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Abstract We show that basic hybridization (adding nominals and @ operators)
makes it possible to give straightforward Henkin-style completeness proofs even
when the modal logic being hybridized is higher-order. The key ideas are to add nom-
inals as expressions of type t , and to extend to arbitrary types the way we interpret
@i in propositional and first-order hybrid logic. This means: interpret @iαa , where
αa is an expression of any type a, as an expression of type a that rigidly returns the
value that αa receives at the i-world. The axiomatization and completeness proofs are
generalizations of those found in propositional and first-order hybrid logic, and (as is
usual in hybrid logic) we automatically obtain a wide range of completeness results
for stronger logics and languages. Our approach is deliberately low-tech. We don’t,
for example, make use of Montague’s intensional type s, or Fitting-style intensional
models; we build, as simply as we can, hybrid logic over Henkin’s logic.
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1 Introduction

Hybrid logic is an extension of modal logic in which it is possible to name worlds
using special atomic formulas called nominals. Nominals are true at a unique world
in any model, thus a nominal i names the world it is true at. Once nominals have
been introduced it becomes natural to make a further extension: to add modalities
of the form @i , where i is a nominal, and to interpret formulas of the form @iϕ as
asserting that ϕ is true at the unique world named by i (for surveys of hybrid logic,
see Blackburn [5] and Areces and Ten Cate [3]).

This basic hybridization process (that is, adding nominals and @-operators to
some modal language of interest) typically has interesting consequences, and here we
are concerned with the consequences for completeness. We shall show that hybridiza-
tion permits relatively simple Henkin-style model building techniques to be used,
even when the modal logic being hybridized is higher-order.

Some background remarks. Completeness theory for ordinary (unhybridized)
propositional modal logic revolves around the use of canonical models. A canonical
model is a large (typically uncountable) model consisting of all maximal consis-
tent sets (MCSs) of the logic in question, together with an appropriate accessibility
relation (see Hughes and Cresswell [25] for an introduction and the Handbook of
Modal Logic [10] for advanced material). Contrast this with what has become (since
Henkin’s [22] groundbreaking work) the standard approach in first-order logic: the
method of constants. In such proofs, the model for a consistent set of sentences is built
out of equivalence classes of constants taken from a single MCS and (for countable
languages) the model is countable.

It has long been known that hybridization makes it possible to carry out Henkin-
style model constructions in propositional modal logic (see for example Bull [12],
Gargov and Goranko [18], Blackburn and Tzakova [9], Blackburn and Ten Cate [8]).
The key observation is that models can be built out of equivalence classes of nomi-
nals (much as first-order models are built out of equivalence classes of constants in
Henkin’s construction) and that the @i operators (or stronger operators, such as the
universal modality [20]) make it possible to specify—within a single MCS—which
formulas need to be true at which worlds. More recently, it has become clear that
hybridization also makes Henkin-style completeness proofs possible when first-order
modal logics are hybridized (Braüner and Ghilardi [11] gives a good overview). In
this setting a new idea (introduced in Blackburn and Marx [7]) comes into play: over-
loading the @i operator so that it can take as arguments not merely formulas but
constants too. In this approach, @ic denotes the individual that the constant c denotes
at the world named by i. To put it another way: @ic is a new constant that rigidly
designates what c denotes at the i-world.

The goal of this paper is to investigate whether basic hybridization also leads to
simple Henkin-style completeness proofs in the setting of (classical) higher-order
modal logic (that is, modal logics built over Church’s simple theory of types [14]),
and as we shall show, the answer is “yes”. The crucial idea is to use @i as a rigidifier
for arbitrary types. We shall interpret @iαa , where αa is an expression of any type
a, to be an expression of type a that rigidly returns the value that αa receives at the
i-world. As we shall show, this enables us to construct a description of the required
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model inside a single MCS and hence to prove (generalized) completeness for higher-
order hybrid logic.

Higher-order modal logic is not a large field, but it is a significant one, and over the
years an impressive body of work has explored it in interestingly different directions
(for a useful survey, see Muskens [30]). Currently, higher-order modal logic probably
plays its most significant role in natural language semantics. The pioneer here was
Richard Montague, who developed various higher-order modal logics, system PTQ
being the best known [28]. PTQ made use of three types: t for truth values, e for enti-
ties, and s for world/time pairs. Syntactical novelties included two operators, ∧ (the
intensionalizing operator) and ∨ (the extensionalising operator) both of which made
use of type s (the intensional type, as it is often called). It is a complex system (Bar-
wise and Cooper [4] once likened it to a Rube–Goldberg machine) but its impact was
immense, and rightly so: PTQ opened the door to modern natural language semantics.
But PTQ was far from the last word. In his PhD thesis, Montague’s student Gallin
[17] proposed an alternative, TY2; this is a two-sorted version of Church’s [14] sim-
ple theory of types, the second sort being Montague’s intensional type s.1 The TY2

system (and more generally, the TYn systems it spawned) don’t use modal opera-
tors; instead they allow direct quantification over worlds (as a modal logician would
say: they incorporate the full first-order modal correspondence language). Systems
of this kind have since played a significant role in natural language semantics (see,
for example, Groenendijk and Stokhof [21] and Muskens [29]).

In philosophy, perhaps the best known recent work is due to Fitting [15], who
developed a novel approach to higher-order modal logic and used it to investigate
Gödels ontological argument for the existence of God. Fitting’s approach has been
influential. Syntactically, it uses modal operators, but dispenses with the function-
argument syntax usual in type theory in favor of a predicate-term syntax reminiscent
of first-order logic. But it is his semantic innovation which is likely to be endur-
ing: the use of intensional models, a mechanism which makes it possible to avoid
restrictions to rigid terms.

The most recent work comes from computer science, where Gert Smolka and his
students [26] have recently turned matters on their heads: starting with classical type
theories, they view (propositional) modal and hybrid logics as subsystems defined
within classical type theory, and use this perspective to guide their search for efficient
proof procedures. Previous authors have noted that various kinds of modality can be
defined in various type theories, but the systematic use of higher-order logic as a tool
for defining and exploring propositional modal logic is novel.

In this paper we will not discuss alternative approaches to higher-order modal rea-
soning. Indeed, our goal is to add to this variety by demonstrating the effectiveness
of even basic hybridization in higher-order settings. To this end, we have restricted
the hybrid apparatus to the use of nominals and the @-operators (thus ↓ does not

1In his thesis, Gallin also proved a (generalized) completeness result for PTQ, which seems to be one of
the earliest such results for higher-order modal logic.
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make an appearance). For most of the paper we use a modal system with only a
single � (to minimize notational clutter), though we do treat ¬, ∧, and ∀ as prim-
itives, rather than defining them in terms of λ and =, to make it easier for our
axiomatization to be compared with existing propositional and first-order modal and
hybrid axiomatizations. Our no-frills approach extends to the semantics. We use a
constant domain: at all worlds, quantifiers range over a fixed function space con-
structed over a fixed domain of individuals, and we don’t make use of Fitting-style
intensionality (so rigidity is a key theme in this paper). We also dispense with type s,
working solely with types e and t . In a nutshell: we are simply going to add nominals,
a �, and the @i-operators to Henkin’s [23] original higher-order logic.

We call the result BHTT (Basic Hybrid Type Theory). Its axiomatization has a
clean and comprehensible form: a Henkin-style higher-order axiomatization, and
axioms and rules familiar from the modal and hybrid literature, are woven together
with the aid of three new axiom schemas and a hybrid version of the Barcan formulas.
This gives rise to a basic completeness result strong enough to automatically sup-
port extended completeness results for a wide range of frame classes and multimodal
extensions.

2 Syntax and Semantics of BHTT

In this section we lay the foundations for the work that follows. We introduce the syn-
tax and standard semantics for BHTT, and then motivate and define its generalized
semantics. We then prove two simple results about rigidity.

2.1 Syntax

Definition 1 (Syntax of BHTT)
Types: Let t and e be two fixed, but otherwise arbitrary, objects. The set TYPES

of types of BHTT is defined recursively as follows:

TYPES ::= t | e | 〈a, b〉 with a, b ∈ TYPES and a 	= t.

Meaningful Expressions: The set MEa of meaningful expressions of type a

consists of the basic and complex expressions of type a we now define.
Basic Expressions: For each type a 	= t , there is a denumerably infinite set CONa

of non-logical constants cn,a , where n is a natural number. Constants of type t are
truth and falsity, that is, CONt = {
, ⊥}. Let CON = ⋃

a CONa , and for � a set
of formulas let CON(�) be the set of constants appearing in formulas of �. For each
type a 	= t , there is a denumerably infinite set VARa of variables vn,a , where n is
a natural number. Let VAR = ⋃

a VARa . Finally, for type t , there is a denumerably
infinite set NOM of nominals in, where n is a natural number. Summing up, for each
natural number n we have that:

in ∈ MEt | cn,a ∈ MEa | vn,a ∈ MEa with a 	= t.
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Complex Expressions: These are recursively generated as follows:

γ〈b,a〉βb ∈ MEa | λubαa ∈ ME〈b,a〉 | @iαa ∈ MEa

{αa = α′
a, ¬ϕt , ϕt ∧ ψt, ∀ubϕt ,�ϕt } ⊆ MEt ,

where αa, α
′
a ∈ MEa , βb ∈ MEb, γ〈b,a〉 ∈ ME〈b,a〉, ub ∈ VARb, i ∈ NOM and

ϕt , ψt ∈ MEt . In what follows, we often explicitly give the type of a meaningful
expression (writing, for example, αa) to emphasize that α ∈ MEa .

We introduce ϕt ↔ ψt as shorthand for ϕt = ψt . The remaining booleans, the
existential quantifier ∃, and the modal diamond ♦ are defined as usual.

Given a meaningful expression α the set of free variables occurring in αa

(notation FREE(α)) is defined recursively as follows:

FREE(τ ) = ∅ for τ ∈ CON ∪ NOM
FREE(v) = {v} for v ∈ VAR

FREE(α = β) = FREE(αβ) = FREE(α ∧ β) = FREE(α) ∪ FREE(β)

FREE(¬α) = FREE(�α) = FREE(α)

FREE(∀uα) = FREE(λuα) = FREE(α)\{u}.

A meaningful expression αt of type t is called a sentence if FREE(αt ) = ∅.

The syntax is (with two exceptions) fairly standard. The two exceptions are the
introduction of nominals, and the use of the @i operators, the two basic tools of
hybrid logic. We will discuss these additions in more detail when we have defined the
semantics. For the moment, simply note that nominals are of type t and are regarded
as forming a distinct syntactic class (they are not constants of type t , of which there
are only two, namely 
 and ⊥). Moreover, note that for any expression αa (of any
type a) the result of prefixing it with @i (where i can be any nominal) yields an
expression @iαa which is also of type a. Nominals and expressions of the form @iαa

play a central role in the completeness result: nominals are a key model-building
material, and @iαa expressions supply the architectural blueprint.

2.2 Semantics

Definition 2 (BHTT models) A standard structure (or standard model) for BHTT
is a pair M = 〈S, F〉 such that

1. S = 〈〈Da〉a∈TYPES, W, R〉 is a standard skeleton, where:

(a) 〈Da〉a∈TYPES, the standard type hierarchy, is defined recursively as
follows:

Dt = {T , F } is the set of truth values,
De 	= ∅ is the set of individuals,

D〈a,b〉 = DDa

b is the set of all functions from Da into Db

for a, b ∈ TYPES, a 	= t.

(b) W 	= ∅ is the set of worlds.
(c) R ⊆ W × W is the accessibility relation.
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2. The denotation function F assigns to each non-logical constant a function from
W to an element in the hierarchy of appropriate type, and to each nominal a
function from W to the set of truth values. More precisely:

(a) For any constant cn,a we define F(cn,a) : W −→ Da . Moreover,
(F(
))(w) = T and (F(⊥))(w) = F , for any world w ∈ W .

(b) F(i) : W −→ {T , F } such that (F(i))(v) = T for a unique v ∈ W . To
simplify notation, we sometimes write F(i) = {v} and say that v is the
denotation of i.

Most of the above is standard, familiar from either higher-order or modal logic.
The only novelty is the interpretation of nominals. Propositional hybrid logic, which
in its earliest form was due to Arthur Prior [6, 31, 32], trades on the idea of using
formulas as terms. Because nominals are true at precisely one world in any model,
they (so to speak) name that world by being true there and nowhere else; and in that
way they blur the distinction between terms and formulas. This is what our interpre-
tation of nominals does too: we treat them as formulas (they will be of type t) but the
interpretational constraint ensures they can act as “names” of worlds.

Another remark. As we have already mentioned, Montague and Gallin made use of
a third type s, the type of possible worlds.2 Now, in this paper we have restricted our-
selves to types e and t . But nominals are names for possible worlds. So although we
don’t have a type s, our object language is very much attuned to entities of this type.
BHTT’s attunement to worlds will become even more pronounced when we define
the semantics of @iαa , and this attunement is the key to our Henkin construction.
Treating formulas as terms takes on new significance in higher-order modal settings;
hybridization will allow us to work over the original Church–Henkin type system in
a particularly direct fashion.

Definition 3 An assignment of values to variables g is a function with domain VAR
such that for any variable vn,a , g(vn,a) ∈ Da .

An assignment g′ is a v-variant of g if it coincides with g on all values except,
perhaps, on the value assigned to the variable v. We use gθ

v to denote the v-variant of
g whose value for v ∈ VARa is θ ∈ Da .

Definition 4 (BHTT Interpretations) A standard interpretation is a pair 〈M, g〉,
where M is a standard structure for BHTT and g is a variable assignment on M.
Given a standard structure M = 〈〈〈Da〉a∈TYPES, W, R〉, F〉 and an assignment g we
recursively define, for any meaningful expression α, the standard interpretation of
α with respect to the model M and the assignment g, at the world w, denoted by
[[α]]M,w,g , as follows:

1. [[τ ]]M,w,g = (F(τ ))(w), for τ ∈ CON ∪ NOM
2. [[vn,a]]M,w,g = g(vn,a), for vn,a ∈ VARa

2Strictly speaking, Montague’s type s was the type of world/time pairs. But this is irrelevant to the present
discussion. The important point is that type s is the type of the entities at which we evaluate formulas be
they world/time pairs, worlds, times, epistemic states, or something else entirely.
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3. [[λubαa]]M,w,g = h, where h : Db −→ Da is the function defined by h(θ) =
[[αa]]M,w,gθ

ub , for any θ ∈ Db

4. [[α〈b,a〉βb]]M,w,g = [[α〈b,a〉]]M,w,g([[βb]]M,w,g)

5. [[αa = βa]]M,w,g = T iff [[α]]M,w,g = [[β]]M,w,g

6. [[¬ϕt ]]M,w,g = T iff [[ϕt ]]M,w,g = F

7. [[ϕt ∧ ϕ′
t ]]M,w,g = T iff [[ϕt ]]M,w,g = T and [[ϕ′

t ]]M,w,g = T

8. [[∀xaϕt ]]M,w,g = T iff for all θ ∈ Da [[ϕ]]M,w,gθ
xa = T

9. [[�ϕt ]]M,w,g = T iff for all v ∈ W such that 〈w, v〉 ∈ R, [[ϕt ]]M,v,g = T

10. [[@iαa]]M,w,g = [[αa]]M,v,g where F(i) = {v}.

The last clause is the novelty. As promised, @iα is an expression (of the same
type as α) that rigidly returns the value of α at the i-world. BHTT’s ability to inspect
named worlds and determine the semantic values of expressions of arbitrary types
at them, is what enables it to specify the blueprint for a model that will satisfy a
(consistent) set of formulas.

We now come to Henkin’s crucial idea for taming higher-order logic. The standard
semantics just defined (ignore for the moment the modal and hybrid components) is
the usual semantics for higher-order logic and it is logically intractable: if we define
validity as truth in all standard structures, we have a complex (indeed, provably
unaxiomatizable) notion of validity. The situation is rendered more unsatisfactory by
the existence of plausible looking candidate axiomatizations. These axiomatizations
seem to capture all that can be said about higher-order semantics, but in the face of
the unaxiomatizability result they must all be incomplete. A puzzling situation. The
way around the impasse was provided in 1950 by Henkin, who proposed a more
liberal notion of interpretation for higher-order logic (see Henkin [23, 24] and Man-
zano [27]). His notion of generalized interpretations (defined below) simultaneously
lowers the logical complexity of validity (as there are more generalized structures
than standard ones, it is, so to speak, easier for a formula to be falsified, and indeed,
higher-order validity becomes recursively enumerable) and makes clear just why
those plausible looking axiomatizations were so plausible: they are complete with
respect to Henkin’s generalized semantics.3 All of which provides the background
motivation for the following definitions:

Definition 5 (BHTT Skeletons and Structures) A type hierarchy is a family
〈Da〉a∈TYPES of sets defined recursively as follows:

De 	= ∅

Dt = {T , F }
D〈a,b〉 ⊆ DDa

b for a, b ∈ TYPES, a 	= t.

3While this is true for axiomatic systems, the situation for sequent calculi and tableaux systems is more
subtle, and reasonable looking cut-free systems may be incomplete even with respect to the generalized
semantics; see Fitting [15], pages xiv–xv and elsewhere, for further discussion.
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A skeleton S = 〈〈Da〉a∈TYPES, W, R〉 is a triple satisfying all the conditions
of a standard skeleton except that 〈Da〉a∈TYPES is a (not necessarily standard) type
hierarchy.

A structure (or model) is a pair M = 〈S, F〉 where S is a skeleton and F is a
denotation function.

The idea of using type hierarchies as just defined, rather than the full function
space hierarchy, is the big step forward. To interpret expressions of type 〈a, b〉 we
don’t need all the set-theoretically possible functions from Da to Db. However we do
need to ensure that we have chosen enough functions to interpret the expressions of
our language. Hence we must insist upon closure under interpretation. This prompts
the following definition:

Definition 6 (General Interpretation) A general interpretation is a pair 〈M, g〉
where M is a structure, g a variable assignment, and for any meaningful expression
in MEa , its interpretation (as given by Definition 4) is in Da .

Summing up: generalized interpretations may lack some set-theoretical possibili-
ties (they need not contain the full set-theoretical function hierarchy) but they are not
permitted to lack any structure that the language can actually see. From now on we
will work with this more liberal notion of interpretation. That is, from now on, given
a (not necessarily standard) model M, an assignment g, and an expression α, we will
allow ourselves to interpret α on M using the clauses given in Definition 4.

We are now ready for the key semantic definitions. Clearly all standard inter-
pretations are generalized interpretations. Hence the following definitions really do
generalize the standard notions:

Definition 7 (Consequence and Validity) Let � ∪ {ϕ} ⊆ MEt and M be a structure.
We define consequence and validity as follows:

Consequence: � |= ϕ iff for all general interpretations 〈M, g〉 and all w ∈ W , if
[[γ ]]M,w,g = T for all γ ∈ � then [[ϕ]]M,w,g = T .

Validity: |= ϕ iff ∅ |= ϕ.

2.3 Variables, Substitution, and Rigidity

Before proceeding, we need two small technical lemmas concerning the interpreta-
tion of nominals and free variables.

Lemma 8 (Coincidence Lemma for Nominals) Let 〈M, g〉 and 〈M∗, g〉 be two
general interpretations such that M = 〈S, F〉 and M∗ = 〈S, F∗〉 have the same
skeleton and F agrees with F∗ for all arguments except the nominal i. Let αa ∈ MEa

be any meaningful expression in which i does not occur. Then, for any world w,
[[αa]]M,w,g = [[αa]]M∗,w,g .

Proof Straightforward.
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Lemma 9 (Coincidence Lemma for Variables) If g and h are assignments that agree
on the free variables of αa ∈ MEa (that is, g�FREE(αa) = h�FREE(αa)), and 〈M, g〉 and
〈M, h〉 are general interpretations, then for any world w we have that [[αa]]M,w,g =
[[αa]]M,w,h.

Proof By induction on the construction of meaningful expressions. We give the
cases for λubαa and ∀uaϕ:

• [[λubβa]]M,w,g is the function with domain Db, such that for any θ ∈ Db

its value is [[βa]]M,w,gθ
ub . We know that gθ

ub
(ub) = hθ

ub
(ub) and also that

gθ
ub

(vq) = hθ
ub

(vq) for any vq ∈ FREE(λubβa) = FREE(βa)\{ub}. Thus, by

the induction hypothesis, [[βa]]M,w,gθ
ub = [[βa]]M,w,hθ

ub for all θ ∈ Db. There-
fore [[λubβa]]M,w,g = [[λubβa]]M,w,h, because both are functions returning
the same values for all arguments.

• [[∀ubϕ]]M,w,g = T iff for all θ ∈ Db [[ϕ]]M,w,gθ
ub = T iff for all θ ∈ Db

[[ϕ]]M,w,hθ
ub = T iff [[∀ubϕ]]M,w,h = T .

We will also make heavy use of substitution (particularly of rigid terms). Let us
define this notion precisely.

Definition 10 (Variable Substitution) For all αa ∈ MEa , the substitution of γc for a
variable vc in αa , written αa

γc

vc
,is inductively defined as follows:

1. τ
γc

vc
:= τ for τ ∈ CON ∪ NOM

2. va
γc

vc
:=

{
γc if va ∈ VAR and va = vc

va if va ∈ VAR and va 	= vc

3. (λupβb)
γc

vc
:=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λupβb if vc 	∈ FREE(λupβb)

λup(βb
γc

vc
) if vc ∈ FREE(λupβb),

up 	∈ FREE(γc)

λxp(βb
xp

up
)
γc

vc
if vc ∈ FREE(λupβb),

up ∈ FREE(γc), xp new
4. (β〈b,a〉δb)

γc

vc
:= β〈b,a〉 γc

vc
δb

γc

vc
| (βb = δb)

γc

vc
:= βb

γc

vc
= δb

γc

vc

5. (¬ϕ)
γc

vc
:= ¬ϕ

γc

vc
| (ϕ ∧ ψ)

γc

vc
:= ϕ

γc

vc
∧ ψ

γc

vc
| (�ψ)

γc

vc
:= �(ψ

γc

vc
)

6. (∀upψ)
γc

vc
:=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀upψ if vc 	∈ FREE(∀upψ)

∀upψ
γc

vc
if vc ∈ FREE(∀upψ),

up 	∈ FREE(γc)

∀xp(ψ
xp

up
)
γc

vc
if vc ∈ FREE(∀upψ),

up ∈ FREE(γc), xp new
7. (@iβb)

γc

vc
:= @i (βb

γc

vc
).

It is time to define one of the paper’s key concepts: rigid expressions. These
are expressions that have the same value at all worlds; good examples are 
 and
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⊥ (their rigidity is hard-wired into the definition of what denotation functions F
are), variables of all types (after all, variable denotations are determined globally
and directly by assignment functions), and expressions prefixed by an @ operator
(indeed, these operators were designed with rigidification in mind). Rigid expressions
play a key role in our axiomatization and equivalence classes of rigid expressions are
the building blocks used in our model construction.

Definition 11 (Rigid Meaningful Expressions) The set RIGIDS of rigid meaningful
expressions is defined inductively as follows:

RIGIDS ::= ⊥|
|va |@iθa |λvbαa |γ〈b,a〉βb |αb = βb |¬ϕt |ϕt ∧ ψt |∀vaϕt ,

where θa ∈ MEa and αa , βb, γ〈b,a〉, ϕt , ψt ∈ RIGIDS. We say that α ∈ RIGIDSa if α

is rigid and of type a, that is, if α ∈ RIGIDS ∩ MEa .

Lemma 12 Let 〈M, g〉 be a general interpretation. If γ ∈ RIGIDS then
[[γ ]]M,w,g = [[γ ]]M,v,g for all w, v ∈ W .

Proof By induction on the construction of rigid expressions. We give the cases for
λvbαa and ∀vaϕ:

• If γ is of the form λvbαa with αa rigid, then [[λvbαa]]M,w,g is the function

h with domain Db, such that h(θ) = [[αa]]M,w,gθ
vb ,for any θ ∈ Db. On the

other hand, [[λvbαa]]M,v,g is the function h′ with domain Db, such that h′(θ) =
[[αa]]M,v,gθ

vb ,for any θ ∈ Db. Now, [[αa]]M,w,gθ
vb = [[αa]]M,v,gθ

vb , using the
induction hypothesis for αa , and thus [[λvbαa]]M,w,g = [[λvbαa]]M,v,g for all
w, v ∈ W .

• If γ is of the form ∀vaϕ with ϕ rigid, then [[∀vaϕ]]M,w,g = T iff

[[ϕ]]M,w,gθ
va = T for all θ ∈ Da iff [[ϕ]]M,v,gθ

va = T for all θ ∈ Da (by the
induction hypothesis for rigid ϕ) iff [[∀vaϕ]]M,v,g = T . Note that here we make
use of the fact that we are quantifying over a constant domain.

Rigid expressions are well-behaved with respect to substitution:

Lemma 13 (Rigid Substitution) Let 〈M, g〉 be a general interpretation. Then for all
worlds w, all αa ∈ MEa , all γc ∈ RIGIDSc and any variable vc of type c:

[[

αa

γc

vc

]]M,w,g

= [[αa]]M,w,g
γc
vc

where γc is an abbreviation for [[γc]]M,w,g .

Proof Straightforward by induction on the construction of meaningful expressions,
with the help of Lemma 9.
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3 Axiomatization

We now introduce deductions (formal proofs) for BHTT. We will select an infinite
set of logical axioms, and several rules of proof which will enable us to prove certain
meaningful expressions of type t .

3.1 Rules of Proof

1. Modus Ponens: If � ϕ and � ϕ → ψ , then � ψ .
2. Generalizations:

(a) Gen�: If � ϕ, then � �ϕ.
(b) Gen@: If � ϕ, then � @iϕ.
(c) Gen∀: If � ϕ, then � ∀xaϕ.

3. Rigid replacement: If � ϕ, then � ϕ′, where ϕ′ is obtained from ϕ by uniformly
replacing nominals by nominals, variables of type a by rigid expressions of type
a, and vice-versa (that is, we can replace rigid expressions of type a by variables
of type a too).

4. Name: If � @iϕ and i does not occur in ϕ, then � ϕ.
5. Bounded Generalization: If � @i♦j → @jϕ and j 	= i and j does not occur

in ϕ, then � @i�ϕ.

These are all standard rules drawn from the literature on modal and hybrid logic.
For a detailed discussion of the Name and Bounded Generalization rules, see Black-
burn and Ten Cate [8]. The restriction in the rigid replacement rule that nominals
must replace nominals is standard in hybrid logic; it reflects the fact that nominals
embody namelike information, and replacement must respect this. The additional
restriction we have imposed (that variables can only be freely replaced by rigid terms
and vice-versa) reflects the fact that assignment functions interpret variables rigidly,
and replacement must respect this too.

3.2 Axioms

We will give the logical axioms as general schemas.

1. Tautologies: All BHTT instances of propositional tautologies.
2. Distributivity axioms:

(a) �-distributivity: � �(ϕ → ψ) → (�ϕ → �ψ).
(b) @-distributivity: � @i (ϕ → ψ) → (@iϕ → @iψ).
(c) ∀-distributivity: � ∀xb(ϕ → ψ) → (∀xbϕ → ∀xbψ).

3. Quantifier axioms:

(a) ∀-elimination: For βb rigid, � ∀xbϕ → ϕ
βb

xb
.

(b) Vacuous: � ϕ → ∀yaϕ, where ya does not occur free in ϕ.
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4. Equality axioms:

(a) Reflexivity: � αa = αa .
(b) Substitution: For αa , βa rigid, � αa = βa → (δc

αa

va
= δc

βa

va
).

5. Functional axioms:

(a) Extensionality: � ∀vb(γ〈b,a〉vb = δ〈b,a〉vb) → γ〈b,a〉 = δ〈b,a〉, where vb

does not occur free in γ〈b,a〉 or δ〈b,a〉.
(b) β-conversion: For rigid βb, � (λxbαa)βb = αa

βb

xb
.

(c) η-conversion: � (λxbγ〈b,a〉xb) = γ〈b,a〉, where xb is not free in γ〈b,a〉.

6. Axioms for @:

(a) Selfdual: � @iϕ ↔ ¬@i¬ϕ.
(b) Intro: � i → (ϕ ↔ @iϕ).
(c) Back: � ♦@iϕ → @iϕ.
(d) Ref: � @i i.
(e) Agree: � @i@jαa = @jαa .

7. Domain Axioms:

(a) Hybrid Barcan: � ∀xb@iϕ ↔ @i∀xbϕ.

8. New Axioms:

(a) Equality-at-i: � @i (βb = δb) = (@iβb = @iδb).
(b) Rigid function application: � @i (γ〈b,a〉βb) = (@iγ〈b,a〉)(@iβb).
(c) Rigids are rigid: If αa is rigid then � @iαa = αa .

The axiomatization is not designed to be minimal, it is designed to be perspicuous
and to make use of well-known axioms from propositional and first-order modal
and hybrid logic, and higher-order logic.4 Indeed (if we ignore side restrictions to
rigid terms) almost all the above axioms should be familiar. The only novelties are
Equality-at-i (Axiom 8a), Rigid function application (Axiom 8b), and Rigids are
rigid (Axiom 8c). These, together with Hybrid Barcan (Axiom 7a) play a key role
in the model construction. Note that Hybrid Barcan combines the standard modal
Barcan and converse Barcan formulas, but with @i taking the place of �. Hybrid
Barcan will later lead us to what we call the Rigid Representatives Theorem, which
will help us to build the function hierarchy required for the completeness proof.

Definition 14 A deduction of ϕ is a finite sequence α1, . . . , αn of expressions such
that αn := ϕ and for every 1 ≤ i ≤ n − 1, either αi is an axiom, or αi is obtained
from previous expressions in the sequence using the rules of proof. We will write � ϕ

whenever we have such a sequence and we will say that ϕ is a BHTT- theorem.

4One obvious redundancy is the @-distributivity axiom: this is a straightforward consequence of Equality-
at-i (Axiom 8a).
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Definition 15 If � ∪ {ϕ} is a set of meaningful expressions of type t , a deduction of
ϕ from � is a deduction of � γ1 ∧ . . . ∧ γn → ϕ where {γ1, . . . , γn} ⊆ �. We say
that a meaningful expression ϕ of type t is deducible from a set of expressions �,
and we write � � ϕ, iff there is a deduction of ϕ from �.

Theorem 16 (Soundness) For all ϕ ∈ MEt , we have � ϕ implies |= ϕ.

Proof Straightforward but tedious.

What is provable in BHTT? We shall meet many examples in the course of the
completeness proof. Some of these will be important for the completeness proof,
but their derivability will be fairly clear. For example, we shall need to make use of
existential forms of Hybrid Barcan (that is, expressions of the form � @i∃xbϕ ↔
∃xb@iϕ) but it is simple to check that BHTT is powerful enough to derive these
from the universal forms given as axioms. Others, such as the Bridge principle �
@i♦j ∧ @j ϕ → @i♦ϕ, are trickier. In any case, we have gathered together all the
required BHTT-theorems into the Appendix at the end of the paper. Note that many
of the theorems are essentially hybrid rather than higher-order in nature (both Bridge
and Barcan are good examples of this). As we have noted, it is the nominals and @i

operators that carry much of the load of specifying the required model, and this is
reflected in the form of the theorems we need to derive.

4 Maximal Consistent Sets

In this section we define and explore maximal consistent sets of BHTT sentences
with various useful properties, prove the variant of Lindenbaum’s Lemma we shall
require, and then prove a result we call the Rigid Representatives Theorem, which
will give us valuable information about the building blocks of our type hierarchy.

Definition 17 � ⊆ MEt is inconsistent (or contradictory) iff for every ϕ ∈ MEt ,
� � ϕ. � is consistent iff it is not inconsistent. � is a maximally consistent set iff
� is consistent and whenever ϕ ∈ MEt and ϕ /∈ �, then � ∪ {ϕ} is inconsistent.

The following four lemmas note some easy consequences of the definitions and
rules of the calculus.

Lemma 18 Let �, � ⊆ MEt and ϕ ∈ MEt . Then:

1. If � is consistent and � ⊆ �, then � is consistent.
2. If � is inconsistent and � ⊆ �, then � is inconsistent.
3. � ⊆ MEt is inconsistent iff for some ϕ ∈ MEt , � � ϕ and � � ¬ϕ.
4. � ⊆ MEt is inconsistent iff � � ⊥.
5. If � is consistent, then for all ϕ ∈ MEt such that � � ϕ we have � ∪ {ϕ} is

consistent.
6. � is consistent iff every finite subset of � is consistent.
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Lemma 19 Let � ⊆ MEt be a maximal consistent set and ϕ, ψ ∈ MEt . Then:

1. � � ϕ iff ϕ ∈ �.
2. If � ϕ then ϕ ∈ �.
3. ¬ϕ ∈ � iff ϕ /∈ �.
4. ϕ ∈ � iff ¬ϕ 	∈ �.
5. ϕ ∧ ψ ∈ � iff ϕ ∈ � and ψ ∈ �.
6. Either ϕ ∈ � or ¬ϕ ∈ � but not both.
7. If � ∪ {ϕ} � ψ and � ∪ {ψ} � ϕ then ϕ ∈ � iff ψ ∈ �.

Lemma 20 Let � be a maximal consistent set. If @i�ϕ ∈ � then for any nominal
j we have: @i♦j ∈ � implies @j ϕ ∈ �.

Proof Let @i�ϕ ∈ �. Then ¬@i♦¬ϕ ∈ � using the definition of ♦ and the fact
that @i is selfdual (Axiom 6a). So let j be a nominal such that @i♦j ∈ �; assume
that @j ϕ 	∈ �. Then @j¬ϕ ∈ �, using Part 3 of the previous lemma and the
selfduality of @j . Now � @i♦j ∧ @j¬ϕ → @i♦¬ϕ by Bridge (Claim 57). Hence
as � is maximal consistent, @i♦¬ϕ ∈ �. But this contradicts the consistency of �

as ¬@i♦¬ϕ ∈ �.

Lemma 21 Let � be a maximal consistent set. If @i∀xaϕ ∈ �, then @iϕ
αa

xa
∈ �

for all αa ∈ RIGIDSa .

Proof For any rigid expression αa we have � ∀xaϕ → ϕ αa

xa
(Axiom 3a). Applying

@-generalization and @-distributivity yields � @i∀xaϕ → @iϕ
αa

xa
, so this formula

must be in � by maximal consistency. Hence if @i∀xaϕ ∈ � then @iϕ
αa

xa
∈ �.

With these preliminaries noted, we are ready to begin. As we have said, our com-
pleteness proof follows Henkin’s strategy. The key idea is to build a model out of the
information contained in a maximal consistent set of sentences—but not any maxi-
mal consistent set will do. When dealing with the quantifiers, Henkin demanded that
each ∃-formula be witnessed by an appropriate constant, for he defined the domain of
quantification out of equivalences classes of constants. We need to do this, but we also
need to demand that each ♦-formula be witnessed by a nominal, for we shall define
the worlds and the accessibility relation out of equivalence classes of nominals. Fur-
thermore, we need the maximal consistent set to contain at least one nominal; in the
model we shall eventually construct, the equivalence class containing this nominal
will be the world that satisfies the consistent set of sentences. In short, we shall be
demanding the following three properties:

Definition 22 Let � be a set of meaningful expressions.

1. � is named iff one of its elements is a nominal.
2. � is ♦-saturated iff for all expressions @i♦ϕ ∈ � there is a nominal j ∈ NOM

such that @i♦j ∈ � and @j ϕ ∈ �.
3. � is ∃-saturated iff for all expressions @i∃xaϕ ∈ � there is a constant ca ∈

CONa such that @iϕ
@i ca

xa
∈ �.
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Note the similarity between Clauses 2 and 3: ♦-saturation is a clear modal
analogue of Henkin’s notion of ∃-saturation. This similarity is underlined by the
following two lemmas. First, ∃-saturation guarantees us the following:

Lemma 23 Let � be maximal consistent and ∃ -saturated. If @i (ϕ
@i ca

xa
) ∈ � for all

ca ∈ CON(�) then @i∀xaϕ ∈ �.

Proof Let @i (ϕ
@i ca

xa
) ∈ � for all ca ∈ CON(�). Assume that @i∀xaϕ 	∈ �.

Then ¬@i∀xaϕ ∈ �. Therefore @i∃xa¬ϕ ∈ �, using the definition of ∃ and
Axiom 6a. As � is maximal consistent and ∃-saturated, there exists a constant
ca ∈ CON(�) such that @i (¬ϕ

@i ca

xa
) ∈ �. Then using the selfduality of @i , we

have ¬@i (ϕ
@i ca

xa
) ∈ �, contradicting the consistency of �.

But now consider the following lemma. Its proof trades on ♦-saturation, but the
underlying strategy is identical:

Lemma 24 Let � be maximal consistent and ♦-saturated, and suppose that for all
nominals j , if @i♦j ∈ � then @j ϕ ∈ � too. Then @i�ϕ ∈ �.

Proof Suppose � satisfies the statement of the lemma. Now assume that @i�ϕ 	∈
�. Then ¬@i�ϕ ∈ �. Therefore @i♦¬ϕ ∈ �, using the definition of ♦ and
Axiom 6a. As � is maximal consistent and ♦-saturated, there exists a nominal j such
that @i♦j ∈ � and @j¬ϕ ∈ �. Then ¬@j ϕ ∈ � and @j ϕ ∈ �, contradicting the
consistency of �.

As our Henkin proof is for a higher-order logic, part of our completeness proof
will involve constructing a type-hierachy. The following lemma, which trades on
∃-saturation, will help us do this.

Lemma 25 Let � be maximal consistent and ∃-saturated, and let γ〈b,a〉 and γ ′〈b,a〉
be rigid expressions of type 〈b, a〉. If for all cb ∈ CON(�) we have γ〈b,a〉@icb =
γ ′〈b,a〉@icb ∈ � then @i∀vb(γ〈b,a〉vb = γ ′〈b,a〉vb) ∈ � for vb 	∈ FREE(γ〈b,a〉) ∪
FREE(γ ′〈b,a〉).

Proof Let γ〈b,a〉@icb = γ ′〈b,a〉@icb ∈ � for all cb ∈ CONb(�). We want to prove
that � � @i∀vb(γ〈b,a〉vb = γ ′〈b,a〉vb). Suppose for the sake of contradiction that
@i∀vb(γ〈b,a〉vb = γ ′〈b,a〉vb) 	∈ �. Then ¬@i∀vb(γ〈b,a〉vb = γ ′〈b,a〉vb) ∈ �, since �

is maximally consistent. Thus @i∃vb¬(γ〈b,a〉vb = γ ′〈b,a〉vb) ∈ � using Axiom 6a
and the definition of ∃. Since � is ∃-saturated, there is a cb ∈ CONb(�) such that
@i¬(γ〈b,a〉@icb = γ ′〈b,a〉@icb) ∈ �. So � � @i¬(γ ′〈b,a〉@icb = γ〈b,a〉@icb) and
thus � � ¬@i (γ

′〈b,a〉@icb = γ〈b,a〉@icb) by Axiom 6a.
But by hypothesis � � γ〈b,a〉@icb = γ ′〈b,a〉@icb. Hence

� � @i (γ〈b,a〉@icb = γ ′〈b,a〉@icb) = γ〈b,a〉@icb = γ ′〈b,a〉@icb
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using Axiom 8c and the fact that γ〈b,a〉@icb = γ ′〈b,a〉@icb is rigid. Thus � �
@i (γ〈b,a〉@icb = γ ′〈b,a〉@icb) by modus ponens and the definition of ↔, contradict-
ing �’s consistency.

We must now prove that any consistent set of formulas can be extended to a maxi-
mal consistent set with all three desirable properties. We need, in short, the following
version of Lindenbaum’s Lemma:

Lemma 26 (Lindenbaum) Let � be a consistent set of formulas. Then � can be
extended to a maximal consistent set �ω that is named, ♦-saturated and ∃-saturated.

Proof Let {in}n∈ω be an enumeration of a countably infinite set of new nominals,
{cn,a}n∈ω an enumeration of a countably infinite set of new constants of type a, and
{ϕn}n∈ω an enumeration of the formulas of the extended language. We will build
{�n}n∈ω, a family of subsets of MEt , by induction:

• �0 = � ∪ {i0}.
• Assume that �n has already been built. To define �n+1 we distinguish four

cases:

1. �n+1 = �n, if �n ∪ {ϕn} is inconsistent.
2. �n+1 = �n ∪ {ϕn}, if �n ∪ {ϕn} is consistent and ϕn is not of the form

@i♦ψ or @i∃xaψ .
3. �n+1 = �n ∪{ϕn, @i♦im, @imψ} , if �n ∪{ϕn} is consistent, ϕn := @i♦ψ

and im is the first nominal not in �n or ϕn.
4. �n+1 = �n ∪ {ϕn, @iψ

@i cm,a

xa
}, if �n ∪ {ϕn} is consistent, ϕn := @i∃xaψ

and cm,a is the first constant of type a not in �n or ϕn.

Now, let �ω = ⋃
n∈ω �n. �ω is named, ♦-saturated and ∃-saturated. We only

need to prove that it is maximal consistent. This will follow easily once we prove that
each �n is consistent, which we shall do by induction.

For the base case, suppose �0 is inconsistent. Hence � ∪ {i0} � ⊥, hence � �
i0 → ⊥ and hence by Arrow Name (Claim 61) � � ⊥, which is impossible.

Now assume as inductive hypothesis that �n is consistent. Now, �n+1 has only
four possible forms:

1. �n+1 = �n is consistent by the induction hypothesis.
2. �n+1 = �n ∪ {ϕn} is consistent by construction.
3. So suppose �n+1 = �n ∪ {ϕn, @i♦im, @imψ}, where ϕn := @i♦ψ and im is

the first new nominal that does not occur in �n or ϕn. By construction, �n∪{ϕn}
is consistent. Suppose that �n ∪ {ϕn, @i♦im, @imψ} � ⊥. Then, �n ∪ {ϕn} �
@i♦im ∧ @imψ → ⊥, hence �n ∪ {ϕn} � @i♦ψ → ⊥, by using Paste♦
(Claim 62) and the fact that im 	= i and im does not occur in ψ or ⊥. Thus
�n ∪ {ϕn} � ⊥, which is impossible.

4. Lastly, suppose �n ∪ {ϕn, @iψ
@i cm,a

xa
} , where ϕn := @i∃xaψ and cm,a is

the first new constant of type a that does not occur in �n or ϕn. By con-
struction, �n ∪ {ϕn} is consistent. Suppose �n ∪ {ϕn, @iψ

@i cm,a

xa
} � ⊥. Then
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�n ∪ {ϕn, ∃xa@iψ} � ⊥, by Claim 44. Thus �n ∪ {ϕn, @i∃xaψ} � ⊥, using
Claim 45. Thus �n ∪ {ϕn} � ⊥, which is impossible.

We conclude that �ω is consistent. Maximality is clear by construction.

Maximal consistent sets which are named, ♦-saturated and ∃-saturated contain lots
of useful information. We will be particularly interested in what they tell us about the
equivalence of rigid expressions:

Definition 27 Let � be a named, ♦-saturated and ∃-saturated maximal consistent
set. Then:

• For all αa , βa ∈ RIGIDSa : αa ≈� βa iff αa = βa ∈ �, for every a ∈
TYPES−{t}. The rigidity equivalence class of αa , notation [αa]�, is the set
{βa | αa ≈� βa}.

• For ϕ, ψ ∈ MEt : ϕ ≈� ψ iff ϕ = ψ ∈ �.The truth equivalence class of ϕ,
notation [ϕ]�, is the set {ψ | ϕ ≈� ψ}.

When � is clear from context we will usually write ≈ instead of ≈�, and [α]
instead of [α]�. It is straightforward to check that both rigidity equivalence and truth
equivalence are equivalence relations.

And now for a key result: in named and saturated maximal consistent sets, these
equivalence classes are all represented by constants. This result will simplify the
construction of the type hierarchy in the following session; its proof makes use of the
Hybrid Barcan axioms.

Theorem 28 (Rigid Representatives) Let � be a maximal consistent set which is
named, ♦-saturated and ∃-saturated.

1. Let i ∈ NOM and α ∈ MEt . Then [α] = [@i⊥] or [α] = [@i
].
2. Let i ∈ NOM and αa ∈ RIGIDSa , such that a 	= t . Then there is a constant

ca ∈ CON such that [αa] = [@ica].

Proof The proof is by induction on type structure.

[Type t] Let i be any nominal and α ∈ MEt . Assume that α ∈ �. But α → (α =

) ∈ �, by propositional logic. Thus α = 
 ∈ �, and α = @i
 ∈ �, by Axiom
8c and maximal consistency. Hence [α] = [@i
]. On the other hand, if we assume
that α 	∈ �, both ¬α and ¬α → (α = ⊥) ∈ �, and similar reasoning lets us
conclude that [α] = [@i⊥]. A further remark may be helpful. Since for any nominal
i we have that � @i⊥ = ⊥ and � @i
 = 
, by Axiom 8c [@i⊥] = [⊥] and
[@i
] = [
]. That is, the choice of the nominal i is irrelevant; there really are only
two truth equivalence classes.

[Type e] Let αe ∈ RIGIDSe. By Axiom 4a and Rule 2b, � @i (αe = αe) which can
be rewritten as � @i (ye = αe)

αe

ye
. By Claim 39 and Modus Ponens � ∃ye@i (ye =

αe). By Existential Hybrid Barcan (Claim 42), we have � @i∃ye(ye = αe) ↔
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∃ye@i (ye = αe). Therefore, @i∃ye(ye = αe) ∈ � by maximal consistency. By ∃-
saturation, there exists a constant ce ∈ CON such that @i (@ice = αe) ∈ �. Thus
@ice = αe ∈ �, by Axioms 8a and 8c, and so [αe] = [@ice].
[Inductive step] Let γ〈b,a〉 ∈ RIGIDS〈b,a〉. By Rigid Comprehension (Claim 52) we
have � ∃x〈b,a〉@i∀vb(x〈b,a〉vb = γ〈b,a〉vb) with x〈b,a〉 and vb not in γ〈b,a〉, and so
this formula is in � by maximal consistency. Existential Hybrid Barcan gives us that
@i∃x〈b,a〉∀vb(x〈b,a〉vb = γ〈b,a〉vb) ∈ �, hence, as � is ∃-saturated, there is a constant
c〈b,a〉 ∈ CON such that @i∀vb(@ic〈b,a〉vb = γ〈b,a〉vb) ∈ � too.

Using Axioms 5a and 2b, and Rule 2b we have @i (@ic〈b,a〉 = γ〈b,a〉) ∈ �. By
Axioms 8a and 6e � @i (@ic〈b,a〉 = γ〈b,a〉) = (@ic〈b,a〉 = @iγ〈b,a〉) and thus
@ic〈b,a〉 = @iγ〈b,a〉 ∈ �. As γ〈b,a〉 is rigid we can use Axiom 8c to get @ic〈b,a〉 =
γ〈b,a〉 ∈ �. Hence [@ic〈b,a〉] = [γ〈b,a〉].

5 Completeness of BHTT

We come to the heart of the proof: building generalized interpretations out of (named
and saturated) maximal consistent sets. We shall do this in three steps.

Recall that a structure has the form M = 〈S, F〉 consisting of a skeleton S =
〈〈Da〉a∈TYPES, W, R〉 and a denotation function F. In the first step we define the type
hierarchy 〈Da〉a∈TYPES. This is the most technical step, and this is where we make
use of the Rigid Representatives Theorem. In the second step we define 〈W, R〉 and
F. This part is straightforward: F is easy to define, and we use the standard hybrid
construction of 〈W, R〉. In the third step we define the general interpretation 〈M, g〉
we need, and show that it satisfies all the formulas in the maximal consistent set used
to build it. Completeness follows.

5.1 Constructing the Hierarchy

How does Henkin construct type hierarchies? On page 86 of Completeness in the
Theory of Types he says this:

We now define by induction on α a frame of domains {Dα} and simultaneously
a one-one mapping � of equivalence classes onto the domains Dα such that
�([Aα]) is in Dα .

Our logic and notation are somewhat different, but the proof of following theorem
is thoroughly Henkin in spirit.

Theorem 29 (Hierarchy Theorem) Given a maximal consistent set �, which is
named, ♦-saturated and ∃-saturated, there exists a family of domains 〈Da〉a∈TYPES
and a function � such that:

1. � is a bijection from BB (Building Blocks) to
⋃

a∈TYPES
Da , where

BB =
⋃

a∈TYPES\{t}
{[αa] | αa ∈ RIGIDSa} ∪ {[ϕ] | ϕ ∈ MEt }.

2. Dt = {�([ϕ]) | ϕ ∈ MEt } and Da = {�([αa]) | αa ∈ RIGIDSa} for a 	= t .
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Proof The proof is by induction on a ∈ TYPES by simultaneously defining the
hierarchy 〈Da〉a∈TYPES and the function �.

[Type t] We define Dt to be the two elements set Dt = {[@i⊥], [@i
]}, and for
every ϕ ∈ MEt we define:

�([ϕ]) =
{ [@i
] iff ϕ ∈ �

[@i⊥] iff ¬ϕ ∈ �,

where the chosen nominal i is arbitrary. It is immediate by the first part of the Rigid
Representatives Theorem that � is well-defined, one-to-one, and onto.

[Type e] We define De = {[@ice] | ce ∈ CON(�), i ∈ NOM}. We also define
�([αe]) = [αe] for every αe ∈ RIGIDSe. Clearly � is well-defined, one-to-one and
onto. And by the second part of Rigid Representatives (Theorem 28) we have that
De = {[αe] | αe ∈ RIGIDSe}, and thus De = {�([αe]) | αe ∈ RIGIDSe}.

[Inductive step] Assuming that the theorem holds for a, b ∈ TYPES with b 	= t , we
now prove it for 〈b, a〉 ∈ TYPES.

For every γ〈b,a〉 that is an element of RIGIDS〈b,a〉 we define the value of � for
the argument [γ〈b,a〉] as follows: �([γ〈b,a〉]) is itself a function with domain Db and
range Da whose value for any element �([βb]) of Db is the element �([γ〈b,a〉βb]) of
Da . That is, we have:

�([γ〈b,a〉])(�([βb])) = �([γ〈b,a〉βb]).
It is easy to see that � does not depend on the particular representative chosen. For
suppose γ ′〈b,a〉 ≈ γ〈b,a〉 and β ′

b ≈ βb. Thus � � γ ′〈b,a〉 = γ〈b,a〉 and � � β ′
b = βb,

and by Claim 51 we have that � � γ ′〈b,a〉β ′
b = γ〈b,a〉βb. This means that γ〈b,a〉βb ≈

γ ′〈b,a〉β ′
b and so [γ〈b,a〉βb] = [γ ′〈b,a〉β ′

b]. So � is well defined.
Next we define: D〈b,a〉 = {�([γ〈b,a〉]) | γ〈b,a〉 ∈ RIGIDS〈b,a〉}. Now, D〈b,a〉 clearly

has the form we require, and � is obviously a mapping onto D〈b,a〉, but is it one-
to-one? To see that it is, reason as follows. Let �([γ ′〈b,a〉]) = �([γ〈b,a〉]). We need
to show that [γ ′〈b,a〉] = [γ〈b,a〉]. As they are equal, the functions �([γ ′〈b,a〉]) and
�([γ〈b,a〉]) give the same value for any argument �([βb]) ∈ Db, for βb ∈ RIGIDSb.
By the second part of the Rigid Representatives Theorem each member of Db is of
the form �([@icb]) with cb ∈ CON(�), so we can write

�([γ〈b,a〉])(�([@icb])) = �
(
[γ ′〈b,a〉]

)
(�([@icb]))

for all cb ∈ CON(�). But �([γ〈b,a〉@icb]) = �([γ ′〈b,a〉@icb]) because, by the induc-
tion hypothesis for elements of type a, the function � is one-to-one, and so we have
that [γ〈b,a〉@icb] = [γ ′〈b,a〉@icb]. Therefore � � γ〈b,a〉@icb = γ ′〈b,a〉@icb for all
cb ∈ CON(�). Thus � � @i∀vb(γ〈b,a〉vb = γ ′〈b,a〉vb) for vb not free in γ〈b,a〉 and
γ ′〈b,a〉, by Lemma 25. Now, by Axiom 5a we have that:

� ∀vb

(
γ〈b,a〉vb = γ ′〈b,a〉vb

)
→ γ〈b,a〉 = γ ′〈b,a〉.
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Hence:

� @i∀vb

(
γ〈b,a〉vb = γ ′〈b,a〉vb

)
→ @i

(
γ〈b,a〉 = γ ′〈b,a〉

)

by Rule 2b and Axiom 2b. So � � γ〈b,a〉 = γ ′〈b,a〉 by Axiom 8c. And this means we
have that [γ ′〈b,a〉] = [γ〈b,a〉] which means that � is one-to-one.

Corollary 30 〈Da〉a∈TYPES is a type hierarchy.

Proof By definition, Dt is a two element set. Also, De 	= ∅, because for every
ve ∈ VARe the formula @i∃ve
 ∈ � (Claim 40 and Rule 2b). Hence, as � is ∃-
saturated, there exists a constant ce ∈ CON(�) such that the formula @i
@i ce

ve
∈ �

for every variable from the infinite set VARe. Thus [@ice] ∈ De. Finally,D〈b,a〉 ⊆ DDb
a

as D〈b,a〉 = {�([γ〈b,a〉]) | γ〈b,a〉 ∈ RIGIDS〈b,a〉} and each �([γ〈b,a〉]) is a function
from Db to Da .

5.2 Defining the Structure

That was the tricky part. But with the hierarchy now defined it is straightforward to
complete the definition of the structure we require by defining 〈W, R〉 and F. To this
end we first define an equivalence relation between nominals.

Definition 31 Let � be a maximal consistent set. Define, for i, j ∈ NOM, i ≈′ j iff
@ij ∈ �. For i ∈ NOM, [i] = {j ∈ NOM : i ≈′ j}. It is easy to show that ≈′ is an
equivalence relation on NOM.

Definition 32 (Basic Hybrid Henkin Structures) Let � be a maximal consistent set
which is named, ♦ -saturated and ∃-saturated. The Basic Hybrid Henkin Structure
M = 〈S, F〉 over � is made up of:

1. The skeleton S = 〈〈Da〉a∈TYPES, W, R〉, defined by:

(a) 〈Da〉a∈TYPES, as given by the Hierarchy Theorem,
(b) W = {[i] | i is a nominal },
(c) R = {〈[i], [j ]〉 | @i♦j ∈ �}.

2. F is a function with domain NOM ∪ CON, defined by:

(a) For cn,a ∈ CON, F(cn,a) is a function from W to Da , such that
F(cn,a)([i]) = �([@icn,a]).

(b) For i ∈ NOM, F(i) is a function from W to Dt = {[@i
], [@i⊥]}, such
that (F(i))([j ]) = [@i
] iff i ∈ [j ].

The set � over which a basic hybrid Henkin structure is built is usually clear from
context, so often we don’t mention it.

Lemma 33 Any basic hybrid Henkin structure is a well-defined structure.
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Proof We already know that S is well-defined, for 〈Da〉a∈TYPES is a type hierarchy
by Corollary 30. The equivalence relation on NOM is easily seen to be well defined,
so it only remains to show that R and F are too. For R we have:

1. i ≈′ i′ and 〈[i], [j ]〉 ∈ R implies 〈[i′], [j ]〉 ∈ R. We have � @i i
′ → (@i♦j →

@i′♦j) by Claim 58. Thus @i i
′ ∈ � and @i♦j ∈ � implies @i′♦j ∈ �.

2. j ≈′ j ′ and 〈[i], [j ]〉 ∈ R implies 〈[i], [j ′]〉 ∈ R. We have � @i♦j ∧ @j j
′ →

@i♦j ′ by Claim 57. Thus @j j
′ ∈ � and @i♦j ∈ � implies @i♦j ′ ∈ �.

Moreover, F is well defined. For if i ≈′ j then (F(cn,a))([i]) = (F(cn,a))([j ])
because by Claim 55 we have that � @ij → (@icn,a = @j cn,a).

5.3 General Interpretation and Completeness

One last detail remains: defining our variable assignment. We do so as follows:

Definition 34 An assignment on a basic hybrid Henkin structure M is a function
mapping each variable va to some element of Da = {�([αa]) | αa ∈ RIGIDSa}. The
Hybrid Henkin Assignment on M is the function g defined as follows. For every
va ∈ VARa :

g(va) = �([va]).
Note that since all variables va are rigid, @iva = va for all i ∈ NOM, and so we
could also have defined g(va) to be �([@iva]).

Theorem 35 Let M be a basic hybrid Henkin structure and g its hybrid Henkin
assignment. For all meaningful expressions βb and for all i ∈ NOM we have:

[[βb]]M,[i],g = �([@iβb]).

Proof The proof is a conceptually clear but somewhat finicky induction on the
formation of expressions. We give a selection of cases.

[Case j ∈ NOM] [[j ]]M,[i],g = (F(j))([i]). By Definition 32, (F(j))([i]) = [@j
]
iff j ∈ [i], which in turn is equivalent to @ij ∈ �. Therefore, [[j ]]M,[i],g =
�([@ij ]).

[Case cb ∈ CON] [[cb]]M,[i],g = (F(cb))([i]) = �([@icb]), by definition.

[Case vb ∈ VAR] [[vb]]M,[i],g = g(vb) = �([@ivb]), by the definition of g.

[Case ¬ϕ] [[¬ϕ]]M,[i],g = [@i
] iff �([@iϕ]) = [@i⊥] (by the induction
hypothesis) iff �([@i¬ϕ]) = [@i
] by Axiom 6a.

[Case ϕ∧ψ] [[ϕ∧ψ]]M,[i],g = [@i
] iff [[ϕ]]M,[i],g = [@i
] and [[ψ]]M,[i],g =
[@i
] iff �([@iϕ]) = [@i
] and �([@iψ]) = [@i
] (by the induction hypothe-
sis) iff @iϕ ∈ � and @iψ ∈ � iff @iϕ ∧ @iψ ∈ � iff �([@iϕ ∧ @iψ]) = [@i
]
iff �([@i (ϕ ∧ ψ)]) = [@i
], by Claim 59.



C. Areces et al.

[Case α〈c,b〉γc] By definition, [[α〈c,b〉γc]]M,[i],g = [[α〈c,b〉]]M,[i],g([[γc]]M,[i],g).
By the induction hypothesis we have that [[α〈c,b〉]]M,[i],g = �([@iα〈c,b〉]) and that
[[γc]]M,[i],g = �([@iγc]). This means:

[[α〈c,b〉]]M,[i],g([[γc]]M,[i],g) = �([@iα〈c,b〉])(�([@iγc])).
Using the definition of function � for type 〈c, b〉, the right hand side of this equal-
ity is �([@iα〈c,b〉@iγc]). By Axiom 8b and properties of maximal consistent sets,
[@i (α〈c,b〉γc)] = [@iα〈c,b〉@iγc]. Thus [[α〈c,b〉γc]]M,[i],g = �[@i (α〈c,b〉γc)].

[Case @j βb] [[@j βb]]M,[i],g = [[βb]]M,[k],g , where [k] is the unique element such
that (F(j))([k]) = [@i
]—and if this holds it means that j ∈ [k] and @j k ∈ �.
Thus [j ] = [k]. Hence [[βb]]M,[k],g = [[βb]]M,[j ],g = �[@jβb] using the induc-
tion hypothesis for βb. Using Axiom 6e and properties of maximal consistent sets,
@i@jβb = @j βb ∈ � and so [@i@j βb] = [@jβb] and �[@j βb] = �[@i@j βb].
Therefore [[@j βb]]M,[i],g = �[@i@jβb].

[Case λucαa] We want to prove that [[λucαa]]M,[i],g = �([@i (λucαa)]). On the
one hand, [[λucαa]]M,[i],g is the function h : Dc −→ Da , that for every element

θ ∈ Dc gives the value [[αa]]M,[i],gθ
uc in Da . As all the elements of Dc are of the form

�([βc]) with βc rigid, we can define the function by

h(�([βc])) = [[αa]]M,[i],g�([βc ])
uc

and then observe that

[[αa]]M,[i],g�([βc ])
uc = [[αa]]M,[i],g[[βc ]]M,[i],g

uc

because [[βc]]M,[i],g = �([@iβc]) by the induction hypothesis for type c. Moreover,
we also know that:

[[αa]]M,[i],g[[βc ]]M,[i],g
uc =

[[

αa

βc

uc

]]M,[i],g

using the fact that βc is rigid and Lemma 13.
On the other hand, �([@i (λucαa)]) is the function h′ : Dc −→ Da that, for

�([βc]) ∈ Dc with βc rigid, returns

h′(�[βc]) = �([@i (λucαa)])(�([βc])) = �([@i ((λucαa)βc)]).
By Axiom 5b for βc we have � (λucαa)βc = αa

βc

uc
, and thus @i ((λucαa)βc) =

@i (αa
βc

uc
) ∈ �, by Axioms 8a and 8b. Hence [@i ((λucαa)βc)] = [@i (αa

βc

uc
)] and

so we have that �([@i ((λucαa)βc)]) = �([@i (αa
βc

uc
)]). This in turn means that

h(�([βc])) = h′(�[βc]) as [[αa
βc

uc
]]M,[i],g = �([@i (αa

βc

uc
)]) by the induction

hypothesis for type a. Thus h = [[λucαa]]M,[i],g = �([@i (λucαa)]) = h′.
The cases we have given illustrate the kind of argumentation required. The omitted

proofs for = and � are straightforward, but the argument for ∀ (like the step for λ

given above) probably requires a little more patience and a taste for superscripts.
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Corollary 36 A pair 〈M, g〉 where M is a basic hybrid Henkin structure and g is
its Henkin assignment is a general interpretation.

Proof We have just proved that every expression has an interpretation in the corre-
sponding domain of the hierarchy, but this is precisely what we require of general
interpretations.

Theorem 37 (Henkin’s Theorem) Every consistent set of formulas has a general
interpretation that satisfies it.

Proof Let � be a consistent set of formulas. By Lemma 26, there exists a maximal
consistent extension � of � which is named, ♦-saturated and ∃-saturated. As � is
named, there exists a nominal k in �. By Theorem 35 and Corollary 36 there is a
general interpretation 〈M, g〉 such that, for all βt ∈ MEt the following holds:

[[βt ]]M,[k],g = �([@kβt ]).
Let ϕt ∈ �. Therefore @kϕt ∈ �. Therefore [[ϕt ]]M,[k],g = [@k
] because
�([@kϕt ]) = [@k
], since @kϕt ∈ �.

Theorem 38 (Completeness) For all � ⊆ MEt and ϕ ∈ MEt , the following holds:
� |= ϕ implies � � ϕ

Proof Standard.

6 Not Quite so Basic

We have proved the basic completeness result for BHTT; as we shall now show,
we have actually done rather more. Work on propositional and first-order hybrid
logic has shown that constructing models out of equivalence classes of nominals has
an important advantage: it more-or-less automatically leads to completeness proofs
for stronger logics and languages. We retain these advantages even in the setting
of higher-order logic. As we shall see, our basic result for BHTT yields further
completeness results when we demand that the accessibility relation R have spe-
cial properties (for example, reflexivity, irreflexivity, symmetry or antisymmetry), or
when we enrich BHTT with various useful modalities (such as the universal modality
E, the difference operator D, and the Priorean operator pairs F and P ).

6.1 Additional Conditions on R

In BHTT we have a single modality � (at least, if we ignore the @i operators) and no
constraints on the relation R used in its interpretation. Thus the completeness result
we have proved is a basic (or minimal, or K) result for a unimodal language. We will
shortly discuss what is involved in adding additional modalities, but let’s first ask: if
we are interested in imposing restrictions on R (that it be transitive, irreflexive, and
trichotomous, for example) how should we proceed?
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Hybrid logic provides some general answers. The simplest is this: if we can find
pure formulas that define the required conditions on R, then adding these formulas
as axioms results in a logic complete with respect to the desired conditions. Now,
for present purposes, a pure formula is simply an expression of type t that does not
contain any non-logical constants or variables; that is, it is built up solely from nom-
inals. And for the example just mentioned (transitivity, irreflexivity, and trichotomy)
an easy axiomatization is available:

♦♦i → ♦i @i¬♦i @i♦j ∨ @ij ∨ @j♦i.

It should be clear that the first formula is valid iff R is transitive, the second iff R

is irreflexive, the third iff R is trichotomous (that is, given two worlds, either the
first can access the second, or they are identical, or the second can access the first).
It follows by standard hybrid logical results that adding these three formulas to our
axiomatization of BHTT results in a system that is complete with respect to the class
of models whose accessibility relation R is a strict linear order.

The pure axioms lead to general completeness results in this way is a reflection
of simple model theoretic facts about hybrid logic; see the section on Model Theory
in the survey by Areces and Ten Cate [3] for a clear discussion. A deeper and more
difficult question is: what conditions on R can be handled in this way? For some
answers, see Ten Cate [13].

6.2 Additional Modalities

We defined BHTT as a system containing only a single modality � (and its defined
dual ♦). For many applications it is common to have a finite collection of box modal-
ities [β] and their associated diamonds 〈β〉, where β ranges over the elements of
some suitable index set B. Now, if BHTT is extended in the obvious way with such
modalities (that is, if each modality [β] is interpreted with respect to a binary relation
Rβ using the familiar Kripke satisfaction definition) the completeness result we have
proved extends in the obvious way. Working in the richer language simply means that
we need a β-indexed collection of axioms and rules of proof. For each modality [β]
we have the β-distributivity axioms and the β-back axioms

[β](ϕ → ψ) → ([β]ϕ → [β]ψ) 〈β〉@iϕ → @iϕ,

the β-generalization rule (if � ϕ then � [β]ϕ), and the β-bounded generalization rule
(if � @i〈β〉j → @j ϕ and j 	= i and j does not occur in ϕ, then � @i[β]ϕ). No new
ideas are needed to extend our completeness result to such multimodal extensions.
Moreover, as just discussed, with the help of pure formulas we can impose additional
conditions on the various relations. For example, to axiomatize a multimodal exten-
sion that utilizes a symmetric relation Ra and an antisymmetric relation Rb simply
add the axioms

@i[a]〈a〉i and @i[b](〈b〉i → i).
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Often multimodal extensions involve interactions between modalities, and where
these interactions can be handled using pure axioms, completeness results are forth-
coming. The classic example is Priorean tense logic.5 Here we interpret two dual
pairs of operators over the same binary relation <, the idea being that the F , G pair
look forward along the relation, the P , H pair backwards:

[[Fϕt ]]M,w,g = T iff for some v ∈ W such that w < v, [[ϕt ]]M,v,g = T

[[Gϕt ]]M,w,g = T iff for all v ∈ W such that w < v, [[ϕt ]]M,v,g = T

[[Pϕt ]]M,w,g = T iff for some v ∈ W such that v < w, [[ϕt ]]M,v,g = T

[[Hϕt ]]M,w,g = T iff for all v ∈ W such that v < w, [[ϕt ]]M,v,g = T

Once again, adding such operators to BHTT and axiomatizing them is straightfor-
ward. We add the G-distribution and H -distribution axioms

G(ϕ → ψ) → (Gϕ → Gψ) and H(ϕ → ψ) → (Hϕ → Hψ),

the F -back and P -back axioms

F@iϕ → @iϕ, and P @iϕ → @iϕ,

and G- and H -generalization and bounded generalisation rules. But how do we cap-
ture the desired interaction between these modalities? By adding the following pure
axiom:

@iFj ↔ @jP i.

It is easy to check that this forces F and P to look forwards and backwards,
respectively, along the same relation.6

Two other modalities are worth mentioning; both have a long association with
hybrid logic: the universal modality E (see Goranko and Passy [20]) and the differ-
ence operator D (see De Rijke [33]). Informally, Eϕ says that at some point in a
model ϕ is true, while its dual A lets us insist that ϕ is true at all points in a model.
And Dϕ says that at a different point of the model ϕ is true, while its dual form D

insists that ϕ is true everywhere else. More precisely:

[[Eϕt ]]M,w,g = T iff for some v ∈ W, [[ϕt ]]M,v,g = T

[[Aϕt ]]M,w,g = T iff for all v ∈ W, [[ϕt ]]M,v,g = T

[[Dϕt ]]M,w,g = T iff for some v 	= w ∈ W, [[ϕt ]]M,v,g = T

[[Dϕt ]]M,w,g = T iff for all v 	= w ∈ W, [[ϕt ]]M,v,g = T

5For some background discussion of higher-order hybrid tense logic, see [1] and [2].
6This in turn permits a further simplification: the Bounded Generalization rule is derivable for pairs of
converse operators like F and P . See [8, 9] for further discussion and details.
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Once again, with the help of pure axioms, we can add either of these operators to
BHTT. Depending on which of the two operators we want, we add the appropriate
distribution axioms, back axioms, and generalization and bounded generalization
rules. And here’s how we capture their characteristic behaviors:

Ei Di ↔ ¬i.

These pure axioms really do accomplish what is required. If RU is the binary rela-
tion interpreting the universal modality, then we want it to have the property that
∀w∀w′RUww′. It is easy to see that Ei defines this property. And if RD is the binary
relation interpreting the difference modality, then we want it to have the property that
∀w∀w′(RDww′ ↔ w 	= w′) . Clearly Di ↔ ¬i imposes this condition on RD .

More can be achieved stronger methods. For example, Goranko [19] uses the
notion of local definability to give a simple hybrid axiomatization of the Until
operator, while Blackburn and ten Cate [8] make use of existential saturation
rules to axiomatize frame classes for which no pure axiom exists. The details of
these refinements are irrelevant here; what matters is the basic point. Theorem 38,
our basic completeness result, is strong. Using standard hybrid-logical methods, it
straightforwardly gives rise to further completeness results.

7 Concluding Remarks

In this paper we defined a hybrid type theory called BHTT. We kept it as simple as
possible: we used only e and t types together with the most basic hybrid apparatus,
nominals and @. We wanted to see whether the Henkin-style completeness tech-
niques used in propositional and first-order hybrid logic extended straightforwardly
to higher-order hybrid logic, and they do—at least, if @i is used as a rigidifying
operator for all types.

We have sketched how our results extend to richer extensions of the basic system,
but that is hardly the end of the story. Many other questions beckon, and three partic-
ularly interest us. The first is to adapt BHTT to deal with variable domain semantics.
In the setting of first-order logic, shifting between constant and variable domains
is relatively straightforward (see Chapter 4 of Fitting and Mendelsohn [16]) but in
higher-order settings we work with function hierarchies, not merely individuals, and
here the choices are not so clearcut; further experimentation is called for. Secondly,
we would like to experiment with a Fitting-style intensional semantics, thus avoid-
ing the restriction to rigid terms. Some authors view rigidity restrictions as unnatural.
We don’t agree with such sentiments—but Fitting’s approach is intriguing and we’d
like to explore it. Thirdly, we intend to add the hybrid ↓ operator (see [3, 5, 19]) to
the system. Although we have not used an intensional type s, BHTT is well attuned
to the structure of 〈W, R〉 thanks to the nominals and @i operators. Adding ↓, which
will let us bind nominals to the world of evaluation on the fly, will further boost
this attunement—with useful consequences (we hope) for both logical elegance and
applications in natural language semantics.
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Appendix: Theorems of BHTT

We list here the BHTT-theorems (and derived rules) required to push the complete-
ness proof through. Only for the more interesting (or tricky) examples are deductions
given. For a detailed discussion of axiomatic proofs in hybrid logic (which discusses
the derived rules introduced below in depth) see Blackburn and Ten Cate [8].

Claim 39 � ϕ
βb

xb
→ ∃xbϕ for βb rigid.

Claim 40 � ∃xa
.

Claim 41 � @iϕ
@iαa

xa
→ @i∃xaϕ.

Claim 42 (Existential Hybrid Barcan) � @i∃xbϕ ↔ ∃xb@iϕ.

Claim 43 If � � ϕ then � � ∀yaϕ for ya not free in �.

Claim 44 If ϕ
@i ca

xa
� ψ then ∃xaϕ � ψ , for @ica not in ϕ, ψ .

Claim 45 If ∃xa@iϕ � ψ then @i∃xaϕ � ψ .

Claim 46 � αa = βa → (γt
αa

va
↔ γt

βa

va
) for αa and βa rigids.

Claim 47 � αa = βa → βa = αa for αa and βa rigids.

Claim 48 (Symmetry) � ∀xaya(xa = ya → ya = xa).

Claim 49 � αa = βa → (βa = γa → αa = γa) for αa , βa and γa rigids.

Claim 50 (Transitivity) � ∀xayaza(xa = ya → (ya = za → xa = za)).

Claim 51 � γ ′〈b,a〉 = γ〈b,a〉 → (β ′
b = βb → γ ′〈b,a〉β ′

b = γ〈b,a〉βb) for γ ′〈b,a〉, γ〈b,a〉,
β ′

b and βb rigids.

Claim 52 (Rigid Comprehension) � ∃x〈b,a〉@i∀yb(x〈b,a〉yb = γ〈b,a〉yb) for γ〈b,a〉
rigid, and yb and x〈b,a〉 not in γ〈b,a〉.

1. � (λxb(γ〈b,a〉xb))yb = (γ〈b,a〉xb)
yb

xb
, for xb, yb not in γ〈b,a〉, by Axiom 5b

2. � (λxb(γ〈b,a〉xb))yb = γ〈b,a〉yb

3. � @i ((λxb(γ〈b,a〉xb))yb = γ〈b,a〉yb), by Rule 2b



C. Areces et al.

4. � ∀yb@i ((λxb(γ〈b,a〉xb))yb = γ〈b,a〉yb), by Rule 2c

5. � ∀yb@i (x〈b,a〉yb = γ〈b,a〉yb)
λxb(γ〈b,a〉xb)

xb

6. � @i∀yb(x〈b,a〉yb = γ〈b,a〉yb)
λxb(γ〈b,a〉xb)

xb
, by Axiom 7a

7. � ∃x〈b,a〉@i∀yb(x〈b,a〉yb = γ〈b,a〉yb), by Claim 39 as λxb(γ〈b,a〉xb) is rigid.

Claim 53 � @ij → @j i.

1. j → (i ↔ @j i), by Axiom 6b
2. @i (j → (i ↔ @j i)), by Rule 2b
3. (@ij → (@i i ↔ @i@j i)), by Axiom 2b
4. @i@j i ↔ @j i, by Axiom 6e
5. @ij → (@i i ↔ @j i), from lines 3 and 4
6. @i i, by Axiom 6d
7. @ij → @j i, from lines 5 and 6

Claim 54 � @ij → (@iϕ ↔ @j ϕ).

1. � j → (ϕ ↔ @j ϕ), by Axiom 6b
2. � @i (j → (ϕ ↔ @jϕ)), by Rule 2b
3. � @ij → (@iϕ ↔ @i@j ϕ), by Axiom 2b
4. � @i@j ϕ ↔ @j ϕ, by Axiom 6e
5. � @ij → (@iϕ ↔ @jϕ), from previous lines

Claim 55 � @j k → @j βb = @kβb.

1. � @j k → (@j (βb = @jβb) ↔ @k(βb = @jβb)), by Claim 54
2. � @j k → (@j βb = @j @jβb ↔ @kβb = @k@j βb), by Axiom 8a
3. � @j k → (@j βb = @j βb ↔ @kβb = @j βb), by Axiom 6e
4. � @j k → (@kβb = @jβb), by Axiom 4a

Claim 56 � @ij → (@j k → @ik).

Claim 57 (Bridge) � @i♦j ∧ @j ϕ → @i♦ϕ.

1. � @j ϕ → (j → ϕ), by Axioms 6b and 1
2. � @k(@j ϕ → (j → ϕ)), by Rule 2b
3. � @i♦k → @k(@j ϕ → (j → ϕ)), by Axiom 1 and Rule 1
4. � @i�(@j ϕ → (j → ϕ)), by Rule 5, Bounded Generalization
5. � @i (�@j ϕ → �(j → ϕ)), by Axiom 2a
6. � @i�@j ϕ → @i�(j → ϕ)), by Axiom 2b
7. � @i@j ϕ → @i�(j → ϕ)), by Axioms 6c and 6a
8. � @j ϕ → @i�(j → ϕ)), by Axiom 6e
9. � �(j → ϕ) → (♦j → ♦ϕ), by Axiom 2band Rule 2b

10. � @i�(j → ϕ) → (@i♦j → @i♦ϕ), by Axiom 2b and Rule 2b
11. � @j ϕ → (@i♦j → @i♦ϕ), by Axiom 1
12. � @i♦j ∧ @j ϕ → @i♦ϕ, by Axiom 1
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Claim 58 � @ik → (@i♦j → @k♦j).

Claim 59 � @i (ϕ ∧ ψ) = @iϕ ∧ @iψ .

Claim 60 (K−1
@ ) � (@iϕ → @iψ) → @i (ϕ → ψ).

1. � @i¬(ϕ → ψ) → @iϕ, by Axiom 1, Rule 2b and Axiom 2b
2. � @i¬(ϕ → ψ) → @i¬ψ , by Axiom 1, Rule 2b and Axiom 2b
3. � @i¬(ϕ → ψ) → (@iϕ ∧ @i¬ψ), by Axiom 1
4. � ¬@i (ϕ → ψ) → (@iϕ ∧ ¬@iψ), by Axiom 6a
5. � (@iϕ → @iψ) → @i (ϕ → ψ), by Axiom 1

Claim 61 (Arrow Name) If � i → ϕ then � ϕ for i ∈ NOM not in ϕ.

1. � i → ϕ, by hypothesis
2. � @i (i → ϕ), by Rule 2b
3. � @i i → @iϕ, by Axiom 2b and Rule 1
4. � @iϕ, by Axiom 6d and Rule 1
5. � ϕ, by Axiom 4

Claim 62 (Paste♦) If � (@i♦j ∧ @jϕ) → ψ and j 	= i and j does not occur in ϕ

and ψ , then � @i♦ϕ → ψ .

1. � (@i♦j ∧ @jϕ) → ψ , by hypothesis
2. � @k@i♦j → (@k@j ϕ → @kψ), by Axiom 1, Rule 2b and Axiom 2b
3. � @i♦j → (@j ϕ → @kψ), by Axiom 6e
4. � @i♦j → (@j ϕ → @j @kψ) , by Axiom 6e
5. � @i♦j → @j (ϕ → @kψ), by Claim 60
6. � @i�(ϕ → @kψ), by Rule 5, Bounded Generalization
7. � �(ϕ → @kψ) → (♦ϕ → ♦@kψ), by Axioms 2a and 1, and Rule 2a
8. � @i�(ϕ → @kψ) → (@i♦ϕ → @i♦@kψ), by Axiom 2b and Rule 2b
9. � @i♦ϕ → @i♦@kψ , by Rule 1

10. � @k@i♦ϕ → @kψ , by Axioms 6c and 6e
11. � @k(@i♦ϕ → ψ), by Claim 60
12. � @i♦ϕ → ψ , by Rule 4 (k does not occur in @i♦ϕ → ψ)
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