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Abstract. We investigate dynamic modal operators that can change
the model during evaluation. We define the logic SL by extending the

basic modal language with the
�
♦ modality, which is a diamond operator

that in addition has the ability to invert pairs of related elements in the
domain while traversing an edge of the accessibility relation.
SL is very expressive: it fails to have the finite and the tree model prop-
erty. We show that SL is equivalent to a fragment of first-order logic by
providing a satisfiability preserving translation. In addition, we provide
an equivalence preserving translation from SL to the hybrid logicH(:, ↓).
We also define a suitable notion of bisimulation for SL and investigate its
expressive power, showing that it lies strictly between the basic modal
logic and H(:, ↓). We finally show that its model checking problem is
PSpace-complete and its satisfiability problem is undecidable.

Keywords: Modal logic, dynamic logics, expressivity, complexity.

1 Changing the Model

Modal logics [6,8] are particularly well suited to describe graphs, and this is for-
tunate as many situations can be modeled using graphs: an algebra, a database,
the execution flow of a program or, simply, the arbitrary relations between a
set of elements. This explains why modal logics have been used in many, diverse
fields. They offer a well balanced trade-off between expressivity and computa-
tional complexity (model checking the basic modal language BML is only poly-
nomial, while its satisfiability problem is PSpace-complete). Moreover, the range
of modal logics known today is extremely wide, so that it is usually possible to
pick and choose the right modal logic for a particular application.

But if we want to describe dynamic aspects of a given situation, e.g., how
the relations between a set of elements evolve through time or through the
application of certain operations, the use of modal logics (or actually, any kind
of logic with classical semantics) becomes less clear. We can always resort to
modeling the whole space of possible evolutions of the system as a graph, but
this soon becomes unwieldy. It would be more elegant to use truly dynamic
modal logics with operators that can mimic the changes that the structure will
undergo. This is not a new idea, and a clear example of this kind of logics is the
sabotage logic introduced by Johan van Benthem in [19].
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Consider the following sabotage game. It is played on a graph by two players,
Runner and Blocker. Runner can move on the graph from node to accessible
node, starting from a designated point, and with the goal of reaching a given
final point. He should move one edge at a time. Blocker, on the other hand, can
delete one edge from the graph, every time it is his turn. Of course, Runner
wins if he manage to move from the origin to the final point in the graph, while
Blocker wins otherwise. van Benthem proposes transforming the sabotage game
into a modal logic, by working on models where edges are treated as objects and
introducing the following ‘cross-model modality’ referring to submodels from
which objects have been removed:

M, w |= –♦ϕ iff there is a state v 6= w of M such that M\ {v}, w |= ϕ.

As a modal logic, it is clear that the –♦ operator changes the model in which
a formula is evaluated. As van Benthem puts it, –♦ is an “external” modal-
ity that takes evaluation to another model, obtained from the current one by
deleting some state or transition. Various sabotage modal logics have been stud-
ied [13,12,17]. In particular, it has been proved that solving the sabotage game is
PSpace-hard, while the model checking problem of the associated modal logic is
PSpace-complete and the satisfiability problem is undecidable. The logic fails to
have both the finite model property and the tree model property. A translation
of the sabotage modal logic into first-order logic is also provided.

Memory logics, investigated in [1,14,3,4], are another family of modal logics
that can change models. The semantics of these languages is specified on models
that come equipped with a set of states called the memory. The simplest memory
logic includes a modality r© that stores the current point of evaluation into
memory, and a modality k© that verifies whether the current state of evaluation
has been memorized. The memory can be seen as a special proposition symbol
whose extension grows whenever the r© modality is used. The general properties
of memory logics are similar to those of sabotage logics: a PSpace-complete
model checking problem, an undecidable satisfiability problem, and failure of
both the finite model and the tree model properties.

In this article, we will investigate a modal changing operator that neither
shrinks nor expands the model1. Instead, it has the ability to swap the direction

of a traversed edge. The
�
♦ operator is a ♦ operator — to be true at a state w it

requires the existence of an accessible state v where evaluation will continue—
but it changes the accessibility relation during evaluation —the pair (w, v) is
deleted, and the pair (v, w) added to the accessibility relation.

A picture will help understand the dynamics of
�
♦. The formula

�
♦♦> is true

in a model with two related states:

1 We will see in the next section that this is not completely true, the accessibility
relation might shrink but only in particular cases.
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As we can see in the picture, evaluation starts at state w with the edge

pointing from w to v, but after evaluating the
�
♦ operator, it continues at state v

with the edge now pointing from v to w. In this article, we will see that the swap

logic SL obtained by adding
�
♦ to the basic modal logic fares as the other model

changing logics we mentioned above: thought still a fragment of first-order logic,
it is very expressive with a PSpace-complete model checking problem and an
undecidable satisfiability problem.

The rest of the article is organized as follows. We first present syntax and
semantics of SL in Section 2. In Section 3 we define a satisfiability preserv-
ing translation of SL into first-order logic, then in Section 4 we provide an
equivalence preserving translation into hybrid logic. In Section 5 we study the
expressive power of SL using bisimulations. Finally, in Section 6 we study the
complexity of its model checking and satisfiability problems. We close the article
in Section 7 summing up our results.

2 Basic Definitions

Now we introduce syntax and semantics for SL. We define some notation that
will help us describe models with swapped accessibility relations. We provide
some examples of SL formulas, and we close this section showing the lack of
finite model property of the logic.

Definition 1 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. Then the set FORM of formulas of SL over PROP is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | ♦ϕ |�♦ϕ,

where p ∈ PROP and ϕ,ψ ∈ FORM. Other operators are defined as usual. In

particular �ϕ is a shorthand for ¬♦¬ϕ and
�
�ϕ stands for ¬�♦¬ϕ.

The above definition shows that SL is the syntactic extension of the basic

modal logic with the
�
♦ operator. This is also true semantically: formulas of

SL are evaluated in standard relational models, and the meaning of all the
operators of the basic modal logic is unchanged. When we evaluate formulas of

SL containing the
�
♦ operator, we will need to keep track of the edges that have

been swapped. To that end, let us define precisely the models that we will use.
In the rest of this article we will use wv as a shorthand for {(w, v)} or (w, v).
Context will always disambiguate the intended use.
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Definition 2 (Models and Model Variants). A model M is a triple M =
〈W,R, V 〉, where W is a non-empty set whose elements are called points or states;
R ⊆W×W is the accessibility relation; and V : PROP 7→ P(W ) is a valuation.

Given a model M = 〈W,R, V 〉, we define the model M∗vw = 〈W,R∗vw, V 〉,
where R∗vw = (R \ wv) ∪ vw, wv ∈ R.

We will refer to models obtained by swapping edges, or more generally, mod-
ifying a given initial model, as model variants.

Definition 3 (Semantics). Let w be a state inM, the pair (M, w) is a pointed
model; we usually drop parenthesis and call M, w a pointed model. Given a
pointed model M, w and a formula ϕ we say that M, w satisfies ϕ (notation,
M, w |= ϕ) when

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= ♦ϕ iff for some v ∈W s.t. (w, v) ∈ R,M, v |= ϕ

M, w |=�
♦ϕ iff for some v ∈W s.t. (w, v) ∈ R,M∗vw, v |= ϕ.

ϕ is satisfiable if for some pointed model M, w we have M, w |= ϕ.

The semantic condition for
�
♦ looks quite innocent but, as we will see in

the next couple of examples, it is actually very expressive. First, let us see the
operator in action in two simple important cases.

Example 1. The
�
♦ operator leaves reflexive edges unchanged:

w w

�
♦ϕ ϕ

Example 2. The
�
♦ operator collapses symmetric edges into a single one:

w v w v

�
♦ϕ ϕ

We start with the model on the left, where R = {wv, vw} and evaluate
�
♦ϕ

at w. This implies evaluating ϕ at v after the relation is updated to R∗vw =
(R \wv)∪ vw = {vw}, as shown on the right. This is actually the only situation

where evaluating a
�
♦ formula leads to a model variant where |R| decreases.

Now let us see a couple of examples where SL formulas can force model with
complex structures.

Example 3. Define �0ϕ as ϕ, �n+1ϕ as ��nϕ, and let �(n)ϕ be a shorthand
for

∧
1≤i≤n �

iϕ. The formula

ϕ = p ∧�(3)¬p ∧�♦♦♦p



Swap Logic 5

is true at a state w in a model if and only if w has a reflexive successor. Notice
that no equivalent formula exists in the basic modal language (formulas in the
basic modal language can always be satisfied at the root of a tree model).

Let us analyse the formula in detail. Suppose we evaluate ϕ at some state
w of an arbitrary model. The ‘static’ part of the formula p ∧ �(3)¬p makes
sure that p is true in w and that no p state is reachable within a three step
neighbourhood of w (in particular, w cannot be reflexive). Now, the ‘dynamic’

part of the formula
�
♦♦♦p will do its magic. Because

�
♦♦♦p is true at w, there

should be an R-successor v where ♦♦p holds once the accessibility relation has
been updated to R∗vw. Now, v has to reach a p-state in exactly two R∗vw-steps to
satisfy ♦♦p. But the only p state sufficiently close for this to happen is w which
is reachable in one step. As w is not reflexive, v has to be reflexive so that we
can linger at v for one loop and reach p in the correct number of states.

We analyse now two classical properties of modal logics: the tree and the
finite model property. Both fail in the case of SL.

Theorem 1. The tree model property fails for SL, i.e., there are formulas in
SL that cannot be satisfied at the root of a tree.

Proof. Consider the following SL formula that forces models that contain a
diamond:

ϕ = ♦p ∧ ♦¬p ∧�♦> ∧���⊥
∧���

�
���⊥

∧�����⊥
∧�♦�♦♦♦♦♦♦>

w

p ¬p

When evaluated at w, the first line of ϕ forces two different successors w1

and w2; each of them has successors which are dead ends. The second line forces
w to have at most two successors, while the third makes sure that w1 and w2

have at most one successor. Finally, the last line says that starting from w and
after swapping two successive edges, we can create a path of length at least five.
For that to be true, w1 and w2 must share a successor. ut

Theorem 2. The finite model property fails for SL, i.e., there are formulas in
SL that can only be satisfied in infinite models.

Proof. Consider the following SL formula:

ϕ = s ∧�(9)¬s (1)
∧♦> (2)
∧�♦> (3)

∧���¬♦s (4)

∧����(¬s → ♦♦♦♦♦s) (5)

∧������(¬♦s → ♦♦♦( ¬s ∧ ♦♦♦s)) (6)
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The formula forces models to have an infinite chain of states. It does so by
ensuring that the propositional symbol s is true only in the evaluation state w,
and false in all the states reachable from w. Then, it enforces specific properties
on the model, locating states by their distance to w using formulas of the form
♦ . . .♦s after swapping an outgoing edge from w. This way it is possible to
enforce seriality, irreflexivity and transitivity on a chain of states. Let us check
the formula in detail.

(1) makes s true at the state w and false at all states accessible within 9
steps. By (2), w has one successor and by (3), every successor of w has some
successor. (4) makes every successor of w irreflexive.

(5) tells that from any state v 6= w reachable in two swapping steps, it is
possible to go back to w in five steps. But this is only possible by first going to
w in two steps, then going to v in one step and going again to w in two steps.
Hence all states accessible in two steps from w are also accessible in one. This
makes w a ‘spy state’, i.e., it is directly connected to every state in the submodel
generated from it. (6) enforces the same property on the successors of w.

(3), (4) and (6) respectively enforce seriality, irreflexivity and transitivity on
a chain of states starting from w. Hence this chain must be infinite. ut

These examples should warn us about the expressivity of SL, which is cer-
tainly well above that of the basic modal language. We might even wonder if the
dynamic characteristics of SL can be captured inside first-order logic.

3 Swap Logic as a Fragment of First-Order Logic

As we saw in the previous section SL is very expressive. This expressivity is
intrinsically tied to its ability to modify the model during evaluation (remember
that we only extended the basic modal language with a harmless looking diamond
modality). It is well known that the basic modal language can be seen as a
fragment of first-order logic via a satisfiability preserving translation. We might
wonder if this is the case also for SL. It is not obvious, a priori, that the model
changing capabilities of SL can be captured in the static setting of first-order.

In this section we provide a satisfaction preserving translation of SL into
FOL, but it is far more involved that the standard translation used for the
basic modal logic. Indeed, we will have to force the translated formula to be
evaluated in a particular class of models. We will do this through the use of
two sorted first-order logic [22]. First, let us introduce formally the syntax and
semantics of (sorted) first-order logic.

Definition 4 (Sorted first-order language). Let REL = {R1, R2, . . .} be a
countable set of relation symbols, FUN = {f1, f2, . . .} a countable set of func-
tion symbols, CON = {c1, c2, . . .} a countable set of constant symbols, VAR =
{x1, x2, . . .} a countable set of variables and SORT = {O1, , O2, . . .} a countable
set of sorts. We assume that REL, FUN, CON, VAR and SORT are pairwise dis-
joint. To each relation symbol Ri ∈ REL and each function symbol fi ∈ FUN
we associate an arity n > 0 and a sort type given by the function S, where
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S(Ri) ∈ SORTn and S(fi) ∈ (SORTn,SORT). To each variable x ∈ VAR and
constant c ∈ CONS, we have that S(x) ∈ SORT and S(c) ∈ SORT. We call
S = 〈REL,FUN,CON,VAR,SORT〉 a signature. If FUN = {} we will say that the
signature is relational.

The well-formed terms of the sorted first-order language over the signature
〈REL, FUN, CON,VAR,SORT〉 are

TERM := xi | ci | fi(t1, . . . , tn),

where, xi ∈ VAR, ci ∈ CON, fi ∈ FUN of arity n and t1, . . . , tn ∈ TERM are of
the appropriate type. The well-formed formulas over the signature are

FORM := > | t1 = t2 | Ri(t1, . . . , tn) | ¬ϕ | ϕ1 ∧ ϕ2 | ∃x:O.ϕ,

where t1, t2, . . . , tn ∈ TERM, Ri ∈ REL is an n-ary relation symbol, ϕ,ϕ1, ϕ2 ∈
FORM, xi ∈ VAR, S(t1) = S(t2), (S(t1) . . . S(tn)) = S(Ri) and O = S(x).

As usual, we take ∨,→,↔ and ∀ as defined symbols.

Turning to semantics, sorted first-order formulas are interpreted on sorted first-
order models.

Definition 5 (Sorted first-order models and satisfiability). Let S be a
signature, a sorted first-order model for S is a structure M = 〈M, I〉 with M =
{M1, . . . ,Mk}, where M ′is are non-empty sets and I is an interpretation function
defined over REL ∪ FUN ∪ CONS ∪ SORT such that:

– To each Oi ∈ SORT, I(Oi) ∈M .
– To each Ri ∈ REL such that S(Ri) = (O1, . . . , On), I assigns a relation
I(Ri) ⊆ I(Oi)× . . .× I(On).

– To each fi ∈ FUN such that S(fi) = (O1, . . . , On, On+1), I assigns a function
I(fi) : I(O1)× . . .× I(On)→ I(On+1).

– To each ci ∈ CONS with S(ci) = Oi, I assigns some element I(ci) ∈ I(Oi).

An assignment g for M is a mapping g : VAR →
⋃

Mi∈M Mi such that then
g(x) ∈ I(S(x)). Given an assignment g for M, x ∈ VAR and m ∈ I(S(x)), we
define gxm (an x-variant of g) by gxm(x) = m and gxm(y) = g(y) for x 6= y. Given
a model M and an assignment g for M, the interpretation function I can be
extended to all elements in TERM:

I(xi) = g(xi)
I(f(t1, . . . , tn)) = I(f)(I(t1), . . . , I(tn)).

Finally the satisfiability relation |= is defined as

M |= >[g] always
M |= t1 = t2[g] iff I(t1) = I(t2)

M |= R(t1, . . . , tn)[g] iff (I(t1), . . . , I(tn)) ∈ I(R)
M |= ¬ϕ[g] iff M 6|= ϕ[g]

M |= ϕ1 ∧ ϕ2[g] iff M |= ϕ1[g] and M |= ϕ2[g]
M |= ∃x:O.ϕ[g] iff M |= ϕ[gxm] for some m ∈ I(O).
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If a given formula ϕ is satisfied under every assignment for M, we say that ϕ
is valid in M and write M |= ϕ.

In the rest of the paper we will call 2FOL, to the sorted first-order logic with
two sorts.

The key idea to provide a translation from SL to 2FOL is to unravel dynamic
SL models so that they can be represented by static first-order models. Consider
the following SL model

w v

Swap operators will be able to transform the model in specific ways. A
�
♦

operator evaluated at w will produce a model variant where the accessibility

relation is just the (v, w) edge, and similarly for a
�
♦ operator evaluated at v.

As illustrated in Figure 1, we can use an index to identify each of these
possible model variants, and then connect them using a new accesibility relation,
where some state w in the model ij is related with some state v in ik, if (w, v) ∈ R
in the model ij , and ik is identical to ij except that the edge (w, v) has been
swapped around. The R relation is meant to link states with the same index,
while the S relation is meant to link states from a given model variant to a
possibly different model variant corresponding to the result of swapping an edge.

w v
R

R

i0

w v

Ri1

w v

R
i2

S

S
S

S

Fig. 1. A 2FOL model that statically represents a dynamic SL model.

Now, we apply this idea to translate formulas of SL into 2FOL. We start by
taking the well-known standard translation from BML to FOL, but extend its

definition so that
�
♦ is translated and interpreted using the S relation. To ensure

that the relations R and S behave as intended, we add to the translation some
additional conditions. Let us see the translation in detail.

Definition 6 (Standard Translation). We define ST : SL × VAR × IND →
2FOL where VAR is a set of variables and IND a set of indexes. It produces
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formulas in two sorted first-order logic with sorts W and I, one 3-ary predicate
symbol R′ over W × I ×W , one 4-ary predicate symbol S′ over W × I ×W × I,
and one unary predicate symbol Pp over W for each p ∈ PROP.

ST (p, x, i) = Pp(x)
ST (¬ϕ, x, i) = ¬ST (ϕ, x, i)
ST (ϕ ∧ ψ, x, i) = ST (ϕ, x, i) ∧ ST (ψ, x, i)
ST (♦ϕ, x, i) = ∃y:W .(R′(x, i, y) ∧ ST (ϕ, y, i))

ST (
�
♦ϕ, x, i) = ∃y:W,j:I .(S

′(x, i, y, j) ∧ ST (ϕ, y, j)).

Define the following two 2FOL formulas:

Cond1 = ∀w,v:W,i:I .(R
′(w, i, v)↔ ∃j:I .S′(w, i, v, j))

Cond2 = ∀w,v:W,i,j:I .
(S′(w, i, v, j) ↔

(R′(w, i, v)
∧ R′(v, j, w)
∧ w 6= v → ¬R′(w, j, v)
∧ ∀w′,v′:W .(w, v)6=(w′, v′) ∧ (w, v)6=(v′, w′)

→ R′(w′, i, v′)↔ R′(w′, j, v′)) ).

We finally define ST ′(ϕ, x, i) = ST (ϕ, x, i) ∧ Cond1 ∧ Cond2.

Cond1 says that whenever two states are linked in some model variant then
it is possible to swap the edge between them. That is, there exists some model
variant indexed by j such that the state w in model variant i is linked to the
state v in model variant j. The other direction says that if two points are linked
by S between possibly different model variants, then they should be linked by
R in the same model variant.

Cond2 enforces a set of conditions that correspond to the expected effect
of swapping edges. Let us read it from left to right. Assume a ‘swapping edge’
exists between state w of model variant i and state v of model variant j. Then
there must be an edge in the model variant i between w and v (R′(w, i, v)).
There is also an edge from v to w in the model variant j (R′(v, j, w)). In the
case where w and v are distinct states, there is no longer an edge from w to v in
the model variant j. Finally, all the other edges of model variants i and j should
not be affected by the swapping (this is the last two lines of Cond2). The other
direction of Cond2 tells that whenever all these conditions are met, there should
be a corresponding edge in S.

Notice that the translation from SL to 2FOL is polynomial. However, the
class of models in which we evaluate formulas that are the result of this transla-
tion is not the same in which we evaluate the original SL-formula. The following
definition associates each SL model with its corresponding 2FOL model.

Definition 7 (Model Translation). Let ( )′ be the function that for ev-
ery model M = 〈W,R, V 〉 associates a two sorted first-order model (M)′ =
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〈{W ′, I ′}, I ′〉 where W ′, I ′ and I ′ are defined as follows:

W ′ = W
I ′ = {R} ∪ {U∗vw | U ∈ I ′ ∧ (w, v) ∈ U}
I ′(Pp) = V (p)
I ′(R′) = {(w, T, v) | T ∈ I ′, (w, v) ∈ T}
I ′(S′) = {(w, T, v, T ∗vw) | T ∈ I ′, (w, v) ∈ T}.

The model translation above exhaustively expands an SL model into a com-
plete, static 2FOL model that contains every possible model variant obtained by
swapping arbitrary edges of the initial model. This leads to the first part of the
equisatisfiability theorem. We want to show that if an SL formula is satisfiable,
then its translation is also satisfiable.

Theorem 3. Let ϕ be an SL formula. If ϕ is satisfiable, then ST ′(ϕ, x, i) is
satisfiable.

Proof. We will prove the following. Let M = 〈W,R, V 〉 be a model and ϕ a
formula of SL. Then

M, w |= ϕ iff (M)′ |= ST ′(ϕ, x, i)[x := w, i := ∅]. ⊗

In the rest of the paper we use the following notation: j = I ′(j), i = I ′(i),w =
I ′(w), v = I ′(v),w’ = I ′(w′), v’ = I ′(v′).

(1) We first prove that (M)′ |= Cond1 ∧ Cond2.

1. ∀w,v:W,i:I .(R
′(w, i, v)↔ ∃j:I .S′(w, i, v, j))

The right-to-left direction holds from the definitions of I ′(S′) and I ′(R′).
For the left-to-right direction, it suffices to choose j = i∗vw.

2. ∀w,v:W,i,j:I .(S
′(w, i, v, j) ↔

(R′(w, i, v) ∧ R′(v, j, w) ∧ w 6= v → ¬R′(w, j, v)
∧ ∀w′,v′:W .(w, v) 6= (w′, v′) ∧ (w, v) 6= (v′, w′)→

R′(w′, i, v′)↔ R′(w′, j, v′)))

LetM be a SL model such that (M)′ |= S′(w, i, v, j)[w := w, i := i, v :=
v, j := j] for arbitrary w, v in W and i, j in I. By definition of I ′(S′), we
have that (w, v) ∈ i and j = i∗vw.
• We have (w, v) ∈ i (definition of I ′(R′)), hence (M)′ |= R′(w, i, v).
• We have (v,w) ∈ i∗vw, that is (v,w) ∈ j, i.e., (M)′ |= R′(v, j, w).
• Suppose (M)′ |= w 6=v, that is, w6=v. Then by definition of the ∗

operation, (w, v) 6∈ i∗vw, i.e., (w, v) 6∈ j, i.e., (M)′ |= ¬R′(w, j, v).
• We have (M)′ |= (w, v) 6=(w′, v′) ∧ (w, v)6=(v′, w′) for some w′, v′ ∈
W if, and only if (w, v) 6=(w’, v’) and (w, v) 6=(v’,w’), which gives
(w’, v’) ∈ i if, and only if, (w’, v’) ∈ i∗vw (by definition of the
∗ operation). This is equivalent to (w’, v’) ∈ j, therefore (M)′ |=
R′(w′, i, v′)↔R′(w′, j, v′).

Hence (M)′ |= Cond1 ∧ Cond2.
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(2) Now let us prove the following property by structural induction:

〈W,S, V 〉, w |= ϕ iff (M)′ |= ST (ϕ, x, i)[x := w, i := S].

When examining the following inductive cases, we will prove the left-to-right
implication only. The right-to-left implication can be proved following the
steps in the converse direction.

ϕ = p: trivial by definition of ( )′.
ϕ = ¬ψ and ϕ = ψ1 ∧ ψ2: trivial.
ϕ = ♦ψ: Suppose 〈W,S, V 〉, w |= ♦ψ. We have:

• ∃v ∈W s.t. S(w, v) and 〈W,S, V 〉, v |= ψ, by definition of |= ⊗1

• (w, S, v) ∈ I ′(R′), from ⊗1 by definition of I ′(R′)
• 〈{W ′, I ′}, I ′〉 |= R′(x, i, y)[x := w, y := v, i := S], by definition of

( )′

• 〈{W ′, I ′}, I ′〉 |= ST (ψ, y, i)[y := v, i := S], from ⊗1 by I.H.
• 〈{W ′, I ′}, I ′〉 |= ∃y:W .R′(x, i, y) ∧ ST (ψ, y, i)[x := w, i := S],
• (M)′ |= ST (♦ψ, x, i)[x := w, i := S], by definition of ST .

ϕ =
�
♦ψ: Suppose 〈W,S, V 〉, w |=�

♦ψ. We have:

• ∃v ∈W s.t. S(w, v) and 〈W,S∗vw, V 〉, v |= ψ, by definition of |= ⊗2

• (w, S, v, S∗vw) ∈ I ′(S′), by ⊗2 and definition of I ′
• 〈{W ′, I ′}, I ′〉 |= S′(x, i, y, j)[x := w, i := S, y := v, j := S∗vw]
• 〈{W ′, I ′}, I ′〉 |= ST (ψ, y, j)[y := v, j := S∗vw], from ⊗2 by I.H.
• 〈{W ′, I ′}, I ′〉 |= S′(x, i, y, j) ∧ ST (ψ, y, j)[x := w, i := S, y := v, j :=
S∗vw]

• 〈{W ′, I ′}, I ′〉 |= ∃y:W,j:I .S
′(x, i, y, j) ∧ ST (ψ, y, j)[x := w, i := S]

• (M)′ |= ST (
�
♦ψ, x, i)[x := w, i := S], by definition of ST .

By (1) and (2) for S = ∅ Property ⊗ follows, completing the proof. ut

Now, we prove that if a first-order model satisfies the translation of an SL
formula, then there exists an SL model that satisfies the original formula. To do
so, let us introduce a translation from models of 2FOL to models of SL.

Definition 8. Let M = 〈{D, I}, I〉 be a 2FOL model and let S ∈ I, define
(M, S)′ = 〈W,R, V 〉 where

– W = D
– V (p) = I(Pp)
– R = {(w, v) ∈W 2 | (w, S, v) ∈ I(R′)}.

The translation ( )′ selects one part of the static model and turns it into an
SL model. As we will now see, the selected part is the model variant where the
formula is to be evaluated.

Theorem 4. Let ϕ an SL formula. If ST ′(ϕ, x, i) is satisfiable, then ϕ is also
satisfiable.
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Proof. We will prove the following. LetM = 〈{D, I}, I〉 be a 2FOL model, and
S ∈ I. Then

M |= ST ′(ϕ, x, i)[x := w; i := S] iff (M, S)′, w |= ϕ.

Trivially,M |= Cond1 ∧Cond2. It remains to be proved by structural induc-
tion on the formula ϕ that:

M |= ST (ϕ, x, i)[x := w; i := S] iff (M, S)′, w |= ϕ.

In the proof below we only describe the left-to-right implication. The right-
to-left implication can be proved following the steps in the converse direction.

ϕ = p: trivial by definition of ( )′.
ϕ = ¬ψ, ψ1 ∧ ψ2: trivial.
ϕ = ♦ψ: Suppose M |= ST (♦ψ, x, i)[x := w; i := S]. We have:

– M |= ∃y:W .R′(x, i, y) ∧ ST (ψ, y, i)[x := w; i := S]
– M |= R′(x, i, y)∧ST (ψ, y, i)[x := w; i := S; y := v], for some new v, by

definition of |= ⊗
– (w, S, v) ∈ I(R′), by definition of I
– (w, v) ∈ R, by definition of ( )′

– (M, S)′, v |= ψ, by I.H. on ⊗
– (M, S)′, w |= ♦ψ, from the last two items by definition of |=

ϕ =
�
♦ψ: Suppose M |= ST (

�
♦ψ, x, i)[x := w; i := S]. We have:

– M |= ∃y:W,j:I .S
′(x, i, y, j) ∧ ST (ψ, y, j)[x := w; i := S]

– M |= S′(x, i, y, j) ∧ ST (ψ, y, j)[x := w; i := S; y := v; j := U ], for some
new v and U , by definition of |=

– M |= R′(x, i, y)[x := w; i := S; y := v], by Cond1 (right-to-left)
– (w, S, v) ∈ I(R′), by definition of |=
– (w, v) ∈ R, by definition of ( )′ ⊗1

– (M, U)′, v |= ψ, by I.H. ⊗2

Now let us prove that (M, U)′ = (M, S)′
∗
vw:

– Let (M, U)′ = 〈W1, R1, V1〉, (M, S)′
∗
vw = 〈W2, R2, V2〉∗vw = 〈W2, R

∗
2vw, V2〉

– Trivially W1 = W2 and V1 = V2.
– Now, we have M |= S′(x, i, y, j)[x:=w; i:= S; y:= v; j:=U ].

By Cond2, this is equivalent to:
M |= R′(w, i, v) ∧R′(v, j, w) ∧ (w 6= v → ¬R′(w, j, v))
∧∀w′,v′:W . ((w, v)6=(w′, v′)∧(w, v)6=(v′, w′) → R′(w′, i, v′)↔R′(w′, j, v′))
Now by definition of ( )′, the above two facts give us R1 = R∗2vw.

We continue the proof knowing that (M, U)′ = (M, S)′
∗
vw:

– ∃v ∈W s.t. (w, v) ∈ R and (M, S)′
∗
vw, v |= ψ, from ⊗1 and ⊗2

– (M, S)′, w |=�
♦ψ, by definition of |=. ut

The last two theorems provide the desired result:

Corollary 1. Let ϕ an SL formula. ϕ is satisfiable if, and only if, ST ′(ϕ, x, i)
is satisfiable.



Swap Logic 13

Sorts are a convenient, but non-essential, extension of first-order logic. It is
indeed possible to translate many-sorted FOL to unsorted FOL following [10].
Hence SL is a fragment of unsorted first-order logic.

This translation is not equivalence preserving, since it does not preserve
truth of SL formulas in the same models. However, using the construction of
Definition 8, it is possible to select a part of a the 2FOL model that satisfies the
translation of a SL formula, to turn it into a SL model for the initial formula.
This means we are able to build models for satisfiable formulas of SL, granted
we can build models for 2FOL formulas.

4 Swap Logic as a Fragment of Hybrid Logic

Despite its dynamic behavior, SL remains a modal language: it retains a local
perspective on models. It would be interesting to see if SL is a fragment of
some known, probably very expressive, modal logic. It turns out that SL can be
translated, maintaining truth on the same models, to the hybrid logic H(:, ↓).

Let us introduce formally the hybrid logic H(:, ↓) [7,5]. The syntax and se-
mantics of this language are an extension of the basic modal logic BML. Hybrid
logics involve a special set of propositional symbols called nominals, that act as
names pointing to a unique state in the model.

H(:, ↓) introduces the operators : and ↓. : is called the satisfaction operator
and the formula n:ϕ states that ϕ is true at the unique state where n holds. The
down-arrow binder ↓ binds a given nominal to the current state in the model.
Hence, ↓n.ϕ intuitively means “after naming the current state n, ϕ holds”.H(:, ↓)
is more expressive than BML. In fact, it is a reduction class of first order logic [5].

Definition 9. Let the signature 〈PROP,NOM〉 be given, with NOM ⊆ PROP.
The set FORM of formulas of H(:, ↓) over 〈PROP,NOM〉 is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | ♦ϕ | n:ϕ | ↓n.ϕ,

where p ∈ PROP, n ∈ NOM and ϕ,ψ ∈ FORM.

Syntactically, nominals can appear at the same places as regular propositional
symbols, but they can also appear as parameters of the operators : and ↓. Models
of hybrid logics are similar to models of BML. However they need to make each
nominal point to exactly one state. This can be done associating to each hybrid
model an assignment function for nominals.

Definition 10. A hybrid modelM is a triple 〈W,R, V 〉 where W is non empty,
R ⊆W ×W and V : PROP→ P(W ) is a valuation. An assignment g for M is
an mapping g : NOM → W . Let M be a hybrid model, w a state in M, and g
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an assignment, the semantics is defined as:

M, w |= p[g] iff w ∈ V (p), for p ∈ PROP \ NOM
M, w |= n[g] iff w = g(n), for n ∈ NOM
M, w |= ¬ϕ[g] iff M, w 6|= ϕ[g]

M, w |= ϕ ∧ ψ[g] iff M, w |= ϕ[g] and M, w |= ψ[g]
M, w |= ♦ϕ[g] iff for some v ∈W s.t. (w, v) ∈ R,M, v |= ϕ[g]
M, w |= n:ϕ[g] iff M, g(n) |= ϕ[g]
M, w |= ↓n.ϕ[g] iffM, w |= ϕ[gnw].

ϕ is satisfiable if for some pointed model M, w and some assignment g we
have M, w |= ϕ[g].

Now let us consider an equivalence preserving translation from SL to H(:, ↓).
SL is a logic that is able to modify the relation of a model. On the other hand,
H(:, ↓) can only update the assignment. Hence, to represent the model variant
where some part of an SL formula is evaluated, we will take advantage of the
binder ↓ to name the pair of points of the model where an edge should be

considered as swapped. To ensure that formulas of the shape ♦ϕ and
�
♦ϕ are

satisfied in the correct model variant, the translation records the set of swapped
edges as pairs of nominals in the set N . The translation also uses C and D
subsets of N , such that the current state of evaluation is the source of all edges
in C, and is the destination of all edges in D.

We now introduce the formal, quite involved, definition of the translation.
Afterwards we will explain in detail how the different parts work together.

Definition 11. Let N ⊆ NOM× NOM. For C,D ⊆ N , define:

locate(C,D,N) =
∧

xy∈C
x ∧

∧
xy∈N\C

¬x ∧
∧

xy∈D
y ∧

∧
xy∈N\D

¬y

forbid(C,D) =
∧

xy∈D
¬x ∧

∧
xy∈C

¬y

pass(C,N,ϕ) =
∨

xy∈C
y:(ϕ)′N

swap(C,N,ϕ) =
∨

xy∈C
y:(ϕ)′N\xy∪yx.

Define ( )′N from formulas of SL to formulas of H(:, ↓) as

(p)′N = p
(¬ϕ)′N = ¬(ϕ)′N

(ψ ∧ ϕ)′N = (ψ)′N ∧ (ϕ)′N

(♦ϕ)′N =
∧

C,D⊆N
locate(C,D,N)→ [ ♦(forbid(C,D) ∧ (ϕ)′N ) ∨ pass(C,N,ϕ) ]

(
�
♦ϕ)′N = ↓x′. ♦ (x′ ∧ (ϕ)′N )

∨
∧

C,D⊆N
locate(C,D,N)

→ [↓x′.♦↓y′.(¬x′ ∧ forbid(C,D) ∧ (ϕ)′N∪y′x′) ∨ swap(C,N,ϕ) ]

where x′ and y′ are nominals that do not appear in N .
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We include new edges in N only when we simulate a swap, that is, in the

translation of formulas
�
♦. We ensure this set never refers twice to the same

edge, and it does not contain symmetric or reflexive edges. More specifically,

the translation prevents ♦ and
�
♦ formulas to be satisfied by “building again”

an edge that has already been swapped. This is why we use locate and forbid

simultaneously. On the other hand, it enables ♦ and
�
♦ formulas to be satisfied by

traversing a swapped edge, granted it is in the adequate direction in the current
model variant. This is what pass and swap do. Furthermore swap ensures that
N remains antisymmetric. Initially, N is empty, as we are in the model variant
with no swapped edges. In that case, the translation is simplified to:

(♦ϕ)′∅ = ♦(ϕ)′∅
(
�
♦ϕ)′∅ = ↓x′.♦(x′ ∧ (ϕ)′∅) ∨ ↓x′.♦↓y′.(¬x′ ∧ (ϕ)′y′x′)

In (
�
♦ϕ)′∅ we see two occurences of (ϕ)′N (for some N). Hence the translation

may produce formulas of size exponential in terms of the size of the initial

formula, for instance, (
�
♦
�
♦ . . .

�
♦p)′∅.

Now we show that the translation maintains equivalence. To do so, we show
by inductive argument that the set N really corresponds to swapped edges. Ob-
serve that there are no free nominals in the formulas produced by the translation.
This means that such formulas are satisfiable in models where the assignment
for the nominals of the language does not matter.

Theorem 5. Given ϕ a formula of SL,M, w a pointed model and g an arbitrary
assignment. Then:

M, w |= ϕ iff M, w |= (ϕ)′∅[g].

Proof. Let M, w a pointed model. Let us show by induction that for all N ⊆
NOM× NOM, for all S ⊆W ×W , and for all g : NOM→W such that:

(Props)

• N,S are irreflexive and antisymmetric.
• If xy ∈ N then g(x)g(y) ∈ S.
• If wv ∈ S, then there exists x, y ∈ N such that g(x)g(y) = wv.
• If xy, x′y′ ∈ N, then g(x)g(y) 6= g(x′)g(y′).

then:
M∗S , w |= ϕ iff M, w |= (ϕ)′N [g].

WhereM∗S is the generalization ofM∗vw of Definition 2 to sets of pairs.M∗S
is uniquely defined since we assume S to be irreflexive and asymmetric.
First, observe that the following can be easily verified:

(1) N ,S and g comply with (Props) if, and only if, N ∪ y′x′ (for x′y′, y′x′ /∈ N),
S ∪ vw (for wv, vw /∈ S) and (gx

′

w )y
′

v comply with (Props).
(2) N ∪ xy, S ∪ wv and g comply with (Props) if, and only if, N ∪ yx, S ∪ vw

and g comply with (Props).

Now let us examine the two non-trivial inductive cases:
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ϕ = ♦ψ: we have the following successive equivalences:
– M∗S , w |= ♦ψ
– exists v ∈W such that wv ∈ R∗S and M∗S , v |= ψ
– exists v ∈W such that either wv ∈ R \ S and M∗S , v |= ψ,

or wv ∈ S and M∗S , v |= ψ
– exists v ∈W such that either wv ∈ R \ S and M, v |= (ψ)′N [g],

or wv ∈ S and M, v |= (ψ)′N [g] (by IH)
– either M, w |=

∧
C,D⊆N

locate(C,D,N)→ ♦(forbid(C,D) ∧ (ϕ)′N )[g]

or M, w |=
∧

C,D⊆N
locate(C,D,N)→ pass(C,N,ϕ)[g]

– M, w |= (♦ϕ)′N [g].

ϕ =
�
♦ψ: we have the following successive equivalences:
– M∗S , w |=

�
♦ψ

– exists v ∈W s.t. wv ∈ R∗S and (M∗S)∗vw, v |= ψ
– either: ww ∈ R∗S and M∗S , w |= ψ

or: exists v 6=w s.t. wv∈(R\S) and (M∗S)∗vw, v |= ψ, i.e., M∗S∪vw, v |= ψ
or: exists v 6=w s.t. wv ∈ S and (M∗S)∗vw, v |= ψ, i.e., M∗S\wv∪vw, v |= ψ

– either: ww ∈ R∗S and M, w |= (ψ)′N [g] (IH)

or: exists v 6=w s.t. wv∈(R\S) and M, v|=(ψ)′N∪y′x′ [(g
x′

w )y
′

v ] (IH, (1))
or: exists v 6=w s.t. wv ∈ S and M, v |= (ψ)′N\xy∪yx[g] (IH, (2))

– either: M, w |= ↓x′.♦(x′ ∧ (ϕ)′N )[g]
or: M, w |=

∧
C,D⊆N

locate(C,D,N)→ ↓x′.♦↓y′.(¬x′ ∧ forbid(C,D) ∧ (ϕ)′
N∪y′x′ )[g]

or: M, w |=
∧

C,D⊆N
locate(C,D,N)→ swap(C,N,ϕ)[g]

– M, w |= (
�
♦ϕ)′N [g].

We proved that for all N , S, g such that Props hold, we haveM∗S , w |= ϕ if, and
only if, M, w |= (ϕ)′N [g]. It suffices to take the particular case where N , S and
g are empty, to obtain the result we wanted. ut

This translation is anything but economic: it may produce formulas of size
exponential in function of the input formula. Its advantage with respect to the
translation to 2FOL of Section 3, is that it is equivalence preserving. That is,
it works on the same models as SL. This has at least two nice consequences.
First, to build a model for a SL formula, it is enough to build a model for the
translation. Second, equivalence preserving intuitively means that hybrid logic
is at least as expressive as swap logic (but, possibly, not as concise). Does the
inverse hold? To answer this question, we will need a notion of bisimulation for
SL, as we will see in the next section.

5 Bisimulation and Expressive Power

In most modal logics, bisimulations are binary relations linking elements of the
domains that have the same atomic information, and preserving the relational
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structure of the model. This will not suffice for SL where we also need to capture

the dynamic behaviour of the
�
♦ operator. The proper notion of SL-bisimulations

links states together with the current accessibility relation.

Definition 12 (SL-Bisimulations). Let M = 〈W,R, V 〉, M′ = 〈W ′, R′, V ′〉
be two models. A non empty relation Z ⊆ (W ×P(W 2))× (W ′ ×P(W ′2)) is an
SL-bisimulation if it satisfies the following conditions. If (w, S)Z(w′, S′) then

(Atomic Harmony) for all p ∈ PROP, M, w |= p iff M′, w′ |= p;
(Zig) if wSv then for some v′, w′S′v′ and (v, S)Z(v′, S′);
(Zag) if w′S′v′ then for some v, wSv and (v, S)Z(v′, S′);
(S-Zig) if wSv then for some v′, w′S′v′ and (v, S∗vw)Z(v′S′∗v′w′);
(S-Zag) if w′S′v′ then for some v, wsv and (v, S∗vw)Z(v′S′∗v′w′).

Given two pointed modelsM, w andM′, w′ we say that they are SL-bisimilar
and we write M, w -SL M′, w′ if there is an SL-bisimulation Z such that
(w,R)Z(w,R′) where R and R′ are respectively the relations of M and M′.

Theorem 6. Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be two models, w ∈
W , w′ ∈ W ′, and let S ⊆ W 2, S′ ⊆ W ′2. If there is an SL-bisimulation Z
between M, w and M′, w′ such that (w, S)Z(w′, S′) then for any formula ϕ ∈
SL, 〈W,S, V 〉, w |= ϕ iff 〈W ′, S′, V ′〉, w′ |= ϕ.

Proof. The proof is by structural induction on SL formulas. The base case holds
by Atomic Harmony, and the ∧ and ¬ cases are trivial.

ϕ = ♦ψ: Suppose 〈W,S, V 〉, w |= ♦ψ. Then there is v in W s.t. wSv and
〈W,S, V 〉, v |= ψ. By Zig we have v′ inW ′ such that w′S′v′ and (v, S)Z(v′, S′).
By I.H., 〈W ′, S′, V ′〉′, v′ |= ψ and by definition 〈W ′, S′, V ′〉, w′ |= ♦ψ. For
the other direction use Zag.

ϕ =
�
♦ψ: For the left to the right direction suppose 〈W,S, V 〉, w |= �

♦ψ. Then
there is v in W such that wSv and 〈W,S∗vw, V 〉, v |= ψ. By S-Zig we have
v′ in W ′ s.t. w′S′v′ and (v, S∗vw)Z(v′, S′∗v′w′). By I.H., 〈W ′, S′∗v′w′ , V ′〉, v′ |= ψ

and by definition 〈W ′, S′, V ′〉, w′ |=�
♦ψ. For the other direction use S-Zag.ut

Example 4. The following two models are SL-bisimilar.

w w′ v′

M = 〈W,R, V 〉 M′ = 〈W ′, R′, V ′〉

Fig. 2. Two SL-bisimilar models.

The SL-bisimulation between M, w and M, w′ is the set of pairs:

(1) {(w,R), (w′, R′),
(2) (w,R), (v′, R′),
(3) (w,R), (v′, R′∗v′w′),
(4) (w,R), (w′, R′∗v′w′)}
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(1) represents the starting models M, w and M, w′. (2) is needed to satisfy
the Zag condition on (1), (3) is needed to satisfy S-Zag on (1), and (4) is needed
to satisfy Zag on (3). Note that the first element of all pairs never changes, given
that swapping a reflexive edge has no effect.

Example 5. There is no SL-bisimulation between the models of Figure 3.

w w′

M M′

Fig. 3. Two non SL-bisimilar models.

Indeed, the formula
�
♦♦�⊥ is satisfiable in M′, w′ and not in M, w. Notice

that the models are BML-bisimilar.

We are now ready to investigate the expressive power of SL.

Definition 13. We say that L′ is at least as expressive as L (notation L ≤ L′)
if there is a function Tr between formulas of L and L′ such that for every model
M and every formula ϕ of L we have that

M |=L ϕ iff M |=L′ Tr(ϕ).

M is seen as a model of L on the left and as a model of L′ on the right, and we
use in each case the appropriate semantic relation |=L or |=L′ as required.

We say that L′ is strictly more expressive than L (notation L < L′) if L ≤ L′
but not L′ ≤ L.

Our first result is fairly straightforward as it builds upon Example 5: BML
is strictly less expressive than SL.

Theorem 7. BML < SL.

Proof. We have to provide a translation from BML formulas to SL. This is
trivial as BML is a fragment of SL. To prove SL � BML we show two models
that are bisimilar in BML and a SL formula that distinguishes them. Consider

the models of Figure 3. They are bisimilar for BML but the SL formula
�
♦♦�⊥

distinguishes them. ut

The second result is a comparison between SL and H(:, ↓):

Theorem 8. SL < H(:, ↓).

Proof. The translation ( )′∅ of Definition 11 is equivalence-preserving from SL
to H(:, ↓). The models in Example 4 (Figure 2) are SL-bisimilar. The H(:, ↓)
formula ↓x.♦¬x distinguishes them, being true in M′, w′ and false in M, w. ut
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Let us now compare SL with a family of dynamic modal logics called memory
logics. Memory logics [1,14] are modal logics with the ability to store the cu-
rrent state of evaluation into a set, and to consult whether the current state of
evaluation belongs to this set.

Definition 14 (Syntax of memory logics). Given a set PROP, the set FORM
of formulas of ML( r©, k©) over PROP is defined as:

FORM ::= ⊥ | p | k© | ¬ϕ | ϕ ∧ ψ | ♦ϕ | r©ϕ,

where p ∈ PROP and ϕ,ψ ∈ FORM.
Given a set PROP, the set FORM of formulas of ML(〈〈r〉〉, k©) over PROP is

defined as:

FORM ::= ⊥ | p | k© | ¬ϕ | ϕ ∧ ψ | 〈〈r〉〉ϕ,

where p ∈ PROP and ϕ,ψ ∈ FORM.

Definition 15 (Semantics of memory logics). A model M = 〈W,R, V, S〉
is an extension of an SL model with a memory S ⊆W . Let w be a state in M,
we inductively define the notion of satisfiability of a formula as:

〈W,R, V, S〉, w |= k© iff w ∈ S
〈W,R, V, S〉, w |= r©ϕ iff 〈W,R, V, S ∪ {w}〉, w |= ϕ
〈W,R, V, S〉, w |= 〈〈r〉〉ϕ iff 〈W,R, V, S〉, w |= r©♦ϕ.

A formula ϕ of ML( r©, k©) or ML(〈〈r〉〉, k©) is satisfiable if there exists a
model 〈W,R, V, ∅〉 such that 〈W,R, V, ∅〉, w |= ϕ.

In the definition of satisfaction, the empty initial memory ensures that no
point of the model satisfies the unary predicate k© unless a formula r©ϕ or
〈〈r〉〉ϕ has previously been evaluated there. The memory logic ML(〈〈r〉〉, k©)
does not have the ♦ operator, and its expressive power is strictly weaker than
ML( r©, k©) [3,14]. We now show that the expressive power of SL is uncompa-
rable with both ML( r©, k©) and ML(〈〈r〉〉, k©).

Theorem 9. SL 6≥ ML(〈〈r〉〉, k©).

Proof. As we showed before, no SL formula can distinguish models of Figure 2,
but the formula 〈〈r〉〉¬ k© does (being satisfiable in M′, w′ but not in M, w). ut

Theorem 10. ML( r©, k©) 6≥ SL.

Proof. Models on Figure 4 are bisimilar inML( r©, k©). Indeed they are bisimilar
for the basic modal logic and acyclic, henceML( r©, k©) cannot see again points
of the model stored using r©, which means k© is always false after taking an

accessibility relation. The formula
�
♦♦♦> is true in M, w but not in M′, w′. ut
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w w′

M M′

Fig. 4. Two ML( r©, k©)-bisimilar models.

From Theorems 9 and 10 we can conclude that the expressive powers of
ML( r©, k©) and SL are uncomparable. The same holds for ML(〈〈r〉〉, k©) and
SL. Figure 5 sums up the results of this section (arrows that are not results of
this paper, have been extracted from [3]).

BML

ML(〈〈r〉〉, k©) ML( r©, k©)

H(:, ↓)

SL

<

<

<

< <

6≤
6≤ 6≤

6≤

Fig. 5. Comparison of expressive power.

In [2] other operators than can modify the accessibility relation of a model
have been investigated beside SL: in addition to the classic sabotage operator,
we introduced a local version of sabotage logic in which the operator deletes
edges as it traverses them to reach accessible states, and a “bridge” operator
that can move to an unreachable state in the model while making it a successor
of the current state of evaluation. Appropriate notions of bisimulation for these
logics have been introduced, together with a proof that their expressive powers
are all uncomparable.

6 Complexity of Model Checking and Satisfiability

In this section we examine the computational behaviour of SL with regards
to two common tasks: model checking and satisfiability. At this point of our
investigation, we have an idea of what we can expect. Indeed, we know that
these tasks have to be as easy as for the basic modal logic, and as hard as
for first-order logic. Model checking of first-order is PSpace-complete [9,18,21],
while for the basic modal logic is in P [11]. Here we provide a proof that model
checking a formula of SL is PSpace-complete.
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Theorem 11. Given an arbitrary finite model M and ϕ a formula in SL, de-
ciding whether ϕ is satisfied by some state of M is PSpace-complete.

Proof. A Quantified Boolean Formula (QBF) [15] is a Boolean formula with
universal or existential quantification on its variables, e.g. ∀x1.∃x2.((x1 ∨ x2) ∧
(x1 ∨ ∃x3.¬x3)). Truth of a QBF under some assignment v is defined as for
propositional logic except for the following cases: a formula of the form ∀x.ϕ is
true under a valuation v iff ϕ is true according to the valuation v[x := 0] and it
is true according to v[x := 1]; ∃x.ϕ is true under v iff it is true under v[x := 0]
or it is true under v[x := 1]. For instance, ∀x1.∃x2.(x1 ∨ x2) is true under any
valuation, while ∀x1.∀x2.(x1 ∨ x2) is false under any valuation. In such cases we
simply say that these formulas are respectively true and false.

Determining whether a QBF is true is a PSpace-hard problem. We will reduce
this problem to the model checking problem of SL. Let α be a QBF with variables
{x1, . . . , xk}. Without loss of generality, we assume that all its variables are
quantified, and that they are quantified only once. One can build in polynomial
time the relational structureMk = 〈W,R, V 〉 over a signature with one relational
symbol and propositions {p>, p1, . . . , pk}, where:

W = {w} ∪ {w1
i , w

0
i | 1 ≤ i ≤ k}

V (pi) = {w1
i , w

0
i }

V (p>) = {w1
i | 1 ≤ i ≤ k}

R = {(w,w1
i ), (w,w0

i ) | 1 ≤ i ≤ k}.

For instance, M3 is as follows:

p1

p>

p1 p2

p>

p2 p3

p>

p3

Let ( )′ be the following linear translation from QBF to SL

(∃xi.α)′ =
�
♦(pi ∧ ♦(α)′)

(xi)
′ = ¬♦(pi ∧ p>)

(¬α)′ = ¬(α)′

(α ∧ β) = (α)′ ∧ (β)′.

The evaluation of the SL formula in the model simulates the assignments of
Boolean variables of the QBF α by swapping around edges between w and its
successors. A variable xi is assigned to 1 if w1

i is no longer accessible from w,
and it is assigned to 0 otherwise.

It remains to prove that α is true iff Mk, w |= (α)′. For a model M with
relation R we define vR : {x1, . . . , xk} → {0, 1} as “vR(xi) = 1 iff (w,w1

i ) 6∈ R”,
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in the present case, iff the edge between w and w1
i has been swapped. We write

v |=qbf β if valuation v : {x1, . . . , xk} → {0, 1} satisfies the QBF β.
Let β be any subformula of α. We will show by induction on β thatM, w |=

(β)′ iff vR |=qbf β. The first observation is that R satisfies i) if xi is free in β,
then (w,w1

i ) 6∈ R or (w,w0
i ) 6∈ R but not both, and ii) if xi is not free in β then

(w,w1
i ) ∈ R and (w,w0

i ) ∈ R. From here it will follow that Mk, w |= (α)′ iff
v |=qbf α for any v since α has no free variables, iff α is true.

For the base case, vR |=qbf xi iff (w,w1
i ) 6∈ R which implies (from the de-

finition of Mk) M, w |= (xi)
′. For the other direction, suppose M, w 6|= (xi)

′.
Hence M, w |= ♦(pi ∧ p>) which implies (w,w1

i ) ∈ R and uR 6|=qbf xi.
The Boolean cases follow directly from the inductive hypothesis.
Consider the case β = ∃xi.γ. Since no variable is bound twice in α we know

(w,w1
xi

) ∈ R and (w,w0
i ) ∈ R. We have vR |=qbf β iff (vR[xi := 0] |=qbf γ or

vR[xi := 1] |=qbf γ) iff (vR∗
w0

i
w
|=qbf γ or vR∗

w1
i
w
|=qbf γ). By inductive hypothesis,

this is the case iff (M∗
w0

iw
, w0

i |= ♦(γ)′ or M∗
w1

iw
, w1

i |= ♦(γ)′) iff M, w |=
�
♦(pi ∧ ♦(γ)′) iff M, w |= (∃xi.γ)′.

This shows that the model checking problem of SL is PSpace-hard. To prove
that it is in PSpace, reason as follows. The evaluation of the truth of a formula in
a model can be done by a polynomial space algorithm that follows Definition 3.

The algorithm works on the same copy of the model, except when dealing

with formulas of the form
�
♦ϕ that allocate twice as much space as the size of

the initial model to store the modified copy. This memory can be reclaimed once
the result of the recursive call is known. The maximum number of copies of the

input model in memory is bounded by the nesting of swapping operators
�
♦ and

�
� of the input formula. By proceeding depth-first, the algorithm runs using only
polynomial space in the size of the model. ut

For a modal language with just one, syntactically simple, extra operator, SL
has a surprinsingly hard model checking problem. Why is it that adding the

�
♦

operator makes the difficulty of this task jump to the same as first-order logic?
We saw that this is happening because the language can now store information in
the model (by swapping edges) and then check again if some piece of information
is present or not (just using the usual modal operators). This is different from
model checking for the basic modal logic, where the model against which one
checks some formula remains static during all the evaluation.

We now turn to the satisfiability problem. Again, our expectations lie between
PSpace-completeness for the basic modal logic, and undecidability as it is the
case for first-order logic, the hybrid logic H(:, ↓) [5] and most memory logics [3].
We are indeed going to see that we can reduce the satisfiability problem of
ML( r©, k©) to the one of SL, hence showing its undecidability.

We need to simulate the behaviour of ML( r©, k©), i.e., the ability to memo-
rize and check states, without having an external memory. What we have instead
is the ability to swap edges in the model. We will build models that contain
switches, special edges whose position – “off” by default, and “on” if the direc-
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tion of the edge has been swapped around – will represent whether a point of
the model has been remembered with the r© operator. We will simulate the k©
predicate by querying the position of these switches.

Let us introduce the translation from ML( r©, k©) to SL:

Definition 16. Let ϕ be a formula of ML( r©, k©) that does not contain the
propositional symbols s and sw. Let Tr(ϕ) be the following formula:

(1) s ∧�(4)¬s
(2) ∧ ¬sw ∧ �¬sw ∧ �( ♦(sw ∧�⊥) ∧ �

�(sw → �¬♦sw) )

(3) ∧ �
�
�
�����(sw → �⊥)

(4) ∧ �
♦
�
�( ¬s ∧ ¬sw → ( r©♦♦(s ∧ ♦ k©))′ )

(5) ∧ ♦(ϕ)′.

With ( )′ defined as:

( r©ψ)′ = ( ♦sw → �
♦(sw ∧ ♦(ψ)′) ) ∧ ( ¬♦sw → (ψ)′ )

k©′ = ¬♦sw
(ψ ⊗ χ)′ = (ψ)′ ⊗ (χ)′ for ⊗ ∈ {∨,∧}
(⊗ψ)′ = ⊗(ψ)′ for ⊗ ∈ {♦,�,�♦,��,¬}.

In Tr(ϕ), the propositional symbol s is used to refer to the evaluation point,
that will also be a spy point, i.e., a point that has direct access to all the points
in the connected component. sw represents “switch points”, they will be used
to encode memory operators.

The formula (1) ensures that the propositional symbol s is true at the eval-
uation point and false at any accessible point between 1 and 4 steps from there.
(2) initialises the switches, represented by edges to states where sw is true.

(3) ensures that switch points can be reached from the evaluation point by a
unique path. Indeed, if this were not the case, then it would be possible to swap
around two edges leading to some switch point, then come back to the evaluation
point in two steps by this new path, and come back to the same switch in two
steps, where the formula (sw ∧ ¬�⊥) would hold.

(4) ensures that the evaluation point is linked to every point of the model
except itself and the switch points. Note that although ( k©)′ is true at the eva-
luation point, the latter is irreflexive by (1), hence (s ∧ ♦ k©)′ ensures an edge
goes from the evaluation point to the point where r© occurred.

(5) places the translation of the memory logic formula right after the evalu-
ation point.

By the definition of ( r©ψ)′, the action of remembering a point in a model of
ϕ is done in the corresponding model of Tr(ϕ) by swapping the edge between the
corresponding point and its switch point. In the case where the point has already
been memorized, i.e., ( k©)′ = ¬♦sw holds, then nothing needs to be swapped.

It is important that switch points do not have successors and that they have
exactly one predecessor. This ensures that the path taken by ( r©ψ)′ correctly
comes back to the same point of the model.

A model of Tr(ϕ) for some ϕ is illustrated below:
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ϕ . . .

s

sw sw

sw

In this picture, the thick points and lines represent the model of the initial
memory logic formula that can be extracted from the whole model. For instance,
a model of the formula Tr( r©♦ k©) can be:

ϕ

s

sw

Theorem 12. Let ϕ be a formula of ML( r©, k©) that does not contain the
propositional symbols s and sw. Then, ϕ and Tr(ϕ) are equisatisfiable.

Proof. Suppose that ϕ is satisfiable, i.e., there exists a model M = 〈W,R, V, ∅〉
and w ∈W such that 〈W,R, V, ∅〉, w |= ϕ.

Let sw be a bijective function between W and a set S such that S ∩W = ∅,
and eval a point that is not a member of S ∪W . Then we can define the model
M′ = 〈W ′, R′, V ′〉 as follows:

W ′ = W ∪ {eval} ∪ S
R′ = R′ ∪ {(eval, w) | w ∈W} ∪ {(w, sw(w)) | w ∈W}
V ′(p) = V (p) for p ∈ PROP appearing in ϕ
V ′(s) = {eval}
V ′(sw) = {sw(w) | w ∈W}.

Following the description of Tr(ϕ) given in this section, we can verify that
M′, eval |= Tr(ϕ).

For the other direction, suppose Tr(ϕ) is satisfiable, i.e., there exists a model
M = 〈W,R, V 〉, and w ∈W such that 〈W,R, V 〉, w |= Tr(ϕ). Then we can define
the model M′ = 〈W ′, R′, V ′, ∅〉 where

W ′ = { v | (w, v) ∈ R }
R′ = R ∩ (W ′ ×W ′)
V ′(p) = V (p) ∩W ′ for p ∈ PROP.

We can verify that there exists some w ∈W ′ such that M′, w |= ϕ. ut
We immediately get:

Theorem 13. The satisfiability problem of SL is undecidable.
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7 Conclusions

In this paper we have extended the basic modal language with the
�
♦ operator to

describe dynamic aspects of relational models.
�
♦ is a diamond-like operator that

in addition has the ability to invert pairs of related elements in the domain while
traversing an edge of the accessibility relation. The SL logic obtained by adding

the
�
♦ operator to the basic modal logic is very expressive: it has a PSpace-

complete model checking problem and an undecidable satisfiability problem.
Other dynamic languages that can modify the model have been investigated

in the literature (e.g., sabotage logics [19,12,13], memory logics [14,3,4], hybrid
logics [7,5]), and we have discussed in detail the relation between some of these
languages and SL. In particular, we have introduced an adequate notion of
bisimulation for SL and used it to show that the expressive power of SL lies
strictly in between the expressive powers of the basic modal logic BML and
the hybrid logic H(:, ↓), while it is uncomparable with the expressive powers
of the memory logics ML( r©, k©) and ML(〈〈r〉〉, k©). We also investigated the
expressive power of SL in relation to first-order logic. We have shown that
despite the dynamic behaviour of SL it is indeed possible to capture SL as a
fragment of first-order logic, giving a satisfiability preserving translation to two
sorted first-order logic.

Many theoretical aspects of SL remain to be investigated. For example, it
would be interesting to obtain an axiomatic characterization which is sound and
complete. The task is probably non trivial, as the logic fails to be closed under

uniform substitution (for example, the formula ♦p↔�
♦p is a validity, but if we

substitute the propositional variable p by the formula ♦p we can easily check
that the equivalence is not preserved). A proper axiomatization will require an
adequate definition of when a formula is free to substitute another formula in
an axiom. Another challenge is to exploit the expressive power of these logics
that are able to modify the accessibility relation, to encode Dynamic Epistemic
Logics (DEL). This family of logics includes, for example, Public Announcement
Logic [16,20], in which we can make some announcement that is public for all
the involved agents, deleting all the states where such announcement does not
hold. Another well known DEL is Action Model Logic [20]. In this case, some
semantic objects called action models are introduced as part of modal operators,
and formulas are evaluated in traditional epistemic models. Action models can
be seen as epistemic actions, representing some information change in epistemic
models. It would be interesting to represent these epistemic logics combining
or modifying our model changing operators, for example using them to find a
completely syntactic way to represent actions of the agents without the need to
include semantic objects in modalities.
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12. C. Löding and P. Rohde. Model checking and satisfiability for sabotage modal

logic. In P. Pandya and J. Radhakrishnan, editors, Proceedings of Foundations of
Software Technology and Theoretical Computer Science, 23rd Conference, volume
2914 of Lecture Notes in Computer Science, pages 302–313. Springer, 2003.
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