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In the present work the problem of generating synthesized turbulence at inflow boundaries
of the simulation domain is addressed in the context of the Large Eddy Simulation (LES)
method. To represent adequately certain statistical properties of a turbulent process, we
propose a synthesized turbulence methoz which is based on previous works (Huang
et al., 2010; Smirnov et al., 2001) [15,28]. For this purpose, time and space correlations
are introduced strictly in the mathematical formulation of the synthetic turbulence inflow
data. It is demonstrated that the proposed approach inherits the properties of the methods
on which it is based while presents some particular advantages as well.

The strategy of imposing conditions on the inlet velocity field through turbulence
synthesis is implemented in the parallel multiphysics code called PETSc-FEM (http://
www.cimec.org.ar/petscfem) primarily targeted to calculations throughout finite elements
on general unstructured 2D and 3D grids. We present several numerical tests in order to
validate and evaluate the method describing the dynamic phenomena that take place in
‘‘real-life’’ problems, such as a swirling turbulent flow inside a diffuser and the airflow
around a vehicle model inside a wind tunnel at high Reynolds number.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The generation of turbulent inflow boundary conditions for Large Eddy Simulations (LES) is a topic that has been widely
studied owing to two main reasons. Firstly, LES has become an attractive approach due to the improvement of computational
power. Secondly, a LES could demand a high execution time to obtain a fully developed turbulence if the inlet conditions are
not properly prescribed, given that the flow behavior within the domain is strongly influenced by the inflow turbulence
energy.

In view of these facts, several methods are available for the generation of inlet turbulence conditions and they follow
different approaches that can be classified into two general methodologies [31]: precursor simulation methods and synthesis
methods. Both approaches present advantages and drawbacks and can be implemented in many different ways.

Precursor simulation methods involve the generation of turbulence by running a precomputation of the simulated flow in
order to generate a ‘library’ or database, before or in concurrency with LES. Then, the generated fluctuations are introduced at
the inlet boundary of the computational domain. The relation precomputation/main-calculation can be linked in different
ways. If the domain is quite large, the computational implementation through LES may become a difficult task, as it is in
the case of a fully developed flow in a pipe. A possible solution is to reintroduce the flow out of a smaller domain into

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jcp.2012.10.035&amp;domain=pdf
http://www.cimec.org.ar/petscfem
http://www.cimec.org.ar/petscfem
http://dx.doi.org/10.1016/j.jcp.2012.10.035
mailto:castrohgui@gmail.com
mailto:rodrigo.r.paz@gmail.com
http://dx.doi.org/10.1016/j.jcp.2012.10.035
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


H.G. Castro, R.R. Paz / Journal of Computational Physics 235 (2013) 742–763 743
the inlet by mapping the velocity components at the nodes. These cyclic domains methods allow to use a short section of the
computational domain for the study of fully developed flows and have been used in the direct numerical simulation (DNS) of
a turbulent channel flow [18] and in the LES of spatially developing boundary layers by modification of the Spalart method
[24]. Another possibility is to generate a preprepared library by sampling the data at specific locations of an auxiliary domain
(where turbulence precomputation takes place) and storing them for a later introduction into the LES domain as an inlet
condition. In particular, Lund et al. [24] applied their modified Spalart method, in a concurrent library generation fashion,
sampling the data as the simulation proceeds. An improvement of this methodology has been presented by Liu and Pletcher
in [23].

All the precursor methodologies can be integrated into the main domain, sampling the turbulence in a downstream
section and then mapping it back into the inlet [3]. Thus, the precursor simulation methods set the conditions for the LES
implementation from a ‘real’ simulation of turbulence, hence, it is expected that the velocity fluctuation field could possess
many of the required statistical characteristics, including energy spectrum, temporal and spatial correlation.

Another widely used methodology is the so called synthesized turbulence method. In this approach a pseudo-random
coherent field of fluctuating velocities with spatial and time scales is superimposed on a predefined mean flow. The random
perturbations can be generated in several different ways, such as the Fourier techniques (with its variants), the digital filter
based method and the proper orthogonal decomposition (POD) analysis [31]. Fourier techniques are frequently implemented
for the stochastic generation of turbulent velocities in a computationally efficient way in order to obtain time dependent
turbulent fields satisfying statistical features. Basically, it consists of the generation of fluctuating time velocity series with
random Fourier modes which are generally obtained by a Monte Carlo simulation with a specific target spectrum
[20,22,21,28,15]. The digital filter method is a signal modeling through the use of linear non-recursive filters which is basi-
cally an implementation via digital filters of a Gaussian stochastic process (see [10,19]). Xie and Castro [38] proposed a mod-
ified form of this method, based on exponential (rather than Gaussian) velocity correlation functions for the simulation of
street-scale flows. The third category is based on the use of POD to interpolate and extrapolate experimental data onto
the domain inlet and to model the temporal and spatial characteristics of the flow [11]. This is probably the least expensive
approach (computationally speaking) but with the requirement of a suitable experimental database from hot-wire, Laser
Doppler Anemometry (LDA) or Particle Image Velocimetry (PIV) measurements [26].

A well known synthetic turbulence generator that employs Fourier techniques is the random flow generation (RFG) meth-
od proposed by Smirnov et al. [28]. Developed on the basis of the work of Kraichnan [21], this methodology involves scaling
and orthogonal transformations where a transient flow field is generated in a three-dimensional domain as a superposition
of harmonic functions with random coefficients. The method can generate an isotropic divergence-free fluctuating velocity
field satisfying the Gaussian’s spectral model as well as an inhomogeneous and anisotropic turbulence flow, provided that an
anisotropic velocity correlation tensor is given. Smirnov et al. [28] used their approach to set inlet boundary conditions to
LES methods in the simulation of turbulent fluctuations in a ship wake as well as initial boundary conditions in the simu-
lation of turbulent flow around a ship-hull. Another application successfully tested by the authors was the particle dynamics
modeling (see [29]). It must be noted that the RFG method has been included in the computational fluid dynamics (CFD)
software FLUENT and was called Spectral Synthesizer [14].

The characteristics described above were taken into account in the method of Huang et al. [15], with the advantage that
the spatially correlated turbulent flow field can satisfy any arbitrary model spectrum. This property is particularly useful in
computational wind engineering applications where the von Kármán model is widely adopted as a target spectrum and the
energy content of the inertial subrange cannot be discarded. Another remarkable feature of this method is its highly paral-
lelizable algorithmic implementation since the generation of the fluctuating velocity series is independent for each node in
the inlet plane of the computational domain; to the point that the procedure can be done in an embarrassingly parallel way.
As this methodology implies discretizing and synthesizing procedures for the generation of the inlet turbulence the authors
called this approach as discretizing and synthesizing random flow generation (DSRFG) method.

The results obtained by the application of the DSRFG method were compared with those of the RFG approach in the sim-
ulation of the atmospheric boundary layer flow over a prismatic building model [15]. The authors concluded that the DSRFG
method proved to be able to enhance the accuracy of the turbulent flow simulation and wind-induced forces on the building
since a more realistic vortices production in the inlet turbulence flow is performed. Nevertheless, only a few comments about
the statistical characteristics of the synthesized turbulence were made while there was no discussion about time correlation.

The aim of the present study is to propose a synthesized turbulence methodology that is essentially a modification of the
DSRFG method. We shall focus on the derivation of the mathematical equations used to generate fluctuating velocity series
and the statistical implications of its parameters. In contrast to the DSRFG method, the proposed methodology makes pos-
sible to simulate velocity series with an energy content that matches the target values of the physical problem with a desired
degree of accuracy. Furthermore, the inclusion of a time scale parameter in the formulation shows that a time scale range of
variation can be obtained.

The organization of this paper is as follows. Section 2 is devoted to the description of the basic mathematical models used
for the implementation of inlet turbulence flow conditions, such as spectra, spatial and temporal scales. A review of the
DSRFG method is presented in Section 3. Then, a detailed derivation of the proposed modifications is performed introducing
time and spatial correlations in the mathematical formulation of the velocity fluctuation series. The new approach is then
validated in a test case representing an inhomogeneous anisotropic turbulent flow (Section 4). Finally, the simulation of a
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turbulent flow over a simplified model vehicle in a wind tunnel is performed in Section 5 using the proposed method to
generate the inlet boundary conditions. An extensive analysis and discussion of the obtained results is made.

2. Basic mathematical models describing inlet turbulence flow

2.1. Spectra

One of the characteristics of a turbulent flow is that the velocity field changes in a random fashion in the three space
directions and time. The spatial two-point velocity correlation tensor Rij, that is essential to any statistical representation
of the turbulence behavior, is defined by
RijðrÞ ¼ uiðx; tÞujðxþ r; tÞ; ð1Þ
where ui is the i-th fluctuating velocity component and the over-bar indicates the expected value. The energy spectrum
tensor Uij of some velocity signal is defined as the Fourier transform of the autocorrelation function of that series [32],
UijðkÞ ¼
1

ð2pÞ3
ZZZ þ1

�1
expð�ik � rÞRijðrÞdr;

RijðrÞ ¼
ZZZ þ1

�1
expðik � rÞUijðkÞdk;

ð2Þ
where k is the wave vector. In particular, it can be seen that when jrj ¼ 0,
Rijð0Þ ¼ uiðx; tÞujðx; tÞ ¼
ZZZ þ1

�1
UijðkÞdk; ð3Þ
showing that UijðkÞ represents a density function, in the wave-number space, of contributions to uiðx; tÞujðx; tÞ � uiuj. In
order to establish the amount of energy (per unit mass of the fluid) associated with any component of the fluctuating velocity
it is necessary and sufficient to determine all components of the tensor uiuj. Thus UijðkÞ describes a distribution of energy in
k-space [4] and the sum of the diagonal components of Uij represents the kinetic energy at a given wave-number which is
related to Eqs. (1) and (2) considering r ¼ 0 (Einstein summation convention is assumed),
Riið0Þ ¼ uiui ¼ u2
1 þ u2

2 þ u2
3 ¼

ZZZ þ1

�1
UiiðkÞdk: ð4Þ
Three-dimensional Fourier transforms are suitable for functions of vector arguments but, generally, measurements are
made only with respect to one space coordinate. In such conditions a one-dimensional spectrum function Hijðk1Þ is obtained
(i.e., a Fourier transform of the corresponding unidirectional velocity correlation function) which can be derived by integrat-
ing the spectrum tensor Uij over the lateral wave vector components. This spectrum function is generally called ‘‘longitudi-
nal’’ spectrum if the direction coincides with x1 coordinate direction or ‘‘lateral’’ spectrum if it corresponds to the x2 or x3

coordinate direction. As an example, the equation for a one-dimensional longitudinal spectrum is
H11ðk1Þ ¼
1

2p

Z þ1

�1
R11ðr1; 0;0Þ expð�ik1r1Þdr1;

¼
ZZ þ1

�1
U11ðk1; k2; k3Þdk2 dk3:

ð5Þ
If we integrate RijðrÞ and UijðkÞ over spherical shells of radius r ¼ jrj and k ¼ jkj, respectively,
SijðrÞ ¼
1

4pr2 tRijðrÞdrðrÞ;

WijðkÞ ¼ tUijðkÞdrðkÞ;
ð6Þ
where dr is the surface element of the shell, we obtain functions of the position vector magnitude r and the wave vector
magnitude k (i.e., the wave number). SijðrÞ represents an average correlation tensor and WijðkÞ the energy contribution from
wave numbers between k and kþ dk to the energy tensor uiuj. Particularly, integrating UiiðkÞ over a spherical shell, i.e.,
EðkÞ ¼ 1
2

WiiðkÞ ¼
1
2

tUiiðkÞdr; ð7Þ
the total energy at a wave number k is obtained. That is, the integral of the energy spectrum function EðkÞ is equal to the
kinetic energy per unit mass of fluid:
Z 1

0
EðkÞdk ¼ 1

2

Z 1

0
tUiiðkÞdr½ � ¼ 1

2

ZZZ 1

�1
UiiðkÞdk ¼ 1

2
uiui: ð8Þ
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In isotropic turbulence the energy spectrum function EðkÞ is somewhat different to the one-dimensional spectrum
H11ðk1Þ, which has its maximum value at k1 ¼ 0, while the spherically averaged spectrum approaches to zero as k! 0
[13], see Fig. 1.

The importance of defining a one-dimensional spectrum lies in its application to the experimental field since it can be
measured as a frequency spectrum at a fixed point and then transformed to a spatial spectrum according to Taylor’s hypoth-
esis (frozen turbulence approximation).

2.2. Integral length scale

Integral scales of turbulence can be considered as measures of the average size of the eddies present in the turbulent flow.
For an isotropic and homogeneous turbulent velocity field the integral length scales based on the two point correlations
along the direction j are defined as
Lik;jðxÞ ¼
Z 1

0

uiðxÞukðxþ rejÞ
uiðxÞukðxÞ

dr; ð9Þ
where ej is the unit vector in the j-direction. When the correlation and velocity directions are aligned, e.g. for L11;1, a longi-
tudinal integral scale is obtained:
L11;1 ¼
Z 1

0

u1u1ðr1Þ
u2

1

dr1 ¼
1

u2
1

Z 1

0
R11ðr1;0; 0Þdr1; ð10Þ
where independence of the position x has been introduced. Interestingly, the values of the one-dimensional spectra at zero
wave number determine the integral scales of the turbulence field, i.e., if in Eq. (5) k1 ¼ 0 then,
H11ð0Þ ¼
1

2p

Z þ1

�1
R11ðr1;0; 0Þdr1 ¼

u2
1

p
L11;1; ð11Þ
having used Eq. (10) and given that R11 is an even function.

2.3. Time scale

The spectra defined in Section 2.1 are related to velocity correlations taken from two different points in space at the same
time. If a fixed point in space is considered, a Fourier transform of the correlation function of a varying time delay defines the
time spectra wijðxÞ [32]:
Rij ¼ uiðx; tÞujðx; t þ sÞ ¼
Z 1

�1
expðixsÞwijðxÞdx;
where
wijðxÞ ¼
1

2p

Z 1

�1
expð�ixsÞRijðsÞds:
In homogeneous turbulence, the value of trðwijðxÞÞ at x ¼ 0 defines the integral time scale:
Fig. 1. Comparison between one-dimensional and three-dimensional von Kármán spectra [13].
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wiið0Þ ¼
1

2p

Z 1

�1
RiiðsÞds ¼

T
p

uiui; ð12Þ
where T is the Eulerian integral time scale.

3. A modified method to synthesize inlet turbulence

Huang et al. [15] proposed a turbulence synthesis method called discretizing and synthesizing random flow generation
(DSRFG) for the implementation of inlet turbulence conditions to perform LES. This method proved to have several advan-
tages with respect to its predecessor, the random flow generation (RFG) by Smirnov et al. [28]. Nevertheless, some re-anal-
ysis of the DSRFG equations performed by the authors of this work demonstrates that some improvements can be made.
According to this, a brief description of the DSRFG method is performed in this section along with the introduction of the
proposed modifications. For a more detailed discussion about the RFG and DSRFG methods, the reader is encouraged to refer
to the original articles [28,15].

Following the DSRFG method, a homogeneous and isotropic turbulent flow field uðx; tÞ can be synthesized as follows:
uiðx; tÞ ¼
XM

m¼1

XN

n¼1

½pm;n
i cosð~km;n

j
~xj þxm;ntÞ þ qm;n

i sinð~km;n
j

~xj þxm;ntÞ�; ð13Þ
where
pm;n ¼ f� km;n

jf� km;nj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

4EðkmÞ
N

r
; ð14Þ

qm;n ¼ n� km;n

jn� km;nj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� aÞ4EðkmÞ

N

r
; ð15Þ

~x ¼ x
Ls
; ð16Þ

~km;n ¼ km;n

k0
; ð17Þ
with xm;n 2 Nð0;2pfmÞ, fm ¼ kmUavg, a is a random number uniformly distributed between 0 and 1, f and n are the vector form
of fn

i and nn
i , which are random numbers selected independently from Nð0;1Þ. In Eqs. (16) and (17) Ls is a scale factor related

to the length scale of turbulence and k0 is the lowest wavenumber of the discrete spectrum.
The factors pm;n

i and qm;n
i define the distribution of the three dimensional energy spectrum EðkmÞ in each of the spatial

coordinate axes which in turn are functions of the space wave number km;n (jkm;nj ¼ km) and normal random vectors f

and n. When dealing with homogeneous and isotropic turbulence, the distribution of km;n is isotropic on the surface of a
sphere and consequently the energy is uniformly distributed in space. In such conditions it is evident that the same spectrum
will be obtained in the three principal directions but in the case of inhomogeneous and anisotropic turbulence the distribu-
tion of km;n must change according to the conditions of inhomogeneity and anisotropy. To achieve this behavior, pm;n

i and qm;n
i

must be aligned with the energy spectrum along a principal direction and then the distribution of km;n can be remapped on
the surface of the sphere. To summarize, the method is implemented using Eq. (13) and
pm;n
i ¼ signðrm;n

i Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
N

EiðkmÞ
ðrm;n

i Þ
2

1þ ðrm;n
i Þ

2

vuut ; ð18Þ

qm;n
i ¼ signðrm;n

i Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
N

EiðkmÞ
1

1þ ðrm;n
i Þ

2

s
; ð19Þ

km;n � pm;n ¼ 0; ð20Þ
km;n � qm;n ¼ 0; ð21Þ
jkm;nj ¼ km; ð22Þ
where rm;n
i is a random number, independently selected from a three dimensional Normal distribution with lr ¼ 0 and

rr ¼ 1.
In the following, we made some considerations about the statistical implications of the DSRFG method with the aim to

expose the concepts behind the modifications that are to be introduced later. The mean square value of a random function
f ðtÞ is defined as [6]:
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f 2
rmsðtÞ ¼ lim

T!1

1
T

Z T

0
f 2ðtÞdt ð23Þ
and regarding Eq. (13), we have in each direction i ¼ 1;2;3:
u2
rms;iðx; tÞ ¼ lim

T!1

1
T

Z T

0

XM

m¼1

XN

n¼1

½pm;n
i cosð~km;n

j
~xj þxm;ntÞ þ qm;n

i sinð~km;n
j

~xj þxm;ntÞ�
( )2

dt: ð24Þ
Defining,
am;n ¼ pm;n
i cosð~km;n

j
~xj þxm;ntÞ;

um;n ¼ qm;n
i sinð~km;n

j
~xj þxm;ntÞ;

ð25Þ
and noting that
XM

m¼1

XN

n¼1

ðam;n þum;nÞ
" #2

¼
XM

m¼1

XN

n¼1

am;n þ
XM

m¼1

XN

n¼1

um;n

 !2

¼
XM

m¼1

XN

n¼1

am;n

 !2

þ 2
XM

m¼1

XN

n¼1

XM

r¼1

XN

s¼1

am;nur;s þ
XM

m¼1

XN

n¼1

um;n

 !2

; ð26Þ
Eq. (24) can be written as
lim
T!1

1
T

Z T

0

XM

m¼1

XN

n¼1

ðam;n þum;nÞ
" #2

dt ¼ lim
T!1

1
T

Z T

0

XM

m¼1

XN

n¼1

am;n

 !2

dt þ lim
T!1

1
T

Z T

0

XM

m¼1

XN

n¼1

um;n

 !2

dt; ð27Þ
where the following integration result was used:
lim
T!1

1
T

Z T

0
am;nur;s dt ¼ pm;n

i qr;s
i lim

T!1

1
T

Z T

0
cosð~km;n

j
~xj þxm;ntÞ sinð~kr;s

j
~xj þxr;stÞdt

¼ pm;n
i qr;s

i lim
T!1

1
2Tðxr;s þxm;nÞ

f� cos½ð~kr;s
j þ ~km;n

j Þ~xj þ ðxr;s þxm;nÞt� � cos½ð~kr;s
j � ~km;n

j Þ~xj

þ ðxr;s �xm;nÞt�gT
0 ¼ 0: ð28Þ
Furthermore, Eq. (27) can be rewritten as
lim
T!1

1
T

Z T

0

XM

m¼1

XN

n¼1

ðam;n þum;nÞ
" #2

dt ¼ lim
T!1

1
T

Z T

0

XM

m¼1

XN

n¼1

a2
m;n þ

XM

m¼1

XN

n¼1

XM

r¼1

XN

s¼1
m–r;n–s

am;nar;s

 !
dt

þ lim
T!1

1
T

Z T

0

XM

m¼1

XN

n¼1

u2
m;n þ

XM

m¼1

XN

n¼1

XM

r¼1

XN

s¼1
m–r;n–s

um;nur;s

 !
dt

¼ lim
T!1

1
T

XM

m¼1

XN

n¼1

Z T

0
a2

m;ndt þ lim
T!1

1
T

XM

m¼1

XN

n¼1

Z T

0
u2

m;ndt; ð29Þ
where the terms
lim
T!1

1
T

Z T

0

XM

m¼1

XN

n¼1

XM

r¼1

XN

s¼1
m–r;n–s

am;nar;s dt;

lim
T!1

1
T

Z T

0

XM

m¼1

XN

n¼1

XM

r¼1

XN

s¼1
m–r;n–s

um;nur;s dt;

ð30Þ
vanish as T !1. Then, using the result of Eq. (29) and by virtue of Eqs. (24) and (25):
u2
rms;iðx; tÞ ¼ lim

T!1

1
T

Z T

0

XM

m¼1

XN

n¼1

ðam;n þum;nÞ
" #2

dt

¼ lim
T!1

1
T

XM

m¼1

XN

n¼1

½pm;n
i �

2
Z T

0
½cosð~km;n

j
~xj þxm;ntÞ�2dt þ lim

T!1

1
T

XM

m¼1

XN

n¼1

½qm;n
i �

2
Z T

0
½sinð~km;n

j
~xj þxm;ntÞ�2dt

¼ 1
2

XM

m¼1

XN

n¼1

½pm;n
i �

2 þ 1
2

XM

m¼1

XN

n¼1

½qm;n
i �

2
: ð31Þ
Now, summing the left and right hands for i ¼ 1;2;3,
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X3

i¼1

u2
rms;iðx; tÞ ¼

1
2

XM

m¼1

XN

n¼1

X3

i¼1

½pm;n
i �

2 þ 1
2

XM

m¼1

XN

n¼1

X3

i¼1

½qm;n
i �

2
; ð32Þ
or in a more compact form (using Einstein summation convention):
uiui ¼
1
2

XM

m¼1

XN

n¼1

pm;n
i pm;n

i þ 1
2

XM

m¼1

XN

n¼1

qm;n
i qm;n

i ¼ 2
Z 1

0
EðkÞdk � 2

XM

m¼1

EðkmÞDkm; ð33Þ
where the result of Eq. (8) was used. According to the definition of pm;n
i and qm;n

i , Eqs. (18) and (19), it can be seen that
uiui ¼
1
2

XM

m¼1

XN

n¼1

X3

i¼1

4
N

EiðkmÞ
ðrm;n

i Þ
2

1þ ðrm;n
i Þ

2 þ
4
N

EiðkmÞ
1

1þ ðrm;n
i Þ

2

" #
¼ 2

N

XM

m¼1

XN

n¼1

EðkmÞ ¼ 2
XM

m¼1

EðkmÞ; ð34Þ
thus, as EðkmÞ is a positive quantity for any k, the kinetic energy is represented by a divergent series. This causes a strong
dependence of the rms values of the generated fluctuating velocities on the number of points M considered to discretize
the model spectrum.

3.1. Time and spatial correlation

The time autocorrelation function gives information about how correlated is the signal at two different times and its con-
nection to the time spectra was pointed out in Section 2.3. Following Eqs. (13) and (23) the autocorrelation function can be
computed as
uiðx;tÞuiðx;tþsÞ¼ lim
T!1

1
T

Z T

0
uiðx;tÞuiðx;tþsÞdt¼ lim

T!1

1
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Z T
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~xjþxm;ntÞþ

h

þqm;n
i sinð~km;n

j
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h i

dt; ð35Þ
then, after some mathematical manipulation using Eqs. (18) and (19),
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Note that, if s ¼ 0 then Eq. (36) gives back Eq. (31).
Likewise, an expression for the spatial correlation can be obtained in an analogous way:
uiðx; tÞuiðx0; tÞ ¼
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Comparing Eqs. (36) and (37), it can be seen that while in Eq. (37) a scaling parameter Ls (that provides a way to obtain the
required spatial correlation in the generated flow field) exists, there is not an analogous parameter in Eq. (36).

3.2. Proposed methodology

In the light of the analysis above, we propose some modifications to the equations of the DSRFG method. Firstly, the Fou-
rier series in Eq. (13) will be written as:
uiðx; tÞ ¼
XM

m¼1

XN

n¼1

pm;n
i cos ~km;n

j
~xj þxm;n

t
s0

� �
þ qm;n

i sin ~km;n
j

~xj þxm;n
t
s0

� �� �
: ð38Þ
The inclusion of a parameter that modifies the time t is based on the work of Smirnov et al. [28] and Batten et al. [5] but with
a different physical meaning: here, s0 is not the turbulence time scale but a dimensionless parameter introduced in Eq. (38)
to allow some ‘‘control’’ over the time correlation of the generated velocity series.

As it was previously shown by Eq. (33), the turbulent flow energy is related to the three dimensional energy spectrum
EðkmÞ and the factors pm;n

i and qm;n
i . As stated in [15], these factors align the energy spectrum according to the anisotropy con-

ditions of the turbulence, providing a synthesized velocity series that must satisfy the mean square values on each spatial
direction. Starting from these considerations and noticing that from Eq. (34) the kinetic energy is not approximated by a con-
vergent series, it is required an alternative analysis to ensure that the synthetic turbulence intensity can represents ade-
quately the flow to be simulated. In this work we perform a simple ‘‘decoupling’’ over Eq. (33), using the following
relationship:



H.G. Castro, R.R. Paz / Journal of Computational Physics 235 (2013) 742–763 749
X3

i¼1

u2
rms;i ¼ 2
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EðkmÞDkm ¼ 2
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ciEiðkmÞDkm: ð39Þ
This equation implies that the three-dimensional energy spectrum EðkÞ is a weighted sum of modified one-dimensional en-
ergy spectra aligned with the three principal directions. Some discussion about the consequences of this representation will
be given in Section 4.

In Eq. (39) ci is a function value that depends on the form of the spectrum in order to satisfy the condition
u2
rms;i ¼ 2ci

Z 1

0
EiðkÞdk; ð40Þ
i.e., in each direction the variance of the simulated velocity series must satisfy Eq. (40). Then,
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Thereby, for each direction i we obtain the modified version of Eqs. (18) and (19):
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Now Eq. (36) can be written as
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while Eq. (37) changes to
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As in the DSRFG method, the spatial scaling parameter Ls is computed as
Ls ¼ h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

u þ L2
v þ L2

w

q
; ð46Þ
while the dimensionless time-correlation parameter s0 is a scalar quantity. Since this new methodology is based on the
DSRFG approach, we called it as modified discretizing and synthesizing random flow generation (MDSRFG).

4. Validation of the procedure

The first test performed is the simulation of an inhomogeneous anisotropic turbulent flow field. This example was pro-
posed by Huang et al. in [15]. The spectra of the three principal velocity components are described by the von Kármán
models:
Suðf Þ ¼
4ðIuUavgÞ2ðLu=UavgÞ
½1þ 70:8ðfLu=UavgÞ2�5=6 ; ð47Þ

Svðf Þ ¼
4ðIvUavgÞ2ðLv=UavgÞ½1þ 188:4ð2fLv=UavgÞ2�

½1þ 70:8ð2fLv=UavgÞ2�11=6 ; ð48Þ

Swðf Þ ¼
4ðIwUavgÞ2ðLw=UavgÞ½1þ 188:4ð2fLw=UavgÞ2�

½1þ 70:8ð2fLw=UavgÞ2�11=6 : ð49Þ
The turbulence intensity values are Iu ¼ 8%, Iv ¼ 16% and Iw ¼ 24%, while the turbulence integral length scales are
Lu ¼ 0:6 m, Lv ¼ 0:3 m and Lw ¼ 0:1 m. To apply the procedure we must first obtain the ci values in Eqs. (42) and (43) using
the relationship (40), that is
u2
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2
; ð50Þ
where bð; Þ is the Beta function (see [1]). In the same way, c2 and c3 are
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As can be observed in Fig. 2, the spectra of the simulated series fit well with the target spectra in the three principal direc-
tions; indicating that the anisotropy of the spectra is well represented by the proposed method. The rms value of each sim-
ulated fluctuating velocity component (obtained from a sample of 10 velocity simulations) is also compared to the
corresponding target values. As shown in Table 1, the rms values of the fluctuating velocities simulated by the MDSRFG ap-
proach are in better agreement with the target values than those obtained using the scaling and orthogonal transformation or
the aligning and remapping techniques [15].

When modeling the spatial correlation between same fluctuating velocity components in two different points i and j, a
spatial correlation matrix needs to be computed. This target function is built for the u-component, for instance, from the
spectra and coherence functions between nodes i and j as
Sc i;j ¼
XM

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SuiðfmÞSujðfmÞ

q
cy

uðfmÞ; ð52Þ
where
cy
uðfmÞ ¼ exp

�Cy
ujyi � yjjfm

Uavg

 !
; ð53Þ
is the coherence function of the u fluctuating velocity component in the y-direction and Cy
u is the decay coefficient (usually

taken in the range 10–12).
In Figs. 3–5 the spatial correlation for the u;v and w-components of the velocity fluctuations obtained by the expression

(45) is compared to correlations computed using Eq. (52) for different values of Ls.
Time correlation is also computed for each velocity component according to the following expression (for the u-compo-

nent for instance):
RðmdsÞ ¼ 1
M �m

XM�m

j¼0

uðjdsÞu½ðjþmÞds�; ð54Þ
here m is an integer such that sm ¼ mds, with 0 6 m < M, ds is the time step size and M is the length of the vector sm. Sam-
ples of temporal correlations from the MDSRFG and the DSRFG methods are shown in Figs. 6–8 for each velocity component.
Also, they are compared to the autocorrelation function of a random stationary process:
RiðsÞ ¼ e�jsj=Ti ; ð55Þ
with time scales Ti (i ¼ u;v;w) computed as
Fig. 2. Spectra of the velocity series simulated by the MDSRFG vs. target spectra.



Table 1
rms values (m/s) of the simulated velocities by different techniques.

ru rv rw

Scaling and transformation 0.9968 2.44 2.9956
Aligning and remapping 0.95 1.9987 3.08
MDSRFG approach 1.0527 2.1850 3.1123

Target 1.12 2.24 3.36
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Ti ¼
Z 1

0
RiðsÞds �

XM0

j¼0

RiðjdsÞds; ð56Þ
where M0 < M. Low frequency fluctuations cause oscillations on the time correlation around the zero value as the time lag
tends to infinite. Consequently, if Eq. (56) is approximated without an adequate upper limit of the sum, it will fail to estimate
the scale [35]. In this work the time scale is computed by setting M0 to the first s-axis crossing value, see Figs. 6–8.

In order to analyze the influence of the time correlation parameter s0 on the time scales in the MDSRFG method, a para-
metric study is performed and the results are shown in Fig. 9 for each fluctuating velocity component. In the original test of
Huang et al. [15] no time scale value was provided, whereby in this work it is estimated from Taylor’s hypothesis:
Ti ¼ Li=Uavg (i ¼ u;v ;w). These values are compared with those obtained by the MDSRFG and DSRFG methods, see Table 2.

The results in Fig. 9 and Table 2 correspond to the mean and standard deviation values of the time scale over a sample of
70 velocity series. The sample size is chosen as statistically representative of the velocity record. It is important to highlight
here the possibility to slightly modify the time scale with different s0 values in the MDSRFG method whereas for the DSRFG
method one are limitated to the three values shown in Table 2. Note that even the target time scales, estimated by the Tay-
lor’s hypothesis, are in accordance with those obtained by the DSRFG method, the application of the MDSRFG approach leads
to a wider range of possible values by changing s0, see Fig. 9.

The anisotropic turbulence conditions at the inlet plane can be obtained by performing a previous RANS simulation or by
experimental measurements. The two input parameters, Ls and s0, must be selected in order to reproduce the statistical
properties of the flow under consideration. In this sense, the parameter h1 in Eq. (46) varies between 1 and 2 (see [15])
and s0 between 0.75 and 1.5, this later range of values being derived from the parametric analysis shown in Fig. 9. Within
this range one can select the time scale values that better approximate the target ones without compromising other physical
features (i.e., without loosing the adjustment of the velocity spectra, spatial correlation and rms values of the turbulent flow
being simulated).

To validate the relationship proposed by Eq. (39) the influence of the frequency interval size Df over the rms values of the
time series is analyzed. What it is expected is that the synthetic turbulence generation provides the correct rms values as
Df ! 0, that is, as the discretization of the spectrum becomes finer the energy content in each frequency should be included
in the time series generation. Table 3 shows the results of this analysis, where it can be seen that the method proposed in this
work converges to the target values as Df becomes smaller while in the case of the DSRFG method the values do not converge
at all.

As it is clearly depicted by Eq. (38), the computational cost is identical as in the DSRFG method. Thus, for each node at the
inlet section the cost at each time step is OðMNÞ; where M is the number of points in which the target spectrum is discretized
Fig. 3. Non-dimensional spatial correlation of the u fluctuating velocity component.



Fig. 4. Non-dimensional spatial correlation of the v fluctuating velocity component.

Fig. 5. Non-dimensional spatial correlation of the w fluctuating velocity component.

Fig. 6. u Velocity component non-dimensional time correlation. MDSRFG (left) and DSRFG method (right).
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and N the number of samples for each wave number km. Furthermore, the computation of the fluctuating velocity compo-
nents in Eq. (38) is independent of the LES process, i.e., the turbulence synthesis for some number of time steps (or the entire
simulation process) can be done prior to the LES computations.



Fig. 7. v Velocity component non-dimensional time correlation. MDSRFG (left) and DSRFG method (right).

Fig. 8. w Velocity component non-dimensional time correlation. MDSRFG (left) and DSRFG method (right).

Fig. 9. Time scale statistics of the fluctuating velocity components as a function of s0 obtained by the MDSRFG method.
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As a final observation, we notice that the proposed approach, as any synthesized turbulence generation method, must be
used as a turbulence initializer, i.e., a perturbation generator that ‘‘triggers’’ the transition to a fully developed turbulence
state by LES [9]. In this regard, it must be said that independently of the selected Ls value, the resolved scales are in concor-
dance with the mesh (filter) size which is inherent to the LES conception.



Table 2
Time scale statistics comparison (s).

Tu Tv Tw

DSRFG approach 0:034� 0:028 0:022� 0:009 0:010� 0:002
MDSRFG approach 0:043� 0:021 0:023� 0:014 0:011� 0:002

Target 0.043 0.021 0.007

Table 3
Comparison of the standard deviation values of the synthesized velocity components by the two methodologies.

Df ru rv rw

DSRFG MDSRFG DSRFG MDSRFG DSRFG MDSRFG

10 0.49 0.76 1.27 1.84 2.05 2.95
5 0.83 0.87 1.93 2.07 2.94 3.01
2 1.47 0.98 3.15 2.11 4.69 3.03
1 2.17 1.04 4.47 2.11 6.75 3.11

Target 1.12 2.24 3.36
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5. Application of the modified DSRFG method in LES

It is well known that the generation of developed turbulence by LES at high Reynolds number flows is computationally
expensive and time consuming. In order to avoid this drawbacks, the MDSRFG method can be used to setting up the turbu-
lent inflow conditions in LES computations. In the following sections, two examples of application of the MDSRFG method
are shown. For the sake of simplicity in the comparison between the DSRFG and MDSRFG approaches, both parameters h1

and s0 are set to 1.
The computational simulations were performed using PETSc-FEM (http://www.cimec.org.ar/petscfem) which is a general

purpose, parallel, multiphysics finite element program that has been used in many applications including analysis of petro-
leum refinery processes, aerospace industry, environmental impact assessment and siderurgical processes [30,25]. PETSc-
FEM uses the Finite Element Method (FEM) to solve the momentum and continuity equations for the velocity and pressure
at each node and at each time step on unstructured meshes. Streamline-Upwind/Petrov–Galerkin (SUPG) [16,7] and the Pres-
sure-Stabilizing/Petrov–Galerkin (PSPG) [33,34] discretization scheme of the incompressible Navier–Stokes equations were
implemented.

5.1. Flow through a conical diffuser

This test case consists of a swirling boundary layer developing in a conical diffuser and was experimentally studied by
Clausen et al. [8]. The conical diffuser is placed 100 mm downstream of a rotating swirl generator of diameter
D ¼ 260 mm and discharges into the atmosphere at x ¼ 510 mm, see Fig. 10.

The device in charge of the swirl generation is a honeycomb positioned 500 mm before the beginning of the expansion
which rotates with a part of the pipe of 400 mm long after it, while all other parts are locked. In the diffuser expansion,
the boundary layer separation is prevented by the swirl which is strong enough to avoid recirculation in the core flow.
The Reynolds number of the experimental test was 2:08� 106 based on the diameter of the inlet section D, the mean axial
velocity Ux ¼ 11:6 m/s and the kinematic viscosity m ¼ 1:45� 10�6 m2/s.

The computational domain adopted is shown in Fig. 11. A large dump is added in order to avoid recirculations in the dif-
fuser outflow region. A structured mesh has been used for the computational simulation of the swirling flow which consists
of 743,925 cells and 760,568 nodes.

Synthesized turbulence is imposed in all nodes at plane x ¼ �25 mm considering the von Kármán spectra, Eqs. (47)–(49)
and Fig. 12. At the dumper outlet boundary we impose p ¼ pref , being pref ¼ 10;1325 Pa the reference pressure. In Fig. 13 the
comparison between the computational simulation for both, DSRFG and MDSRFG methods, and the ERCOFTAC measurement
data (http://cfd.mace.manchester.ac.uk/ercoftac/) is shown. Clearly, the mean velocity (streamwise and orthoradial) and the
kinetic energy boundary conditions for the MDSRFG method match the experimental data at the inlet. A frequency step
Df ¼ 10 s�1 is enough for the MDSRFG method to provide a suitable turbulent kinetic energy while this is not the case for
the DSRFG approach, as it can be seen in Fig. 13.

Vortex structures. Pictures of unsteady vortex structures were obtained from computational simulations by means of iso-
surfaces of the second invariant of the velocity gradient tensor. This is the so called Q-criterion, which can be written for an
incompressible flow as [17]:
Q ¼ 1
2
ðXijXij � SijSijÞ; ð57Þ

http://www.cimec.org.ar/petscfem
http://cfd.mace.manchester.ac.uk/ercoftac/
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where Sij is the rate-of-strain tensor and Xij is the rate-of-rotation tensor which being the symmetric and antisymmetric
parts of the velocity gradient tensor Aij ¼ @ui=@xj respectively, i.e.,
Sij ¼ ðAij þ AjiÞ=2 and Xij ¼ ðAij � AjiÞ=2: ð58Þ
The physical interpretation of Eq. (57) is that the second invariant Q is a balance between the strain rate Sij and the rota-
tion rate Xij which implies that positive Q isosurfaces exhibits zones where the amount of rotation exceeds the strain. Fur-
thermore, Q can be expressed in a different form:
Q ¼ 1
4

r2 � 2ðSijSijÞ
� �

¼ �1
2
@ui

@xj

@uj

@xi
¼ � 1

2q
$2p ð59Þ
where the connection between Q and the vorticity modulus (or enstrophy r2 ¼ r2
1 þ r2

2 þ r2
3) arises. ri, i ¼ 1;2;3 are the vor-

ticity components in the three spatial directions and $2p is the Laplacian of the pressure. From this equation it is possible to
prove that the Q-criterion (Q > 0) is a necessary condition for the existence of thin, convex low pressure-tubes (see the work
of Dubief and Delcayre [12] for a detailed discussion about this subject). Vortex structures identified with Q ¼ 4000 s�2 are
shown in Fig. 14. It can be noted the instantaneous characteristic vortex structures of this model are well captured.

5.2. Ahmed body

The second test is a computational simulation of the flow around the Ahmed’s body. The Ahmed body is a conceptual
model of a generic car, proposed in the experimental work of Ahmed et al. [2]. Though this model is composed of three sim-
ple geometry parts: a fore body, a mid section and a rear end; the flow around it still retains some characteristics of the flow
around real road vehicles. Fig. 15 shows the geometry of the model for a slant angle of 35�. All units are in millimeters.

Wind velocity and turbulence statistical parameters of the incident flow at the test section are shown in Table 4. Other
parameters, like turbulence intensities Iv ¼ 0:02, Iw ¼ 0:03 and integral length scales Lu ¼ 0:3, Lv ¼ 0:1 and Lw ¼ 0:05 were
also adopted. The Reynolds number for the experimental test is roughly 1:70� 106 based on the length of the vehicle model
L ¼ 1:044 m, the mean velocity magnitude 23.6 m/s, the kinematic viscosity m ¼ 1:45� 10�6 m2/s and a constant density
Fig. 10. Diffuser test case. All dimensions are in mm.

(a) (b)

(c)

Fig. 11. Diffuser test case. All dimensions are in mm.



Fig. 12. Comparison of the spectra simulated by the MDSRFG with the target spectra.

Fig. 13. Turbulent kinetic energy (left), mean streamwise and orthoradial velocity profile (right) obtained by the computational simulation and
experimental data [8].

Fig. 14. Vortex flow structures (Q ¼ 4000 s�2) colored by pressure (N/m2). Computational simulation with no synthesis (left) and with the MDSRFG method
(right).

756 H.G. Castro, R.R. Paz / Journal of Computational Physics 235 (2013) 742–763



Fig. 15. Ahmed model.

Table 4
Parameters for the inflow boundary condition at the wind tunnel test section [37].

z [cm] uþ1 Iu ru

2.5 0.74 0.096 1.677
7.0 0.83 0.070 1.372

17.0 0.92 0.045 0.978
22.5 0.95 0.027 0.606
30.0 0.98 0.011 0.255
40.0 0.982 0.008 0.186
48.0 0.985 0.007 0.163
57.5 0.986 0.0065 0.151
62.5 0.987 0.007 0.163
70.0 0.988 0.008 0.187
75.0 0.988 0.009 0.210
88.0 0.990 0.010 0.234

102.5 0.995 0.011 0.258
119.0 1.000 0.012 0.283

Fig. 16. Computational domain and detail of the mesh.
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Fig. 17. Inlet fluctuating velocities simulated by the MDSRFG method.

Table 5
rms values (m/s) of the velocity series simulated with Df ¼ 0:5 s�1.

ru rv rw

DSRFG 0.4432 0.9043 1.2228
MDSRFG 0.2219 0.4411 0.6272

Target 0.236 0.472 0.708
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q ¼ 1:225 kg/m3. In order to address the accuracy of the DSRFG and MDSRFG methods, a small frequency interval,
Df ¼ 0:5 s�1, was used in both approaches.

The computational domain is a rectangular box with a cross section of 2.40 m width (x-direction) and a height of 1.80 m
(z-direction) representing a wind tunnel section, see Fig. 16. The body was located at 2L downstream (y-direction) the inlet
section and at 3L upstream the outlet boundary to allow full development of the flow downstream to the model, totaling an
extension of 6L. Non-slip boundary condition is prescribed at ground, roof and tunnel walls, while null pressure is imposed at
the outlet wall. With these conditions the blockage ratio is about of 2.6%.

The grid was refined close to the body surface in order to account for viscous effects at the walls and to adequately cap-
ture the changes in flow variables within the boundary layer region. Five rows of wedge type elements, shown in detail in



Fig. 18. Computational simulation with inlet synthesized turbulence (MDSRFG and DSRFG) and without inlet synthesized turbulence. (a) Side force
spectrum (x-component force). (b) Drag force spectrum (y-component force). (c) Lift force spectrum (z-component force). (d) Q ¼ 800 s�2 isosurface colored
by pressure.
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Fig. 16, were generated from the surface of the vehicle model. The first wedge-layer has a thickness hm ¼ 4:79�
10�3 L ¼ 5 mm. A classical logarithmic law for velocity was imposed at the body surface (see Ref. [27]).

Fig. 17 shows, in the right side, the time history of the simulated fluctuating velocity components by the MDSRFG method
in a central point of the inlet section and the instantaneous fluctuation contours on the left side. The velocities maintain the
spatial anisotropy among the three directions, as can be observed from the statistical values. Furthermore, the rms values of
the simulated velocity series are compared in Table 5. Clearly, for the small value of Df considered, the MDSRFG values
almost perfectly agrees with those of the target while in the case of the DSRFG method the rms values exceeds the target
ones.

5.2.1. Forces acting on the body
To characterize the transient behavior of the forces acting on the model, an analysis in the frequency domain is per-

formed. In Fig. 18 the spectra of the forces in the z; x and y directions are shown. It can be seen that for the x and y-directions
the energy content of the fluctuating forces obtained with the application of the DSRFG and MDSRFG methods are in agree-
ment. The lift-force spectrum shows different results for reduced frequency values higher than unity.

Also in Fig. 18 instantaneous vortex structures identified with Q ¼ 800 s�2 are shown. It can be noted that these struc-
tures are in correlation with those reported by Uruba [36].

5.2.2. Unsteady velocity
The velocity unsteadiness produced by the application of the DSRFG method is relatively higher than the one obtained with

the MDSRFG method as a consequence of the higher kinetic energy provided by the former approach. This is observed in the
wake along the plane of symmetry, Fig. 19, and in the rms values of pressure coefficient on the model back-light, see Fig. 20.

The pressure coefficient unsteadiness is computed as



Fig. 19. Standard deviation velocity magnitude. Top: MDSRFG and bottom: MDSRFG.

Fig. 20. Standard deviation of the pressure coefficient on the model back-light.
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rCp ¼
rp

1
2 qU2

avg

ð60Þ
and although different levels of unsteadiness induced by both synthesized turbulence methods are evident, the distribution
of the pressure coefficient unsteadiness on the back-light of the model presents in both cases high similarities, such as the
wide region of low fluctuating values in most parts of the vertical base and in the central region of the slant.

Regions of high unsteadiness values on the sides of the back-light surface (near the edge of intersection of the slant and
vertical base) were detected in both cases. These spots are consistent with the observed vortex generating regions in



Fig. 21. Cross spectral density phase between two points on the back-light of the model.
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Fig. 18(d). Another region of high unsteadiness activity was found near the top edge of the back-light slant surface in coin-
cidence with the flow separation zone.

Furthermore, a frequency domain study of the pressure behavior was performed. Fig. 21 shows the non-dimensional
auto-spectral density measured in points located on the regions previously highlighted, by the simulations with the DSRFG
and MDSRFG methods. In can be seen that in the spots analyzed, higher energies are detected in the range of high Strouhal
numbers in the simulation with DSRFG. For the low Strouhal numbers the energies are quite similar (except for the case in
Fig. 21(b) where the energy content in the simulation with MDSRFG is higher) denoting that both methods maintain the
mean characteristics unaffected. Also, this low-Strouhal number region (f

ffiffiffi
A
p

=Uavg < 0:2, based on the square root of model
frontal area) possesses the higher energy content which can be associated with the presence of shedding phenomena.

In Fig. 21 the phase correlation between the points in the regions of vortices production is shown. It can be seen that the
phase estimate for Strouhal numbers lower than 0.2 presents a phase shift of about 100� and more, indicating a nearly alter-
nate shedding.

6. Conclusions

In this paper, a general method for the generation of inflow synthesized turbulence has been introduced and evaluated.
The method is based on a previous turbulence generator known as the discretizing and synthesizing random flow generation
(DSRFG) method. The proposed approach preserves the main characteristics and advantages of the DSRFG method: it is
highly parallelizable, different spectral models can be used and it can represent either isotropic and anisotropic turbulence.
In addition, the key point of the modified DSRFG (MDSRFG) method is that it preserves the statistical quantities that could be
prescribed at the inlet of the domain as the number of samples M (number of points in the spectrum) increases, through the
computation of the factors pm;n

i and qm;n
i by Eqs. (42) and (43). This characteristic ensures that the imposed turbulence inten-

sity on the fluctuating velocity series represents adequately the kinetic energy of the turbulent flow under study.
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Following previous methodologies [28,5], a dimensionless time scale parameter, s0, has been included in the formulation
of the proposed approach in order to ‘‘control’’ the time correlation of the generated velocity series. In this way, the MDSRFG
method can modify the time scale by varying s0 as it has been demonstrated in Section 4.

Some numerical tests show that the proposed approach is very well-suited for three-dimensional computations using the
LES approach. For the swirling turbulent flow inside a diffuser the inlet conditions obtained matches almost exactly the
experimental measurements. Regarding to the simulation of the flow over the Ahmed body, it has been shown that results
obtained, i.e., forces, level of unsteadiness in the wake and the back-light of the model, are very sensitive to the upstream
inflow conditions and therefore this issue must be correctly addressed by any synthesized turbulence method.
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