At l¼ 0 the wave function is the usual
solution for the harmonic oscillator with energy E ¼ 5=2.
The wave function has two nodes for all values of l. They
are located in the harmonic region for 0< l< 1.28, and in
the flat region for l> 1.28. For this critical value of l, the
eigenvalue of the second excited state equals E ¼ 3=2, i.e.,
the value of the first excited state of the usual harmonic
oscillator (point (b) in Fig. 1).

An interesting property of the eigenvalues is their behav-
ior in the limit l� 1. When a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=2mx

p
, the scale of vari-

ation of the harmonic potential is much shorter than the size
of the flat bottom of the potential. Therefore, the harmonic
walls act as infinite potential barriers, and we expect the
spectrum of a particle in a box, that is, En=E0 ’ ðnþ 1Þ2.
This behavior is illustrated in Fig. 3.

Fig. 1. Eigenvalues for the “bathtub” potential, as a function of l. According

to the uncertainty principle, the eigenvalues are decreasing functions of l.
The wave functions associated with the particular values (a), (b), (c), and (d)

are plotted in Figs. 2 and 4.

Fig. 2. Plots of the normalized wave function for the second excited state,

w(2), for different values of l. As expected, the wave function has two nodes.

Note that the nodes are located in the harmonic region for 0< l< 1.28, at

z¼ l for l¼ 1.28 and in the flat bottom for l> 1.28. The corresponding

eigenvalues are given by the points (a), (b), and (c) in Fig. 1.
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We also expect the wave functions to evolve from those of
the usual harmonic oscillator at l¼ 0 to those of the infinite
square well for l� 1. This fact is illustrated in Fig. 4, where
we plotted the first excited state for different values of l.
Note that for large values of l the wave function tends to
zero in the harmonic region, on a spatial scale much shorter
than the size of the flat bottom.

IV. THE HYDROGEN ATOM

The remarks about the behavior of the series for the har-
monic oscillator also apply to the solutions of the
Schroedinger equation for the hydrogen atom. The radial
wave function is usually written as

wðqÞ ¼ qLþ1e�qFðqÞ; (35)

where q is a dimensionless radius, L is the angular momen-
tum, and

FðqÞ ¼
X
n�0

cnq
n: (36)

The coefficients of the power series satisfy the recurrence
relation

cnþ1 ¼
�nþ 2Lþ 2þ 2nð Þ
nþ 1ð Þ 2Lþ 2þ nð Þ cn ; (37)

where n is the inverse of the (dimensionless) energy. Note
that, once again, for large n we have cnþ1/cn ’ 2/n, and one
would be tempted to conclude that, if the series does not
have a finite number of terms, FðqÞ ’ e2q as q ! 1.
However, a more careful analysis along the lines of Secs.
II–III shows that this is not the case. Indeed, the coefficients
are given by

cn ¼ c0

2n

n!

C 2Lþ 2ð Þ
C �n=2þ Lþ 1ð Þ

C �n=2þ Lþ nþ 1ð Þ
C 2Lþ nþ 2ð Þ ;

(38)

and tend to

cn ’ c0

2n

n!
n�n=2�L�1 (39)

for large n. Therefore

FðqÞ ’ c0 e2qð2qÞ�n=2�L�1
(40)

for large q. This is the correct behavior of the series that of
course leads to an unacceptable wave function, unless the
series has a finite number of non-vanishing terms. We leave
the details for the reader. She/he could also address the prob-
lem of a particle in a piecewise Coulomb potential given by

V rð Þ ¼
� k

R
0 < r < R;

� k

r
r > R;

8>><
>>: (41)

following the procedure described for the piecewise har-
monic oscillator.

V. CONCLUSIONS

We have discussed in detail the asymptotic behavior of
the solutions of the Schroedinger equation with harmonic-
like potentials. Following the standard approach, we looked
for solutions of the form given in Eq. (2). We have shown
that when the even and odd series contain an infinite number
of terms, they have, up to a constant, the same divergent
asymptotic behavior as z!þ1, contrary to previous claims
in many textbooks. This is a necessary property, given that
there should be a linear combination of the odd and even
series that produce a solution that is convergent for z !
þ1, for any value of E.

For the usual harmonic oscillator, Eq. (2) should be the
solution to the Schroedinger equation for all values of z. If
we choose a* such that the wave function converges at z !
þ1, then it will diverge at z ! �1 (and viceversa).
Therefore, the physically acceptable solutions are those for
which both series contain a finite number of terms, and
E ¼ nþ 1=2. However, for piecewise potentials, we can
consider independent linear combinations of the even and
odd series in the regions z < �l and z> l, such that jwðzÞj2 is

Fig. 3. Eigenvalues for the “bathtub” potential, normalized to the ground

state, as a function of l. At large values of l the spectrum coincides with that

of an infinite square well. The wave functions associated to the particular

values (a), (b), (c), (d), and (e) are plotted in Figs. 2 and 4.

Fig. 4. Plots of the wave function for the first excited state, w(1), for different

values of l. This wave function has only one node at z¼ 0 for all values of l.
The figure illustrates the fact that the wave function for the piecewise poten-

tial tends to that of a particle in a box, and therefore vanishes in the har-

monic region in the large l limit. The corresponding eigenvalues are given

by the points (d) and (e) in Fig. 3. Point (f) is out of scale in Fig. 3, being at

the right of point (e), on the curve n¼ 1. For the sake of clarity, in this figure

we normalized each wave function to its maximum value.
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integrable. The continuity conditions of the wave function
and its first derivative at z¼6l fix the allowed energy eigen-
values. We illustrated the procedure by computing the eigen-
values of a potential with a “bathtub” shape.

The main mathematical result in our discussion is the
large-x behavior of the series

S xð Þ ¼
X1
n¼1

n�rxn

n!
’ x�rex (42)

that can be derived as described above and in the Appendix.
It can be even checked numerically by the students using
MATHEMATICA or similar programs, by plotting SðxÞxre�x as
a function of x, for different values of r.
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APPENDIX: ASYMPTOTIC BEHAVIOR OF THE

SERIES S(x)

In this Appendix, we provide an alternative and more rig-
orous proof of Eq. (28), which is the main mathematical
ingredient in our work. The derivation is somewhat cum-
bersome, but only uses elementary bounds for different
series.

For simplicity, we will assume r> 0 (the case r< 0 can be
treated using similar arguments). Let us consider

e�xxrS xð Þ ¼ e�x
X1
n¼1

x
n

� �r xn

n!
(A1)

and introduce the notation

T x; n1; n2ð Þ ¼ e�x
Xn2

n¼n1

x
n

� �r xn

n!
: (A2)

We would like to see that Tðx; 1;1Þ ! 1 as x!1.
On one hand, given any 0< k< 1, we split the series as

Tðx;1;1Þ¼ Tðx;1; kx½ �ÞþTðx; kx½ � þ 1;1Þ; (A3)

where the brackets denote integer part. As x/n
x, the first
term can be bounded by

T x; 1; kx½ �
� �


 e�xxr
Xkx½ �

n¼1

xn

n!
: (A4)

Noting that xn/n! is an increasing function of n for n
 [x],
we see that the series on the right hand side of Eq. (A4)
satisfies

Xkx½ �

n¼1

xn

n!


Xkx½ �

n¼1

x kx½ �

kx½ �!
¼ kx½ �x

kx½ �

kx½ �!

 kx

x kx½ �

kx½ �!
(A5)

and, hence, putting Eqs. (A4) and (A5) together we obtain
Tðx; 1; ½kx�Þ 
 ke�xxrþ1x½kx�=½kx�!. Let us show that

ke�xxrþ1x½kx�=½kx�! and, hence, Tðx; 1; ½kx�Þ, vanishes as x
!1. Using Stirling’s approximation we see that, for large x,

e�x x kx½ �

kx½ �!
’ e�x x kx½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p kx½ �
p e

kx½ �

� � kx½ �
: (A6)

Then, observing that

x

kx½ �

� � kx½ �
�

1

k

� �kx

(A7)

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p½kx�

p
’

ffiffiffiffiffiffiffiffiffiffiffi
2pkx
p

, we obtain

e�x x kx½ �

kx½ �!
�

e�xffiffiffiffiffiffiffiffiffiffiffi
2pkx
p e

k

� �kx

(A8)

and, since ðe=kÞk < e for 0< k< 1, we deduce from
Eq. (A8) that e�xx½kx�=½kx�! goes to zero exponentially as
x ! 1. This proves that ke�xxrþ1x½kx�=½kx�! vanishes
as x ! 1. Therefore, the first term in Eq. (A3) also
vanishes.

The second term in Eq. (A3) can be bounded by

T x; kx½ �þ 1;1
� �


 e�x x

kx½ �þ 1

� �r X1
n¼ kx½ �þ1

xn

n!
(A9)

by simply noting that x/n
x/([kx]þ 1). Since x/([kx]
þ 1)
 1/k and

X1
n¼ kx½ �þ1

xn

n!

 ex; (A10)

we deduce that Tðx; ½kx� þ 1;1Þ 
 ð1=kÞr and, therefore,
that

T x;1;1ð Þ 
 T x;1; kx½ �
� �

þ 1

k

� �r

!
x!1

1

k

� �r

: (A11)

On the other hand, given any r> 1 we have

T x; 1;1ð Þ � T x; 1; rx½ �ð Þ � e�x x
rx½ �

� �r Xrx½ �

n¼1

xn

n!
:

(A12)

We will see that e�x P½rx�
n¼1 xn=n! tends to unity as x!1.

Given that

e�x
Xrx½ �

n¼1

xn

n!
¼ e�x ex � 1�

X1
rx½ �þ1

xn

n!

 !

¼ 1� e�x � e�x
X1
rx½ �þ1

xn

n!
; (A13)

it suffices to show that e�xP1
½rx�þ1 xn=n! vanishes as x

!1. Now, since

755 Am. J. Phys., Vol. 85, No. 10, October 2017 Mazzitelli, Mazzitelli, and Soubelet 755



X1
rx½ �þ1

xn

n!
¼ x rx½ �þ1

rx½ � þ 1ð Þ! 1þ x
rx½ � þ 2

�

þ x2

rx½ � þ 3ð Þ rx½ � þ 2ð Þ þ � � �
�


 x rx½ �þ1

rx½ � þ 1ð Þ! 1þ x
rx½ � þ 1

�

þ x2

rx½ � þ 1ð Þ2
þ � � �

!
(A14)

and x/([rx]þ 1)
 1/r, we deduce

e�x
X1
rx½ �þ1

xn

n!

 e�x x rx½ �þ1

rx½ � þ 1ð Þ!
X
k�0

1

r

� �k

¼ e�x r
r� 1

x rx½ �þ1

rx½ � þ 1ð Þ! : (A15)

Once more, one can check that this last term vanishes as x
!1. Then, the left hand side of Eq. (A13) tends to unity as
x!1 and, therefore, from Eq. (A12) we see that

T x; 1;1ð Þ � e�x x
rx½ �

� �r Xrx½ �

n¼1

xn

n!
!

x!1

1

r

� �r

: (A16)

Now, since k and r were arbitrarily close to 1 (from below
and above, respectively), Eqs. (A11) and (A16) imply that
limx!1 Tðx; 1;1Þ ¼ 1 ; which is the desired statement.
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