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Abstract This work addresses the systematic modeling of
a linear feed drive based on a linear synchronous motor,
a helpful step in control design for precise machine tools
using linear motors. The model considers the electrical
dynamics, ripple, cogging effects, and friction. For rip-
ple and cogging, periodic and aperiodic behaviors are
analyzed, and simple models are proposed to reflect the
observed behavior. Friction is represented by the general-
ized Maxwell-slip model Al-Bender (IEEE Trans Autom
Control 50:1883–1887, 2005), and the particular manner
in which pre-rolling parameters and Stribeck curve were
determined for the current system is shown here for com-
pleteness. Finally, the model shows a good performance
both in simulation and feedforward control.

Keywords Linear motor · Feed drive · Modeling ·
Ripple · Cogging · Friction

1 Introduction

Linear motors are an attractive alternative for machine tool
feed drives due to their high speed and acceleration capa-
bility without the limitations coming from vibration modes
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typical of ball-screw drives [8]. However, unlike ball-screw
drives where mechanical coupling provides certain degree
of robustness, linear motors are more sensitive to force
disturbances. Thus, for design and simulation of a control
strategy, it is convenient to have a model containing as much
information as possible about these forces. This includes the
consideration of pre-rolling friction, which has a major role
on motion reversal error [19, 26].

There are several works which address to some extent
the modeling of certain types of linear motors. One such
model is shown in [18] although the motor model neglects
the electrical dynamics. In addition, it only considers a
simple model for friction, which is represented as pure vis-
cous friction. Furthermore, ripple and cogging are strictly
periodic with position and can be represented by just two
harmonics. More detailed friction models are considered in
[5, 6, 25], which have been employed for control purposes
in several works, such as [22–24]. However, these friction
models are still static and cannot describe pre-rolling fric-
tion. Besides, cogging is represented by a single dominant
spatial frequency sinusoid. A motor model which takes pre-
rolling friction into account is shown in [10]. However, in
this case, modeling and identification are performed for a
linear motor in which force ripple and cogging force are not
an issue. In [29], a model for a linear motor that includes
these effects is given in the context of a drive used in a
grinding process. Nevertheless, it does not take into account
the electrical dynamics. It also uses the simple cogging and
ripple model shown in [18]. A model which considers the
electrical dynamics in some detail is given in [9] although
the friction model employed does not account for pre-rolling
friction and force ripple is not considered.

In the present work, a model of a linear motor feed drive
based on a permanent magnet linear synchronous motor
(PMLSM) is shown. This model considers the electrical
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dynamics of the current loop, motor inertia, friction force,
ripple, and cogging force in a level of detail subsequently
described. As done in [10], the electrical dynamics is mod-
eled by a transfer function. Friction will be represented
by the Generalized Maxwell-slip (GMS) model, which has
been successfully used to describe friction on rotative ball
bearings outperforming other models such as LuGre [27].
As for cogging and ripple, instead of adapting an exist-
ing model to describe these effects, their dependence with
position will be determined first. The periodic and aperi-
odic characteristics of these curves are then analyzed and a
suitable model is proposed.

Section 2.1 describes the actual system used for exper-
imentation as well as an overview of the complete model.
The order of the following sections approximately resem-
bles the order in which the model parameters were deter-
mined for the actual system. The transfer function chosen
to approximate the dynamics of the current loop is detailed
in Section 2.2. The terms involving cogging force and force
ripple are studied in Section 2.3 where a suitable model is
proposed. Section 2.4 is devoted to friction, beginning with
a review of the characteristics of the model as presented by
[11] and followed by the results of the determination of the
model parameters for the actual system. Then, simulation of
the motor behavior under closed loop control is compared to
the actual motion in Section 3, where the impact of simplify-
ing particular parts of the model is also shown. In Section 4,
the performance of the model in feedforward control is also
shown. The paper finally ends with conclusions in Section 5.

2 Model

2.1 System description

The experimental setup includes a permanent magnet lin-
ear synchronous motor (PMLSM) and a current amplifier.
The motor consists of a forcer with an iron-core three-phase
winding and a reaction rail composed of a steel base plate
with permanent magnets. The linear stage, shown in Fig. 1,
is composed of a base plate attached to the motor reaction
rail and ball guide rails and a slide attached to the motor
forcer. The slide moves over the ball guide rails on the
base by means of four ball runner blocks with 8 % preload.

Fig. 1 Linear motor stage

The setup also includes a linear scale which provides posi-
tion feedback both for the current amplifier and for the
measurements performed in this work, with a resolution of
100 nm.

A block diagram for the model of the linear motor is
shown in Fig. 2, where G(s) approximates the electrical
dynamics and its order as well as its parameters will result
from identification.

The output of the block Kf (x) represents the force devel-
oped by the motor for a particular current and is dependent
on the forcer position due to the ripple effect [20]. The
block Fcg(x) is related to the cogging force, which is also
position-dependent. Finally, the block Ff represents the
friction force and it is described by the GMS model [11].
It is assumed that variations of the friction model parame-
ters along the motion range can be neglected. The motion
equation is then given by

Kf (x)i(t)− Fcg(x)− Ff (t, ẋ)− Fe(t) = mẍ (1)

where x represents the position of the moving part and Fe

accounts for the external forces not included in the other
terms. Initially, no assumptions will be made about the
nature of Kf (x) and Fcg(x) besides their static dependence
on position.

2.2 Current loop identification

In contrast to other works where the input of the system is
the motor terminal voltage, such as in [25], the input to the
present system is the reference input of a current controller.
Thus, for the present system, the electrical dynamics corre-
sponds to the dynamics from the amplifier reference input
to the motor current. For the system considered, that input
determines the reference to a PI controller which drives
a voltage source inverter acting on the motor three-phase
winding. The electrical dynamics will be modeled using the
same approach used in [31] for a rotary motor and in [10] for
a linear motor that is the approximation of the current loop
dynamics by a transfer function. Although the present work

Fig. 2 Proposed linear motor model

Author's personal copy



Int J Adv Manuf Technol

follows the same approach than the aforementioned refer-
ences, a description of the signals used and results obtained
is given here for completeness of the whole model.

The experiment consists on applying a suitable voltage
signal as a reference input to the current amplifier and
registering the corresponding feedback current output at a
sampling time of 500 μs. From the different signals used, the
model has been identified using a maximum length pseudo-
random binary signal of order 11. Also, several model
structures with orders ranging from 1 to 5 were fitted to the
data, from which a second order ARMAX model has been
selected. From the data fit and compensating for the mea-
surement delay on the digitized output, the resulting pulse
transfer function from voltage reference to motor current is
given by

G(z) = 0.057909(z+ 0.7461)

z(z2 − 1.404z+ 0.4938)
(2)

corresponding to a pure delay of one sample and a con-
tinuous transfer function with complex conjugate poles
at 112Hz. Figure 3 shows the behavior of the model in
comparison with the real output.

2.3 Cogging force and force ripple model

Cogging force and force ripple are described in several
works, including [18, 29]. Force ripple is an electromagnetic
effect by which the motor force constant varies with position
and is represented by periodic functions in [3, 20, 32].

Cogging force, on the other hand, results from the attrac-
tion between the ferromagnetic core of motor windings and
the permanent magnets on the reaction rail. This is a force
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Fig. 3 Simulated and measured feedback current output

varying with forcer position and exists even when the motor
is not energized. Cogging force is frequently described as
a periodic function of forcer position, such as in [3, 5, 6,
22–25, 30, 32, 33, 35]. However, it may exhibit aperiodic
behavior, as shown in [16] where cogging force is modeled
as a sum of sines and cosines of varying amplitude along
the motor stroke. The varying amplitude is represented by
B-spline functions, and the model shows good agreement to
the measured curve. However, the model may require a large
number of parameters, depending on the number of harmon-
ics considered, the order of the spline, and the number of
magnet segments on the motor axis.

In the present work, the dependence of both effects with
position is determined, and the periodic and aperiodic char-
acteristics of these curves are analyzed. Then, a model is
proposed in order to obtain a reasonable agreement with a
few parameters.

2.3.1 Measurement

The present work uses the setup shown in Fig. 4 to perform
closed loop motions at low velocity for different constant
loads as in [20]. However, instead of fitting a periodic
model, in this work, ripple and cogging curves for the whole
position range will be obtained to analyze their periodic
and aperiodic behavior. Also, the ripple effect is represented
here by the position-varying force constant Kf (x).

Considering the motor Eq. (1) for steady-state motion,
P being the load transmitted by the pulley mechanism
and I (x, v, P ) the corresponding motor current, this equa-
tion can be expressed for positive and negative speeds of
magnitude v > 0 as

Kf (x)I (x, v, P ) = Ff (v)+ Fcg(x)+ P

Kf (x)I (x,−v, P ) = −Ff (v)+ Fcg(x)+ P
(3)

by considering the odd symmetry of the static relationship
between steady-state velocity and friction force according
to the friction model.

Then, from a group of displacements at constant speed v
in both directions although with different constant forces P1
and P2 results that

Kf (x) = 2
P1−P2

I (x, v, P1)+I (x,−v, P1)−I (x,−v, P2)−I (x, v, P2)

(4)

Fig. 4 Setup for cogging and ripple determination

Author's personal copy



Int J Adv Manuf Technol

Once Kf (x) is known, Fcg(x) can be easily calculated.
One way to do this is through motions at constant speed v
in both directions with a load P in which case this function
can be determined as follows

Fcg(x) = Kf (x)

2
(I (x, v, P )+ I (x,−v, P ))− P (5)

It should be noted that this procedure may result in the
term Fcg(x) including other forces not depending on veloc-
ity, such as a constant term when the motor is not horizontal
or a varying term when sealing bellows are present. In such
a case, the modeling of these additional forces will also be
included in the term Fcg(x).

For the actual system, six movements were performed
at a constant speed of 1 mm/s in both directions. For one
pair of motions, there is an applied load of 54.9 N while
on other there is a load of 272.7 N. The remaining pair of
motions is performed without load. For the whole group of
experiments, the corresponding current is linearly interpo-
lated to the same set of position points xi , obtaining for
every motion the function I (xi, v, P ). Figure 5 shows the
curves for Kf (xi) and Fcg(xi).

2.3.2 Model

The sequences Fcg and Kf were previously obtained for
a uniform sampling of the position range of interest. As a
way to assess its periodic and aperiodic behaviors, this work
considers the local variations in frequency content along the
position range. In order to gain insight about the position-
varying spectral characteristics for both terms, the discrete
short time Fourier transforms [17] (DSTFT) XF (n, k) for
Fcg(n) and XK(n, k) for Kf (n) are considered. The sam-
ple index n is related to position as x = nLs for a sampling
of Ls = 0.1 mm, and the frequency index k corresponds
to a spatial frequency of fk = 1/λk = k/(NLs) where
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Fig. 5 Force ripple and cogging force

the frequency sampling factor is N = 750. The DSTFT is
performed with a rectangular window of 750 samples, cor-
responding to a period of 75 mm, i.e., the distance between
pairs of magnets. Figures 6a and 8a show the superposition
of several frequency plots of |XF |/N and |XK |/N for dif-
ferent position values. For convenience, the values shown
on the frequency axis are actually the spatial wavelengths
λk for the corresponding frequencies fk .

Figure 6a shows clear peaks for wavelengths of 37.5,
18.75, and 12.5 mm. Furthermore, magnitude and phase for
these wavelengths seem to remain approximately constant,
as shown in Fig. 7. Therefore, these components account
for the periodic behavior in Fcg(x) and will be modeled by
sinusoidal functions of constant amplitude and phase.

On the other hand, the zero-frequency term undergoes a
significant change with position as can be seen in Fig. 6b,
introducing aperiodic behavior in Fcg(x). In order to obtain
a linearly parameterizable approximation of Fcg(x), a third
order polynomial has been used to represent the variation of
this term.

Then, Fcg(x) has been fitted to the following expression

Fcg(x)=
3∑

k=0

ckx
k+

3∑

k=1

(
ak cos

(
2πkx

37.5

)
+bk sin

(
2πkx

37.5

))

(6)

The same criteria are employed to construct the sim-
plified model of Kf (x) (Fig. 8) except that the 25 mm
harmonic, although similar in magnitude to the 18.75 mm
one at the extremes of the position range, is not included.
This could result in a worst agreement at the ends of the
motor path, but it allows to avoid the significant increase in
the number of parameters that would be required to describe
this varying amplitude and varying phase term, which can
be seen in Fig. 9. Then, the harmonics considered are again
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Fig. 6 Plots from DSTFT of Fcg(x)
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those with wavelengths of 37.5, 18.75, and 12.5 mm, which
are approximated once more by sinusoidal terms of con-
stant amplitude and phase. Figure 8b shows a small variation
of the zero-frequency term except at the end of stroke.
This variation has been considered on the model and the
curve determined for Kf (x) has been fitted to the following
expression

Kf (x)=
2∑

k=0

ckx
k+

3∑

k=1

(
ak cos

(
2πkx

37.5

)
+bk sin

(
2πkx

37.5

))

(7)

To sum up, the simplified models for Fcg(x) and Kf (x)

consist on Fourier polynomials with a fundamental period
equal to the distance between magnets (37.5 mm for the
current system) added to appropriate functions. The added
function is a third degree polynomial for the case of Fcg(x)
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Fig. 8 Plots from DSTFT of Kf (x)
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and a second degree polynomial for the case of Kf (x).
Being these parameterizations linear on the parameters, the
data fitting is performed by a simple linear regression,
obtaining the parameters shown on Table 1. The compari-
son between real and fitted curves is shown in Fig. 10. It
is worth mentioning that a model considering only the peri-
odic part would have increased the rms error in a 93.8 % for
Fcg(x) and 13.6 % for Kf (x).

2.4 Friction model

There is a number of models capable of representing fric-
tion behavior to some extent. A model which has been
widely used is the LuGre model [4], a single-state dynamic
model which captures most of the observed phenomena and
has already been used to model friction on linear motors
in [29]. However, it cannot reproduce accurately the non-
local memory characteristics of pre-sliding friction [11]
and, under certain conditions, may even exhibit steady-
state motion below breakaway force [7]. To overcome these
issues, several other models have been proposed, such as
the elasto-plastic friction model [7], the Leuven model

Table 1 Ripple and cogging force parameters

c0 c1 c2 c3 a1

Fcg −1.95 −0.046 6.6 · 10−4 −1.3 · 10−6 14.1

Kf 69.88 0.009 −3.53 · 10−5 − −1.34

b1 a2 b2 a3 b3

Fcg −13.78 −11.22 0.1 13.04 11.58

Kf 0.54 −0.23 0.55 −0.56 1.26
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Fig. 10 Comparison between real and fitted curves

[13, 21], and the generalized Maxwell-slip (GMS) model
[1, 11]. Besides accurately representing nonlocal memory,
the GMS model presents improvements capturing friction
lag and non-drifting behavior [11]. As mentioned earlier,
friction force is described by the GMS model [1, 11, 14] in
the present work.

2.4.1 GMS model

References [11, 15] describe in detail the GMS model and
show different methods of friction compensation applied to
ball-screw drives. In the system of the present paper, there
is no ball-screw transmission, and friction only occurs at
the linear guideways. The GMS model will be employed to
model friction in these guideways. Although the model will
be employed as shown in Ref. [11], some of the parameters
will be determined in a different manner according to the
particularities of the present system. These parameters are
those corresponding to the Stribeck curve and parameters
related to the pre-sliding regime.

A brief outline of the GMS model as described in [11]
is given for self-containment, as it is required to explain the
particular manner in which parameters were determined for
the present system.

The GMS model can be considered as composed by a
parallel arrangement of N single-state dynamic friction ele-
ments whose common input is the sliding velocity v = ẋ

and where each elementary model contributes with a force
Fi to the total friction force. The total force for a N-element
model results in

Ff (t) =
N∑

i=1

Fi(t)+ σ2v(t) (8)

where σ2v(t) represents viscous friction while the first
term accounts for the contribution of all single-state friction

elements. A block representation of the model is shown in
Fig. 11.

For every elementary model, there is a logic state indicat-
ing whether the element sticks or slips. If an element sticks,
its dynamics is given by

dFi

dt
= kiv (9)

and the element remains in this condition until Fi = νis(v).
Here, ki is the stiffness of the element and νi is a constant
related to the contribution of this element to the total force
satisfying 0 ≤ νi ≤ 1 and

∑
νi = 1. The function s(v)

is such that the friction force for a steady-state velocity v is
given by s(v)+ σ2v. The parameterization of s(v) chosen in
this work is also given in [11] and is as follows

s(v) = sgn(v)

(
Fc + (Fs − Fc)e

−
∣∣∣ v
Vs

∣∣∣
δVs

)
(10)

being Fc the Coulomb force, Fs the static force, Vs the
Stribeck velocity, and δVs the Stribeck shape factor.

On the other hand, if the element is slipping, its dynamics
is given by

dFi

dt
= sgn(v)νiC

(
1 − Fi

νis(v)

)
(11)

where C is called the attraction parameter and the
elementary model keeps slipping until velocity crosses zero.

Fig. 11 Representation of the GMS model including viscous friction
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It should be noted that according to the friction model,
the Stribeck curve, i.e., the static relationship between
steady-state velocity and friction force, is given by the
following odd function of velocity

Ff (v) = sgn(v)

(
Fc + (Fs − Fc)e

−
∣∣∣ v
Vs

∣∣∣
δVs

)
+ σ2v (12)

Reference [11] suggests an identification based on three
dedicated experiments, identification of the Stribeck curve,
determination of the hysteresis parameters νi and ki , and
calculation of the attraction parameter.

2.4.2 Stribeck curve determination

For determination of the Stribeck curve, a series of closed
loop motions at constant speed along the motor stroke were
performed, as done in several works [2, 11, 12, 15]. How-
ever, due to the presence of cogging, the steady-state friction
force is calculated from motion in both directions, taking
advantage of the odd symmetry of the Stribeck curve in
Eq. 12. Thus, friction force is calculated as

Ff (v) = Kf (x)

2
(I (x, v, 0)− I (x,−v, 0)) (13)

A number of constant speed motions were performed
without load in both directions. Then, from Eq. 13, the val-
ues of Ff (v) are obtained for a range of position values,
adopting for Ff (v) the mean along that range. Afterwards,
the values of Ff for several speeds v are fitted to the expres-
sion given in Eq. 12. The resulting parameters are shown on
Table 2 while Fig. 12 shows the good agreement between
real data points and fitted curve.

2.4.3 Determination of the attraction parameter

As suggested in [11], parameter C is determined through
a motion at variable positive speed, avoiding zero velocity
in order to keep all the model elements sliding during the
experiment. Under these conditions, from Eq. 11 and the
derivative of Eq. 8 results

d

dt
(Ff − σ2v) = C sgn(v)

(
1 − Ff − σ2v

s(v)

)
(14)

Equation 1 is used to obtain Ff , from which
dFf

dt is cal-
culated. Finally, a least squares fit of parameter C in Eq. 14
results in a value of C = 10.8N/s.

Table 2 Stribeck curve parameters

Fs[N] Fc[N] Vs

[mm
s

]
δVs σ2 [Ns/mm]

26.1 21.6 3.1 0.6 0.054
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Fig. 12 Comparison between real data points and fitted Stribeck curve

It must be noted that since acceleration is not negligible,
motor inertia has to be determined before calculation of C.
This is done in an open-loop experiment applying a suitable
force reference to the system, resulting in a mass of m =
16.1 kg.

2.4.4 Determination of pre-rolling parameters

Reference [11] recommends to obtain the pre-rolling param-
eters as for the Maxwell-slip implementation of the hystere-
sis function on the Leuven model. It will be assumed that
velocity during the experiment is low enough as to neglect
the viscous friction term and to consider s(v) ≈ Fs . In such
a case, as pointed out in [11], the GMS model reduces to
the aforementioned Maxwell-slip model. Thus, as shown in
[11], friction force can be expressed as

Ff =
N∑

i=1

Wi�i(x, ζi, 	i) (15)

where ζi is a redefinition of the state of element i, 	i is
the maximum spring extension of element i, and Wi is the
maximum Coulomb force for the same element, consider-
ing the model elements shown in Fig. 11. The functions
�i are known, and the model parameters to be determined
are the Wi and 	i . Then, friction force depends linearly on
the Wi , but not on the 	i . The procedure in [11] consists
on pre-assigning the 	i along the range of pre-rolling dis-
placement. Then, as Ff depends linearly on the Wi , these
parameters can be obtained by a simple least squares fit, and
from these, ki and νi are calculated as

νi = Wi

Fs

ki = Wi

	i

(16)

Pre-assigning equally spaced values of 	i as suggested
in [11] resulted in large negative values for some of the Wi .
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This is due to the error in the friction force calculated for
the current system, resulting in irregularities on the shape
of the force-position curve. Because of this, the 	i was
chosen in a different manner. As done in [34], the system
was excited with low-frequency periodic signals of different
amplitude. The excitation with bigger amplitude was used
to determine 	N obtained as half the distance from motion
reversal to the end of pre-rolling region. On the other hand,
the smaller amplitude excitation was used to determine the
values of 	1, · · · , 	N−1 based on the change of slope on
the force-position curve. The procedure is similar to that
in [34], except that the curve approximated by a piecewise
linear function was the force-position curve instead of the
virgin curve of the hysteresis loop. Then, the first N − 1
nodes determined the values of 	1, · · · , 	N−1 as half the
distance from the motion reversal point to the manually
selected knots. However, in contrast to [34], these values
were then used to obtain the rest of the parameters by a
least-squares fit as follows.

Applying the condition on the Wi regarding the break-
away force Fs , that is WN = Fs − ∑N−1

i=1 Wi , the force
equation can be expressed as

Ff (k)− Fs�N(k) =
N−1∑

i=1

Wi(�i(k)−�N(k)) (17)

where W1, . . . ,WN−1 can be determined from a least
squares fit. Once obtained these values, WN is calculated as

WN = Fs −
N−1∑

i=1

Wi (18)

and the parameters νi and ki are determined as in Eq. 16.
Figure 13 shows the actual pre-rolling friction data in con-
trast to the simulated model output for the smaller amplitude
excitation, while the model parameters are shown in Table 3.

3 Model performance in simulations

The model proposed in this work can be used for simula-
tion of linear motors. Therefore, in this, section the model
performance in simulations is shown compared to measured
data for the actual system. Figure 14 shows measured and
simulated model data for a position-controlled linear motor
under a sinusoidal position reference with an amplitude of
30 mm and a 6-s period, where only the top portion of
a motion reversal is considered due to its significance in
the induced error evaluation. From Fig. 14a, it can be seen
that the output of the complete model, that is with GMS
friction and including aperiodic terms in cogging, shows a
good agreement with the measured data. Now, it is possi-
ble to evaluate the contribution of the relevant submodels.
For example, when the aperiodic terms are not considered
in the cogging model, the error increases as can be seen in
Fig. 14b. Also, there is an important error increase at points
of motion reversal when friction is represented by a simple
static model instead of the GMS model, as can be seen in
Fig. 14c.

4 Model performance in feedforward control

As mentioned earlier, the GMS model is capable of captur-
ing most of the observed friction phenomena. As such, it can
be expected to be able to compensate most of the friction
induced errors when incorporated into a feedforward term in
combination with a simple linear closed loop controller. In
this way, a state-space controller has been tuned, preceded
by a commonly used pre-filter (ZPETC-Zero Phase Error
Tracking Controller) for positioning systems [28], with a
feedforward signal to compensate friction and cogging. A
diagram of the control set on the system is shown in Fig. 15.

The reference is a sinusoidal with an amplitude of 5 mm
and a 6-s period. Figure 16a shows the position error with

Table 3 GMS model parameters

Element νi ki
[ N

mm

]

1 0.17 1,152.07

2 0.13 377.23

3 0.30 215.33

4 0.017 9.39

5 0.38 87.66
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Fig. 14 Top reversal portion of a sinusoidal motion. Solid line
measured position, dashed line simulation results

the linear controller without feedforward compensation,
showing a maximum value of 27 μm at the motion rever-
sal and 13 μm at the points of maximum velocity. After
that, feedforward compensation was added but only with a
Tustin-based model for friction. The parameters used for the
Tustin parameterization are those previously obtained, as
shown in Table 2. With this term, the error at motion reversal
decreases to 23 μm and a second peak appears, as shown in
Fig. 16b. However, the error in the area of maximum veloc-
ity was reduced to an error band of approximately ± 6 μm.
Nevertheless, when the GMS model is used, the error at
motion reversal is reduced considerably to 11 μm, and in

Fig. 15 Control diagram for the experiment
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Fig. 16 Feedforward control performance

most of the trajectories, the error is bounded to an error
band of about ±4 μm, as shown in Fig. 16c. This indicates
the importance of including a friction model considering the
pre-rolling regime whenever performance at motion reversal
is important.

5 Conclusions

A model for an iron-cored PMLSM under current control
is shown in this work. The model includes cogging force,
ripple effect, friction, and the electrical dynamics of the
current loop. Model parameters have been obtained for the
present system, and model performance has been evaluated
in both simulation and feedforward control. The procedure
followed in the determination of the complete curves for
cogging and ripple for the present system has been shown.
For both curves, their frequency content was subsequently
analyzed as a function of position in order to assess aperi-
odic variations along the motor stroke. In general, validation
data shows reasonable agreement between the model and
real data. The main conclusions are:

– The particular way in which the experiments at con-
stant speed and ulterior data processing were performed
in Section 2.3.1 allowed to visualize the periodic and
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aperiodic behavior of cogging and ripple terms without
additional measurement equipment.

– Although the cogging curve exhibits a predominantly
periodic behavior, clear aperiodic behavior has also
been verified. The same can be concluded about ripple
except that aperiodic behavior is less significant.

– With only a few additional terms to a purely periodi-
cal model, a considerable reduction of the curve fitting
error can be obtained for the cogging curve. A similar
result can be obtained for ripple curves except that the
improvement is less significant.

– Selecting some of the parameters (	i) needed for
the GMS model in the particular manner shown in
Section 2.4.4 has reduced the problem of large nega-
tive values in certain parameters (Wi) required to be
positive.

– The model performance at the points of motion reversal
is clearly improved when using the GMS model as a
result of its capability to represent pre-rolling friction.
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