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Understanding demographic and migrational patterns constitutes a great chal-

lenge. Millions of individual decisions, motivated by economic, political,

demographic, rational and/or emotional reasons underlie the high complexity

of demographic dynamics. Significant advances in quantitatively understand-

ing such complexity have been registered in recent years, as those involving the

growth of cities but many fundamental issues still defy comprehension. We

present here compelling empirical evidence of a high level of regularity regard-

ing time and spatial correlations in urban sprawl, unravelling patterns about

the inertia in the growth of cities and their interaction with each other. By

using one of the world’s most exhaustive extant demographic data basis—

that of the Spanish Government’s Institute INE, with records covering 111

years and (in 2011) 45 million people, distributed among more than 8000

population nuclei—we show that the inertia of city growth has a characteristic

time of 15 years, and its interaction with the growth of other cities has a charac-

teristic distance of 80 km. Distance is shown to be the main factor that

entangles two cities (60% of total correlations). The power of our current

social theories is thereby enhanced.
1. Introduction
The quantitative description of social human patterns is one of the great

challenges of this century. Significant advances have been achieved in under-

standing the complexity of city growth, urban sprawl, electoral processes and

many other social systems [1–17]. One finds that the concomitant patterns can

be successfully modelled, involving subjacent universal scaling properties

[10,14,18,19], fundamental principles—such as the maximum entropy principle

[20–24] or the minimum Fisher information [25,26]—or diffusive and aggregative

mechanisms for urban sprawl [27–30]. Also, the interaction between cities

(as measured by, for instance, the number of crossed phone calls [31] or human

mobility [12]) displays predictable characteristics. Thus, it is plausible to conjec-

ture that some kind of universality underlies collective human behaviour [17,23].

However, many fundamental issues still defy comprehension. Our aim in this

work is to answer two question regarding city growth and human migrations:

(i) is the growth of cities inertial, i.e. does the population growth in the present

year depend on the growth of past years? and (ii) does the growth of a city

depend on the growth of neighbouring cities, i.e. does the migration of people

from one city to another exhibit spatial patterns? Millions of individual decisions,

motivated by economic, political, demographic, rational and/or emotional

reasons, underlie the growth rate of a city. Accordingly, one may expect some

level of randomness and unpredictability. In this vein, one might think that

(i) if some inertia is present, the growth rate of the present year could be

deduced from that in past years, and

(ii) if some correlation with other cities exists, the growth rate might be

predicted from the rates of other cities.

Thus, the observation and detection of regular space–time patterns in

urban population evolution could be viewed as constituting an important

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2013.0930&domain=pdf&date_stamp=2013-11-20
mailto:alberto.hernandodecastro@epfl.ch


rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20130930

2
step towards understanding collective human dynamics at

the macro-scale. Indeed, the parametrization of such regulari-

ties could lead to a potential improvement of the present

population-projection tools and analysis [32–34].

1.1. Urban growth
The evolution of city population has been described with

great success in the past by recourse to Gibrat’s law, i.e. geo-

metrical Brownian walkers obeying a dynamical equation

that exhibits scale-invariance [6,7,13,19,21,23,24,35]

_XiðtÞ ¼ viðtÞXiðtÞ; ð1:1Þ

where Xi(t) is the population at time t of the ith city (of an

ensemble of n cities), _XiðtÞ stands for its temporal change and

vi(t) for the growth rate. One finds in the literature that this

rate usually displays stochastic behaviour in the form of a

Wiener process that complies with kviðtÞvjðt0Þl ¼ s2
vdijdðt� t0Þ,

so that we deal with uncorrelated noise. In spite of its simpli-

city, this reductionist model is able to describe many of the

observations reported for city-rank distributions. Indeed, this

equation can be linearized by defining ui(t) ¼ log[Xi(t)] thus

obtaining _uiðtÞ ¼ viðtÞ, which allows one to recover all well-

known properties of regular Brownian motion [21]. Indeed, a

‘thermodynamics of urban population flows’—with the perti-

nent observables—can be derived following the analogy with

physics presented in [23]. However, uncorrelated evolution is

assumed in [23] for the sake of simplicity, which entails operat-

ing with the equivalent of a scale-free ideal gas. Such an

assumption was sufficient for explaining the main properties

of the macroscopic state of an ensemble of cities, but a higher

level theory that would provide deeper understanding is desir-

able. Indeed, some sort of interaction between cities is of course

to be expected, as well as some kind of inertia. The ensuing cor-

relations are of great importance to understand the complex

patters of migration and to improve our predictive power

with regards to the subjacent dynamics.

We present in this work empirical evidence of such corre-

lations in the population dynamics of Spain. In §2.1, we first

analyse the statistical properties of cities’ growth rates, re-

confirming both proportional growth and other previous

observations presented in the literature. We pass next to ana-

lyse, in §2.2, the time correlation of the growth rates, using

demographic data from a time window of 111 years. We

encounter a remarkably regular behaviour. We continue, in

§2.3, with the analysis of inter-city correlations: instead of

comparing each individual growth rate with the average in

its surroundings—as found in the literature—we study here

correlations of the growth rate for each particular pair of

cities. This is akin to describing the raw two-body interaction

between cities and is expected to be of a more fundamental

nature than the just mentioned literature studies, that involve

mean-field, or coarse-grained, descriptions of the interactions

we are interested in. Inspired by physics, we compare the

city–city correlation with the distance between them, which

leads us to define a characteristic correlation distance. Finally,

some discussion and conclusions are given in §3.
2. Results
An exhaustive census dataset is indeed needed, something

not easy to come by. Fortunately, the Spanish Government’s

Institute INE [36] provides information about the population
of 8100 municipalities—the smallest administrative unit—

over a period of 111 years, from 1900 to 2011. They are distrib-

uted over a surface of approximately 500 000 km2 inhabited by

more than 45 million people (2011). Figure 1a displays the

spatial distribution of the Spanish municipalities, and figure

1b their time evolution. A typical diffusion pattern is visible.

The population’s arithmetic and geometric means are also

plotted. The former grows with time but the later diminishes,

indicating that the population has descended in a majority of

towns, reflecting on the migration from countryside to large

cities, a common pattern in most of the world. This diffusion

process is readily discernible: one appreciates that the width

of the distribution indeed grows.
2.1. Statistical properties of growth rates
In order to analyse in more detail the underlying dynamics,

we base our considerations on the developments of earlier

studies [21,23,24]. It is shown there that the dynamical growth

equation for city populations exhibits the general appearance

_XiðtÞ ¼ viðtÞXiðtÞ þ wiðtÞ
ffiffiffiffiffiffiffiffiffiffi
XiðtÞ

p
; ð2:1Þ

where wi(t) is a Wiener coefficient independent of vi(t). We face

stochastic proportional growth in the first term to which a finite-

size contribution (FSC) is added in the second one. The later

becomes small for large sizes but is important for small ones.

The second term can be regarded as ‘noise’ and is thus expected

to be independent of the proportional growth. Accordingly, the

variance of the growth over the population V½ _Xi�/Xi—a quan-

tity defined only for convenience in representing the data—can

be written as

V½ _Xi�
Xi
¼ s2

viXi þ s2
wi; ð2:2Þ

where svi and swi are the associated deviations of vi and wi,

respectively. (Note that we have followed the approximation

made in [23], where it is shown that the variation of the popu-

lation Xi is much smaller than the variation of the growth rates.)

Comparison with the data entails appealing to numerical

time derivatives for each _Xi. We use yearly data from 1996 till

2011 (whenever the appropriate datasets are available for

each intermediate year) to generate the graph of figure 1c,

which displays the ðXi;V½ _Xi�/XiÞ—pairs for all the Spanish

municipalities. One computes

k _Xil ¼
1

T

XT

t¼1

_XiðtÞ ð2:3Þ

and V½ _Xi� ¼ k½ _Xi � k _Xil�2l

¼ 1

T

XT

t¼1

ð _XiðtÞ � k _XilÞ2;
ð2:4Þ

where T ¼ 14 is the total number of datasets used for this cal-

culation. The median medðV½ _Xi�/XiÞ nicely fits equation

(2.2), with sv ¼ 0.0119 and sw ¼ 0.47, respectively. Note that

FSC fluctuations are larger than multiplicative ones, the later

dominating, of course, for large sizes. The transition between

both regimes occurs at xT ¼ s2
wi/s

2
vi ¼ 1500 inhabitants.
2.2. Empirical observation of inertial growth
To find whether there exists a systematic dependence

between successive yearly growths (or inertia), we consider
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Figure 1. Characteristics of the dataset. (a) Spatial distribution of Spanish municipalities. Circle’s sizes are proportional to the population’s logarithm. (b) Evolution of
all municipalities. We also give the population per town (solid line, arithmetic mean; dashed line, geometric mean). (c) Variance of the population-change versus
population for each municipality (dots). The median value (dotted line) clearly follows equation (2.2) (solid line). (Online version in colour.)
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first the n-cities average and variance such that

k _xðtÞl ¼ 1

n

Xn

i¼1

_xiðtÞ ð2:5Þ

and

V½ _xðtÞ� ¼ 1

n

Xn

i¼1

½ _xiðtÞ � k _xðtÞl�2; ð2:6Þ

where xi(t) ¼ Xi(t)/N(t) with N(t) the total population at time

t, excluding in this fashion the effects of the total population

growth. Time correlations have been obtained via the Pearson

product-moment correlation coefficient (Corr) between

datasets pertaining to different years t and t þ Dt as

Corr½ _xðtÞ; _xðtþ DtÞ�

¼
Pn

i¼1 ½ _xiðtÞ � k _xðtÞl�½ _xiðtþ DtÞ � k _xðtþ DtÞl�/nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V½ _xðtÞ�V½ _xðtþ DtÞ�

p :
ð2:7Þ

The mean correlation as a function of the time-interval Dt is

obtained as the average

ctðDtÞ ¼ 1

T

XT

t¼1

Corr½ _xðtÞ; _xðtþ DtÞ�; ð2:8Þ

where T is now the total number of available datasets for each

case. We study first such correlations as a function of the popu-

lation window, where two different situations are encountered.

Within a standard deviation, no correlations exist for low

populations, but they are significative for large ones, as indi-

cated in figure 2a. The transition between the two ensuing
regimes takes place at populations of approximately 1000

inhabitants. Thus, for the finite-size term in (2.3) no time

correlations are detected. They do appear, though, in the pro-

portional growth regime. Accordingly, we evaluate time

correlations for municipalities with populations of more than

10 000 inhabitants during a period of up to 50 years. We find

that correlations decay as the time-interval Dt between obser-

vations increases (figure 2b). In a logarithmic representation

of the mean value of the correlations, we find a linear relation-

ship with time (inset of figure 2b), leading to a nice fit via an

exponential function of the form

ctðDtÞ ¼ at exp �Dt
t

� �
; ð2:9Þ

with at ¼ 0.74+0.02 and t ¼ 15+1 years. The coefficient of

determination R2 is equal to 0.997. Accordingly, the correlation’s
mean time in the demographic flux is around 15 years.

2.3. Empirical observation of spatial correlations
We pass now to a study of the demographical entanglement

between two given cities, as represented by spatial correlations.

The correlation coefficient between the ith and jth city reads

Corr½ _xi; _xj� ¼
Cov½ _xi; _xj�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V½ _xi�V½ _xj�
p ; ð2:10Þ

where the covariances, variances and means are time averages

as in equation (2.3). Among a host of possible entanglement

factors, we choose here to study the simplest one: distance

between cities Dr. Accordingly, we evaluate correlations
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between cities versus their pertinent distance dist(i,j) via

the histogram

crðDrÞ ¼ 1

n

Xn

i¼1

Corr½ _xi; _xj�dðDr� distði; jÞÞ: ð2:11Þ

We find that for towns with more than 10 000 inhabitants—

within the proportional growth regime—the mean value of the

spatial correlation is positive and decays with distance. In a

logarithmic representation for the distance, we find that this

decay is slower than exponential (inset of figure 2d), following

a power law for large distances but saturating at short

distances. The simplest analytical form that describes this

behaviour is an expression of the form

crðDrÞ ¼ ar

1þ jDr/r0ja
: ð2:12Þ

Indeed, the correlation is finite at Dr ¼ 0 and decays as

�Dr –a for large distances. Fitting this function to the data,

we obtain ar ¼ 0.33+ 0.02, r0 ¼ 76+ 10 km, and a ¼ 1.8+
0.3, with a coefficient R2 of 0.9159. Instead, fixing for

convenience a ¼ 2 (that yields a Lorentz function), we get

ar ¼ 0.33+0.01 and r0 ¼ 79+8 km, with R2 ¼ 0.9156. As

the concomitant two ways of fitting are indistinguishable
according to the R2 coefficient, we adopt a ¼ 2 for simplicity.

As a consequence, the typical ‘demographic distance’ turns out to
be (on average) of approximately 80 km, decaying with r – 2 at
large distances. Thus, we face long-range correlations. The

influences of other factors, though, make these correlations

vanish at about 500 km. We use our data to compare (i) the

width of c(Dr) with (ii) that expected for a bivariate normal

distribution [37] (see appendix A). The empiric width is

larger than the bivariate one: 0.327 versus 0.204 (figure 2c),

indicative of the presence of additional, distance-indepen-

dent, correlations. We deduce that the separation between

towns, that is, their mutual distance, is the origin of about a

60% of the total correlation between them.
3. Discussion and conclusion
Summing up, we have demonstrated that the relative

growth of a city’s population exhibits both (i) inertia and

(ii) correlation with the relative growth of neighbouring

cities, with distance as the main variable that underlies the

town–town interaction. Indeed, these patterns can be used

to improve the predictive power of present techniques for

demographic projection. However, further improvements
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are needed in order to identify the undefined correlations within
the actual data whose existence we have discovered. We expect

that these correlations will depend on local circumstances

and also on the particular socio-economic status of each

city. Indeed, economic factors such as the market area,

market potential or basin of attraction, will contribute to

that undefined 40% of the total correlation. One important

contribution to these undefined correlations can be attributed

to the fact that we use distances between cities regardless of

the transportation network. It is expected that the correlation

between two well-connected cities (in terms of roads, trains

and/or air bridges) will be larger than that of two other

cities, separated by the same distance, but without these

facilities (or with natural barriers between them as seas,

rivers or mountains). Even if all these effects are compensated

at the macroscopic level and distance becomes a good observa-

ble as we have shown here, a more accurate microscopic
determination of the fundamental behaviour of interactions

should include these particular local variations, using, for

example, the mean time required for travelling from one

city to the other. In addition, we have implicitly treated the

cities as point-like particles in the sense of idealized bodies

of zero dimension—i.e. with no internal structure nor exten-

sion in space. This reductionistic ideal scenario helps us to

isolate effects or mechanisms and works well at the scale

of the distances studied here, but the internal structure of

cities should become important at those distances where

the correlation saturates (less than 10 km, as shown in the

inset of figure 2d ). We think that it will be interesting to

understand the influence of the correlations here displayed

on the morphology of the cities, and we hope that both the
interplay between them and the associated mechanisms of

road and diffusion dynamics studied in, e.g. [27–30], will

be unravelled in the near future. In view of our results, a

quantitative model for the evolution of city populations

should be able to include these correlations, as well as all

the other well-known features of city growth’ statistics,

such as the power-law or lognormal distribution of city

populations. Work on this subject is in progress.
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Appendix A. Distribution of correlation
coefficients
For a bivariate normal distribution, the distribution of

correlation coefficients is given by

Pðc;C;TÞ ¼ 1ffiffiffiffiffiffi
2p
p ðT � 2Þ GðT � 1Þ

GðT � 1/2Þ ð1� c2ÞT=2�2

� [1� C2]ðT�1Þ=2[1� Cc]T�3=2

� 2F1
1

2
;
1

2
;T � 1

2
;
Ccþ 1

2

� �
;

ðA 1Þ

where c stands for the correlation value that one might numeri-

cally obtain using equation (2.10), C is the actual correlation

value and T the number of data-point used to evaluate c.
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