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There exists a reciprocal relationship between the hypothalamic-pituitary-adrenal (HPA) and the

hypothalamic-pituitary-gonadal (HPG) axes, wherein the activation of one affects the function

of the other and vice versa. For example, both testosterone and oestrogen modulate the

response of the HPA axis, whereas activation of the stress axis, especially activation that is

repeating or chronic, has an inhibitory effect upon oestrogen and testosterone secretion. Altera-

tions in maternal care can produce significant effects on both HPG and HPA physiology, as well

as behaviour in the offspring at adulthood. For example, changes in reproductive behaviour

induced by altered maternal care may alter the expression of sex hormone receptors such as

oestrogen receptor (ER)a that govern sexual behaviour, and may be particularly important in

determining the sexual strategies utilised by females. Stress in adulthood continues to mediate

HPG activity in females through activation of a sympathetic neural pathway originating in the

hypothalamus and releasing norepinephrine into the ovary, which produces a noncyclic anovula-

tory ovary that develops cysts. In the opposite direction, sex differences and sex steroid hor-

mones regulate the HPA axis. For example, although serotonin (5-HT) has a stimulatory effect

on the HPA axis in humans and rodents that is mediated by the 5-HT1A receptor, only male

rodents respond to 5-HT1A antagonism to show increased corticosterone responses to stress.

Furthermore, oestrogen appears to decrease 5-HT1A receptor function at presynaptic sites, yet

increases 5-HT1A receptor expression at postsynaptic sites. These mechanisms could explain the

heightened stress HPA axis responses in females compared to males. Studies on female rhesus

macaques show that chronic stress in socially subordinate female monkeys produces a distinct

behavioural phenotype that is largely unaffected by oestrogen, a hyporesponsive HPA axis that

is hypersensitive to the modulating effects of oestrogen, and changes in 5-HT1A receptor binding

in the hippocampus and hypothalamus of social subordinate female monkeys that are restored

or inverted by oestrogen replacement. This review summarises all of these studies, emphasising

the profound effect that the interaction of the reproductive and stress axes may have on

human reproductive health and emotional wellbeing.
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Introduction

The present review examines the results from four laboratories in

both North and South America that are studying the interaction of

the stress and reproductive axes at several levels.

It has been shown that the adult hypothalamic-pituitary-adrenal

(HPA) axis reactivity can be altered early in life by differences in

maternal care. In laboratory rats, the neuroendocrine and behavio-

ural effects of postnatal environmental manipulations of the

infant–mother relationship have been studied experimentally for

more than 50 years. Among these, the most frequently applied

postnatal manipulations are neonatal handling (NH), which consists



of brief periods of daily separation of mothers and offspring (usu-

ally < 15 min) taking place any time before weaning, and maternal

separation (MS), which includes repeated removal of either pups or

mother from the nest for periods ranging from 3 to 8 h per day

during the first two postnatal weeks (1–3). Although the effects of

early-life manipulations on the HPA axis have been extensively

characterised, few investigators have examined reproductive mark-

ers in rats following the MS stress paradigm, and there is evidence

that NH can alter reproductive behaviour in various ways. Thus, in

many instances, early maternal care can set the stage for the inter-

action of the hypothalamic-pituitary-gonadal (HPG) and HPA axes

in adult life.

There is ample evidence that gonadal steroids, the end product

of the HPG axis, actively modulate the function of the HPA axis in

adults. Studies on female rats have found higher adrenocorticotro-

phin hormone (ACTH) levels subsequent to acute stress at pro-

oestrus or following treatment with pro-oestrus levels of oestrogen,

and longer lasting post-stress elevations of corticosterone in female

rats treated with oestradiol or oestradiol and progesterone (4).

17b-Oestradiol (E2) has been shown to increase ACTH secretion in

female baboons (5) and increase ACTH and cortisol by decreasing

glucocorticoid negative-feedback in female monkeys (6) and, in

women, exercise stress enhances ACTH and arginine vasopressin

(AVP) only in the mid-luteal stage when ovarian hormones are ris-

ing (7). In male rats, testosterone decreases glucocorticoid and

adrenocorticotrophin responses to stress (8,9). Furthermore, gonad-

ectomy increases both corticosterone and ACTH in male rats and

this can be normalised by replacement with testosterone or dihyd-

rotestosterone (10). These studies suggest that gonadal steroids

modulate the HPA axis in both sexes.

By contrast, activation of the stress axis, especially activation

that is repeating or chronic, has an inhibitory effect upon gonadal

hormone secretion. For example, stress and stress hormones inhibit

the release of gonadotrophin-releasing hormone from the hypothal-

amus, and glucocorticoids inhibit the release of luteinising hormone

from the pituitary and E2 and progesterone secretion by the ovary

(11,12), as well as testosterone from the testes (12,13). One way

that stress acts to mediate HPG activity in females is through acti-

vation of a sympathetic neural pathway originating in the hypo-

thalamus and releasing norepinephrine (NE) into the ovary (14,15).

The deleterious effect that this sympathetic pathway can have on

the ovary is likely a main contributor to the effect of stress on the

HPG axis.

Data garnered from these substantially different experimental

paradigms emphasise that the interaction of the reproductive and

stress axes has far-reaching implications for human health.

Maternal separation stress and reproductive function:
effects on male and female rats

Given that a substantial amount of brain development occurs after

birth, it is consequently subject to environmental influences, which

may negatively or positively affect brain maturation. Even natural

variations in the quality or quantity of maternal care can have

a long-term impact on offspring brain and behaviour. Human

epidemiological and animal experimental studies show that early

social experiences influence the functioning of physiological pro-

cesses even into adulthood (3,16–22).

In both sexes, rat sexual behaviour can be divided into two com-

ponents: appetitive and consummatory (23). In females, appetitive

behaviours, also named proceptive behaviours, consist of anogenital

investigation, solicitations, hops and darts, and ear wiggling,

whereas males display anogenital investigation, chase the females

and attempt to mount them. The consummatory/receptive phase in

females consists of the expression of the lordotic posture, which

allows the male to mount, perform several intromissions and ejacu-

late, the three main copulatory behaviours shown by males (24).

Although results are not consistent across the literature, MS

induces sexually dimorphic outcomes. Although reproductive physi-

ology is not significantly affected in females, an MS protocol has

been described as producing significant effects on male reproduc-

tive physiology, such as longer mount latencies, longer intromission

latencies and a reduction in the percentage of animal ejaculating

but it does not affect female reproductive function (25). On the

other hand, Greisen et al. (26) found that MS led to a male pheno-

type with heightened sexual performance, reflected in decreased

mount latency, decreased intromission latency and decreased post-

ejaculatory interval, whereas mating behaviour was not affected in

females. The discrepancies observed between these two studies may

be explained because they employed different MS protocols and dif-

ferent control groups. However, although the results may differ

depending upon the experimental conditions, MS is a good animal

model of early-life stress that has been extensively used over the

past decades. Further studies are still needed to determine the

impact of early-life stress on later life.

Interestingly, studies employing NH protocols, on the other hand,

have found reduced sexual behaviour in males and females,

reduced sexual receptivity, reduced lordosis quotient (LQ), an

increased frequency of anovulatory oestrous cycles, and an altered

hormonal profile of several hormones related to ovulation and sex-

ual behaviour (27–29). This effect relates neatly with the effects of

natural variations in maternal care because the effects of early

handling have been ascribed, at least in part, to the enhanced

maternal care the pups receive upon their return to the dam. Upon

the return of the mother, NH increases maternal licking and

grooming (LG) of the pups.

Findings suggest that the quality of parental care received during

the early postnatal period programmes the HPG axis in rats, subse-

quently influencing adult sexual behaviour, especially in female rats,

in which offspring of high LG showed reduced LQ, higher percent-

ages of mounts without intromission (reflecting a decreased quality

of lordosis), received fewer ejaculations and were less likely to

achieve pregnancy (30,31). Also in the brain areas involved in the

control of the HPG axis and sexual behaviour (the ventromedial

hypothalamus and anterior ventral periventricular nucleus), high LG

female offspring show lower ERa expression, which correlates with

the reproductive strategy displayed by these animals (32).

It is proposed that maternal care induces internal modifications

that can ‘programme’ reproductive strategies in the female rat. Such

neuroendocrine programming biases towards increased fecundity (i.e.
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the offspring of low LG mothers) or increased investment in the off-

spring (the offspring of high LG mothers), adapting female offspring

to respond to subtle variations in parental care to adapt to the

everyday environmental conditions that they will face. Under high-

risk environmental conditions, when the probability of survival is

low, the optimal strategy is to maximise the number of offspring

through accelerated mating. By contrast, a more propitious environ-

mental favours greater investment in individual offspring at the cost

of mating (31,33).

In conclusion, early-life experience affects adult sexual behaviour.

Unfortunately, parental influences on progeny remain not entirely

understood. However, as researchers steadily gather more informa-

tion about this system, it is becoming clear that, as in the rat,

human parental programming of the reproductive system is likely

to involve gene–environment interactions.

Sympathetic stress and ovarian function

Sympathetic nerves affect ovarian function

Sympathetic nerves arrive at the ovary originate from two sources

(34,35): (i) the ovarian plexus nerve, which travels along the ovarian

artery, and (ii) the superior ovarian nerve, which is associated with

the suspensory ligament. Superior ovarian nerve fibres innervate

the secretory components of the ovary (i.e. interstitial glands and

follicles) (36). A detailed tracing study by Gerendai et al. (37) dem-

onstrated that the sympathetic pathway to the ovary originates in

the paraventricular region of the hypothalamus, results that have

been confirmed by functional studies (37–39), leading us to propose

the neuroanatomical organisation shown in Fig. 1.

We propose that stimulation originating from the paraventricular

area of the hypothalamus travels by a multisynaptic pathway arriv-

ing at the celiac ganglion that then projects to the ovary by post-

ganglionic sympathetic fibres where it regulates steroidogenesis and

early follicular development (15). It has also been demonstrated that

NE facilitates follicular development, as seen by the inhibition of fol-

licular growth following the ovarian denervation (40). Chronic

changes (either decreases or increases) in the sympathetic input to

the ovary can cause profound changes in ovarian function.

The sympathetic nerve participates in the development of
the polycystic ovary (PCO)

PCO syndrome (PCOS), the most common cause of infertility in

women during their reproductive years, is a complex disease char-

acterised by anovulatory failure and the presence of ovarian cysts,

amenorrhoea, hyperandrogenaemia, and variable levels of circulat-

ing gonadotrophins (41). Because sympathetic nerves stimulate

androgen secretion from the ovary, the possibility exists that a

hyperactivation of sympathetic nerves could participate in the

development and maintenance of ovarian cysts in the rat. In accor-

dance with this hypothesis, sympathetic nerve activation induced

by oestradiol valerate administration to rats is causally related to

both the development and maintenance of PCO and surgical abla-

tion of the sympathetic nerves at the level of the supra optic

nucleus of the hypothalamus results in the reversal of the anovula-

tory PCO and diminishes ovarian androgen secretion (42,43). In

addition, it has been shown that the hyperandrogenic condition is

causally related with enhanced ovarian steroidal responsiveness to

b-adrenoceptor stimulation, a condition also prevented surgical

elimination of supraoptic nucleus projections to the ovary (42,43).

This recovery of the ovulation was confirmed by the presence of

corpus luteum in the denervated ovary and by the recovery of the

oestrous cycling in rats.

PCOS is also characterised by metabolic abnormalities that are

consistent with the metabolic syndrome. Enhanced sympathetic

and adrenal medullar activities are important links between

defects in insulin action and the development of hypertension.

Despite extensive research seeking the pathogenesis of PCOS,

there is still disagreement on the underlying mechanisms. The

potential contribution of the sympathetic nervous system to the

syndrome has been suggested in several studies, especially

because of the role of NE to enhance androgens and progester-

one secretion from the mammalian ovary (44,45). It has been

suggested that androgen excess early in life may provide a hor-

monal ‘insult’ that results in manifestation of PCOS in adulthood

(46), especially because PCOS is highly associated with conditions

in which the foetus was exposed to high amounts of sex steroids

during pregnancy. We have data demonstrating that mothers with

PCOS maintain their hyperandrogenic condition during pregnancy,

although their HPA axis has been suppressed (47). Hence, if chron-

ically increased androgens reach the placental tissue in which

the foetus is developing, the internal milieu can ‘programme’ its

reproductive axis to be disturbed at the onset of puberty and

adulthood. Therefore, one possibility to consider is that increased
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Fig. 1. Sympathetic nerve control of the ovary. Retrovirus tracing mapped

the anatomical nerve connection between the brain and the ovary (37).

Functional studies either changing the activity of neurones of the paraven-

tricular nucleus or pharmacological blocking of the stress-activated sympa-

thetic nerve pathway (38,39,44) has enabled verification of the relevance of

sympathetic innervation with respect to the function of the ovary.
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superior ovarian nerve input may contribute toward the aetiology

of PCOS through a stimulatory action on androgen secretion. This

would explain the effectiveness of ovarian wedge resection or

laparoscopic laser cauterisation to increase ovulatory response in

women with PCOS because procedures are likely to disrupt

superior ovarian innervation.

Sympathetic stress and b-adrenergic system spur the
development of the PCO

The fact that the ovary communicates with the hypothalamus

through a multisynaptic pathway implies that a centrally-origi-

nated stimulus could affect the function of the ovary independent

of the well-known ovarian control mediated by gonadotrophins. It

has been demonstrated that cold stress, either acutely or chroni-

cally, selectively activates the sympathetic nerves without altering

the ACTH response. Cold stress has been described as stressor

that activates the sympathetic nervous system and alters ovarian

function (44). When the cold stress procedure is sufficiently

chronic to affect a group of ovarian follicles (more than 4 weeks),

it modifies follicular development by accelerating the transition

from antral follicles to a group of preovulatory follicles that are

not able to be released at ovulation, and therefore moves follicles

towards a precystic appearance in which there was a hypertro-

phied theca cells compartment in parallel with an increase in

ovarian NE concentration (44).

The stress response is a multifactorial event that involves orches-

trated neuroendocrine responses required to maintain homeostasis

but, when stress becomes chronic, it may induce pathology. To focus

on the sympathetic nerve activity as one of the multiple factors

involved in the chronic stress response, we recently applied a method

to directly stimulate b-adrenoceptors by the in vivo administration

of the b-adrenoceptor agonist isoproterenol (48). We administered

isoproterenol (125 lg/kg/day) for 10 days to study the changes

induced by b-adrenoceptor overstimulation in ovarian follicular

development. Thirty days after isoproterenol withdrawal, there was a

clear increase in the number of follicular cysts. The direct relationship

between the b-adrenergic receptor activation and follicular cyst

development was demonstrated by the capacity of propranolol (a b-
adrenergic antagonist) to reverse both the isoproterenol-induced hy-

perandrogenic condition and the ovarian cyst formation (48).

We can conclude that the neural axis originating at the hypotha-

lamic paraventricular nucleus controls the function of the ovary and

that changes in the activity of this neural network regulate ovulation.

Therefore stress, if chronic, could be harmful to reproduction. Experi-

mental procedures aiming to attenuate the sympathetic activity could

be a method for treating women with PCOS.

Afferent mediators of gonadal status on the
paraventricular nucleus of the hypothalamus

There are sex differences in HPA axis function

The HPA axis involves the sequential release of a chain of hor-

mones from the brain to the periphery, ultimately regulating the

release of glucocorticoid steroids from the adrenal gland. Acute ele-

vations in circulating glucocorticoids are adaptive because they pro-

vide sources of energy to meet the metabolic demands of

homeostatic threat. On the other hand, chronic elevations in gluco-

corticoids are pathological and linked to several types of disorders,

including anxiety and depression. Thus, the HPA axis must be both

tightly regulated and equally responsive to the demands of stress

(49). Our research focuses on sex differences and sex steroid hor-

mone regulation of the paraventricular nucleus of the hypothala-

mus (PVH), the final common pathway regulating adaptive

neuroendocrine responses. The hypophysiotropic zone of the PVH

houses corticotrophin-releasing hormone (CRH) and AVP expressing

neurones that synergise on the synthesis and release of ACTH from

the anterior pituitary, which then stimulates the release of gluco-

corticoids from the adrenals [cortisol in humans, corticosterone

(CORT) in rodents].

Rodent studies have shown that females secrete higher levels

of CRH than males and higher levels of CORT in response to var-

ious challenges (50–52). The gonadal hormones are at least partly

responsible for these sex differences in the rat because androgen

administration decreases ACTH and CORT secretion, whereas oes-

trogens increase these measures (4,53). In humans without psy-

chiatric illness, the sex difference in stress HPA axis function is

not so apparent on the surface. Thus, men often show similar, if

not higher, levels of cortisol than women in response to various

acute challenges (54,55). However, this does not discount an

underlying influence for androgens and oestrogens in regulating

the HPA axis in humans because manipulations of gonadal status

in women and men often provoke changes in CRH and cortisol

release similar to the results in rodents (56–60). Several disorders

associated with chronic stress are more prevalent in women than

in men, including depression and such anxiety-related disorders

as post-traumatic stress disorder (61–63). Depression is frequently

associated with abnormalities of the HPA axis, including hyper-

cortisolaemia (64), and cortisol levels have been reported to be

higher in depressed women compared to men (65). Large varia-

tions in individual cortisol release patterns feature prominently in

humans exposed to acute and repeated challenges (66) and the

biological determinants for this variation are not understood.

Thus, the neurobiological basis for the sex differences in stress-

related disorders remains unresolved and, as argued elsewhere,

extensive phenotyping of HPA axis function remains essential

(58,67).

Serotonin modulates the HPA axis

Several lines of evidence support a stimulatory influence of 5-HT

on the HPA axis in humans and rodents (68,69), mediated, in part,

by the 5-HT1A receptor subtype (70–72). Sexual dimorphisms in

HPA axis function and in the 5-HT system provide evidence to sug-

gest that the brain 5-HT system has a higher potential for stimulat-

ing the HPA axis in females. Thus, females express higher levels of

5-HT and/or metabolites than males in brainstem, limbic forebrain

and cortex under basal conditions (73,74) and in response to vari-

ous challenges (75–77).
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Reported sex differences in 5-HT1A receptor binding and/or

expression have not been consistent (78,79). However, oestrogen

has been shown to desensitise 5-HT1A receptor coupling at both

pre- and postsynaptic sites in unstressed animals. Presynaptic

5-HT1A (somatodendritic) receptors diminish neuronal excitability of

raphe neurones to reduce serotonin synthesis and release, whereas

postsynaptic 5-HT1A (heteroreceptors) receptors mediate the signal

transfer to nonserotonergic forebrain neurones (80,81). Taken

together, the stimulatory effect of the 5-HT system on the HPA

axis could reflect the net of inhibitory and stimulatory influences

of the 5-HT1A receptor on the PVH, as well as its extended

circuitries.

Sex differences modulate stress and 5-HT1A receptor
interactions

In humans and rodents, females show higher neuroendocrine

responses to a systemic injection of the 5-HT1A receptor agonist,

8-OH DPAT. We suspect that the endogenous requirements for

5-HT1A receptors to regulate the HPA axis may also be sexually

dimorphic under stressful conditions. Previous studies in the male

rodent have shown that 8-OH-DPAT decreases the number of raphe

neurones recruited to express Fos protein in responses to immobili-

sation, whereas the 5-HT1A receptor antagonist, WAY 100635,

counteracts this effect (82). Building on the utility of this antago-

nist to unmask how 5-HT1A receptors participate in HPA axis con-

trol circuitry, we recently examined neuroendocrine and Fos

responses in male and female rats bearing systemic injections of

vehicle or WAY 30 min in advance of restraint exposure (83). In line

with a stimulatory role for the 5-HT1A receptor on the HPA axis,

WAY administration decreased the CORT response to restraint in

males but not in females (Fig. 2). This sex difference in HPA output

was not recapitulated at the level of the PVH, where males and

females showed similar decrements in Fos protein induction in

response to WAY. This result warrants further exploration on con-

nectional and phenotypic grounds, given the heterogeneity of cell

types localised to the hypophysiotropic zone of the PVH.
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Fig. 2. Mean � SEM plasma corticosterone responses in males and females

given vehicle or 5-HT 1A receptor antagonist (WAY) injections prior to 30

min of restraint exposure. *P < 0.05 vs. vehicle counterpart (n = 7-8 per

group). Adapted with permission from Goel et al (83).
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within the dorsal raphe nucleus (DRD) (A). Solid arrows show doubly-labelled neurones and open arrowheads mark Fos-positive, TPH-negative cells.
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(B). Scatterplot showing a significant negative correlation between plasma oestradiol concentrations and Fos + TPH-labelled cells in the DRD of WAY females

(C). **P < 0.01 versus vehicle counterpart (n = 7–8 per group). Adapted with permission from Goel et al. (83).
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By contrast to the PVH, WAY administration had the opposite

effect to potentiate the stress-induced activation of dorsal raphe

nuclei identified as serotonergic (tryptophan hydroxylase express-

ing), in both males and females (Fig. 3). However, a negative

correlation between oestrogen and Fos responses was identified in

WAY-treated females, to emphasise a role for oestrogen to decrease

5-HT1A autoreceptor function. This could provide mechanisms for

increasing 5-HT release in projecting structures and the heightened

HPA axis responses in females. Analysis of the relative levels of

5-HT1A mRNA revealed no sex differences in the size or distribution

of the transcript within various forebrain nuclei or the dorsal raphe

nucleus. However, a positive relationship was found between

oestrogen and 5-HT1A mRNA expression in females that was unique

to the area of the zona incerta (Fig. 4). Based on previous connec-

tivity experiments, the zona incerta represents a key relay for 5-HT

raphe projections to the hypophysiotropic zone of the PVH, as well

as for several limbic related structures (84–86). Thus, the organisa-

tion of zona incerta projections implies that this region may be

in a position to integrate neocortical and emotionally relevant

information to changes in oestrogen, as well as to coordinate

central 5-HT and neuroendocrine responses.

The results emphasise the important sex differences in 5-HT1A
receptor regulation of the acute HPA axis response at both pre-

and postsynaptic sites. The nature by which functional changes in

5-HT1A receptors underlie a sex difference in HPA axis responses to

chronic or repeated forms of stress remains to be seen. The 5-HT1A
receptor not only drives the stimulatory effect of serotonin on the

HPA axis, but also is a critical determinant of the antidepressant

response (87). Thus, our current findings provide several new start-

ing points for understanding the connectivity of 5-HT1A sensitive

projections to the HPA axis and how these may contribute to the

sex disparity in affective disease.

Social subordination disrupts the effects of oestrogen on
behaviour and physiology in female rhesus monkeys

Social stress modulates the effects of oestrogen in female
rhesus macaques

As emphasised above, rodents represent an appropriate model for

studying interactions between stress and short-term changes in

reproductive function. Of note, the human reproductive cycle is

radically different to that of the female rat (88). Indeed, the magni-

tude and duration of endogenous oestrogen exposure and, conse-

quently, the reactivity of brain systems responding to oestrogen,

may not be entirely the same between female humans and rats.

Similar to women, however, female rhesus monkeys display changes

in ovarian hormones over a comparable 28-day cycle during the

breeding season (89–92). Thus, the female rhesus monkey is per-

haps more suitable for modelling psychopathologies in women

attributed to major changes in ovarian hormone secretion (93–102).

Although there is utility in studying the effects of chronic psy-

chogenic stress in the rodent, this can never approach the inherent

complexities of psychosocial stress experienced by humans. By

comparison, female macaques naturally form social hierarchies, in

which subordinate (SUB) females are constantly harassed both

physically and psychologically by their dominant (DOM) counter-

parts (103). This social organisation provides an advantageous and

translatable model for characterising the effects of psychosocial

stress on a multitude of physiological and psychological endpoints.

Thus, chronic psychogenic stress exposure in SUB female macaques

(104,105) induces a number of phenotypes (106–112) that are simi-

lar to patients suffering from mood, metabolic and immune disor-

ders (113–121). Moreover, female macaques also display remarkable

similarities with women in other physiological domains, including

central nervous system mediators of neuroendocrine and emotional

responses to stress (122–127).

In a series of experiments completed over the last several years,

we have utilised this animal model to examine the effects of

chronic psychosocial stress on the physiology and behaviour of

ovariectomised (OVX) SUB female monkeys, and to determine how

these are modulated by the replacement of the major ovarian hor-

mone E2. To control for previous life-experiences and any possible

genetic propensity that may predispose a female towards a particu-

lar social rank, middle-ranking, unrelated adult females were

selected from large social groups to form 10 new groups of five

females and one male. Females were randomly selected and

sequentially added to the new group following which the domi-
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receptor mRNA expression in the vicinity of the paraventricular nucleus of

the hypothalamus (PVH) (A). Dashed line defines the nuclear border of the

PVH to emphasise the absence of the transcript relative to the distinct clus-

ter of 5-HT1A receptor expressing cells within the zona incerta (ZI). Scatter-

plot (B) showing a significant positive correlation between plasma oestradiol
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tricle. Adapted with permission from Goel et al. (83).
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nance hierarchy quickly emerged (128). These small social groups

functioned to exacerbate the social subordination stress that is

usually dispersed throughout the normally large social groups

favoured by this species. In addition, because it has been shown

that short promoter polymorphism of the serotonin transporter

gene (SERT) interacts with stress to increase the occurrence of

affective disorders in individuals (129–132) and also increases both

behavioural and HPA reactivity in rhesus monkeys (128,133–136),

we evaluated the effect of the SERT polymorphism in our female

monkey studies and reported these findings in experiments in

which there was a statistically significant effect.

The results from such studies demonstrate that social subordina-

tion has profound effects on many aspects of behaviour and physi-

ology, of which some are enhanced, blunted or unaffected by E2

replacement (107,108,111,112,137–145). Here, we elaborate on

three of these findings.

Social subordination results in increased anxiety behaviour
and a disruption of socio-sexual behaviour, which are not
consistently modulated by E2

It had previously been shown that social subordination in female

macaque monkeys increases depressive- (110,146) and anxiety-like

behaviours (116). To evaluate whether the well-established anxio-

lytic effects of E2 in rodents (147–155) were significantly affected

by social status as well as by SERT polymorphism in female

monkeys, a study by Michopoulos et al. (106) evaluated the

effects of E2 on behaviour in females prior to the addition of
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males to the group. The data showed that E2 reduced rates of

anxiety in DOM females with the short promoter length SERT var-

iant and SUB females with the long SERT variant. DOM females

with the long SERT genotype already showed the lowest levels of

anxiety behaviour. By contrast, SUB females with the short SERT

variant showing high levels of anxiety like behaviour were unaf-

fected by E2. Thus, the ability of E2 to attenuate anxiety is

affected by both social subordination and SERT genotype in

female macaques because E2 is ineffective in modulating the high

anxiety rates in SUB monkeys with the short SERT genotype. To

determine the interaction between psychosocial stress and E2 on

socio-emotional behaviours when males were present, a study by

Reding et al. (140) evaluated the effect of social status on repro-

duction, affiliation, aggression, submission and anxiety-like behav-

iours in these small groups. The data obtained (Fig. 5) showed

that E2 dose-dependently increased sexual motivation in DOM

females but was without an effect in SUB females at any dose.

E2 replacement also increased male affiliation behaviour in DOM

but not SUB females. Contact and noncontact aggression were

also attenuated in DOM females. Overall, these results suggest

that chronic social subordination stress attenuates the anxiolytic

effects of E2 and reduces the activational effects of E2 on sexual

behaviour and affiliation with males, and these latter effects can-

not be overcome in SUB monkeys even with higher doses of E2.

Thus, the behavioural effects of E2 are significantly blunted by

social subordination in female macaque monkeys.

Social subordination results in altered HPA axis reactivity
that is significantly modulated by E2

Although SUB female monkeys appear to suffer from many condi-

tions that are related to chronic stress (146,156–159), it has been

difficult to establish differences in HPA axis activity as a result of

social status. Previously, the only consistent findings indicating

HPA dysregulation in SUB female monkeys comprised an increased

adrenal size (127,160) and decreased glucocorticoid negative-feed-

back following dexamethasone injection (127,128,146,161). It has

been shown that sex steroids modulate adrenal morphology and

function (162–164) and that E2 alters the diurnal release of corti-

sol (165) and glucocorticoid-induced negative-feedback on the

HPA axis (6), although the use of naturally cycling female

macaques in many previous studies (146,156,166) may have con-

founded some of these outcomes. Therefore, as with the studies

described above, we first examined several features of HPA activ-

ity in OVX females and then determined the effect of E2-replace-

ment on some of these endpoints. Our results showed that,

compared to OVX DOM females, OVX SUB females had flattened

morning cortisol secretion, reduced dexamethasone-induced gluco-

corticoid negative-feedback, and a decreased adrenal cortisol

response to an ACTH challenge (167). These results indicate that

the ability to initiate and curtail glucocorticoid release is signifi-

cantly reduced in OVX SUB female monkeys. Interestingly, this

suggests that SUB females have a hyporesponsive HPA phenotype

resembling that observed in several human psychopathologies,

including post-traumatic stress disorder. Because previous work by

our group had shown that SUB females were hypersensitive to

the effect of E2 on HPA activation (6), we next examined both

basal and stress-induced cortisol levels in the same females dur-

ing three different E2 replacement regimens. The results depicted

in Fig. 6 showed that pre-stressor cortisol was dose-dependently

increased by E2 in SUB but not DOM females. Furthermore, the

increase in cortisol 30 min after the start of the stressor also

showed a significant dose by status interaction, with nonreplaced

SUB females having a blunted increase compared to nonreplaced

DOM females and a greater increase than DOM females at the

highest E2 dose. These data show that DOM females exhibit a

robust cortisol response irrespective of E2 dose, whereas the CORT

response of the SUB females is E2 dose-dependent. This suggests

a reduced response to stress in SUB females lacking E2 and, as

with the previous study, a hypersensitivity in E2-replaced SUB

females. This hypersensitivity to E2 caused by chronic social stress

may be very important when evaluating the stress response in
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women under chronic social stress who have experienced trauma

or other adverse emotional events.

Social subordination results in differences in 5-HT1A
receptor binding potential in brain regions implicated in
emotional regulation and stress reactivity that is modified
by E2 only in the hippocampus and hypothalamus

Because central reduction of the serotonin 5-HT1A receptor is asso-

ciated with psychopathology in humans (168,169) and has been

related to behavioural depression in monkeys (110), we conducted

a study to determine the effect of social status and SERT genotype

on serotonin 5-HT1A receptor binding potential (5-HT1A BPND) in

brain regions associated with emotional control and HPA activity in

OVX female monkeys, and then assessed how these effects were

modulated by E2 replacement. Positron emission tomography using

a 5-HT1A receptor-specific ligand was performed to determine the

levels of 1A receptor binding under a non-E2 condition and a 3-

week E2 replacement condition in several brain regions, including

anterior cingulate, medial prefrontal cortex, dorsolateral prefrontal

cortex, orbitofrontal prefrontal cortex, amygdala, hippocampus,

hypothalamus and raphe nucleus. The results show that female

monkeys with the short SERT genotype have reduced 5-HT1A bind-

ing potential in the medial prefrontal cortex irrespective of social

status, and that SUB females with the short SERT variant show a

reduction in 5-HT1A binding potential within the anterior cingulate

cortex (144). Moreover, the 5-HT1A binding potential in these two

regions was unaffected by E2 replacement. By contrast, as shown in

Fig. 7, hippocampal and hypothalamic 5-HT1A BPND was attenuated

in subordinate females regardless of SERT genotype during the

non-E2 condition, and this difference was normalised in the hippo-

campus and inverted in the hypothalamus with E2 (144). These data

suggest that E2 can only alter central 5-HT1A BPND in brain regions

that show no SERT genotype-linked control of 5-HT1A binding.

Overall, these experiments show that social stress in OVX female

macaque monkeys produces a distinct behavioural phenotype that

is largely unaffected by E2, a hypo-responsive HPA axis that is

hypersensitive to the modulating effects of E2, and changes in

serotonin 1A receptor binding in the hippocampus and hypothala-

mus that are restored or inverted by E2 replacement. The results

reported here elaborate the interaction between psychosocial stress

and oestrogen in the modulation of a range of emotional and

social behaviour, and begin to characterise the neurophysiology

underlying these changes. This may be particularly relevant to

women marginalised by low socio-economic status, who experience

prolonged psychosocial stress and are disproportionately affected

by psychopathology.

Concluding remarks

The HPA and HPG endocrine axes function in a tandem, flexible

and bi-directional manner to ensure both reproductive viability

and survival. The development of stress responsivity, as well as

reproductive function, is influenced by early environmental factors

that alter maternal care. This, in turn, creates a framework onto

which the imperative to reproduce is balanced against the need

to maintain homeostasis. This balance is tested (or challenged)

when environmental contingencies (stressors) acutely upset

homeostasis, which may result in the sex-specific modulation of

neurotransmitter systems, as with 5-HT and stress HPA axis inter-

actions. Intermittent or repeated stress exposure may place a

greater load on the HPA–HPG equilibrium, as indicated by reduced

ovarian function and pathologies associated with decrements in

oestrogen release. Finally, the actions of gonadal hormones to

mediate adaptive neuroendocrine and behavioural responses may

be completely impaired in the face of chronic stress exposure. As

emphasised here, where and how this breakpoint occurs to explain

individual- and sex-based differences in stress related disease

remains worthy of pursuit.
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