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Abstract We characterize the weak-type boundedness of the Hilbert transform H on
weighted Lorentz spaces AL (w), with p > 0, in terms of some geometric conditions
on the weights # and w and the weak-type boundedness of the Hardy-Littlewood
maximal operator on the same spaces. Our results recover simultaneously the the-
ory of the boundedness of H on weighted Lebesgue spaces L” (1) and Mucken-
houpt weights A, and the theory on classical Lorentz spaces A”(w) and Arifio-
Muckenhoupt weights B),.
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1 Introduction and Motivation

In this paper, we characterize the weak-type boundedness of the Hilbert transform on
weighted Lorentz spaces

H: AP (w) — AP (w), (1.1)
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if 0 < p < 00, and H is the Hilbert transform defined by

1
Hf(x) =~ lim F)
T e—0t x—yl>e X — Y

dy,

whenever this limit exists almost everywhere. We recall (see [15, 16]) that, given u,
a positive and locally integrable function (called weight) in R and given a weight w
in R, the Lorentz space AL (w) is defined as

00 1/p
A{Z(w):{feM(R):IIfIIAg(w)=</O (f:a))pw(r)dt) <oo},

where M = M(R) is the set of Lebesgue measurable functions on R, f* is the
decreasing rearrangement of f* with respect to the weight u [5]

fi@y=infly>0:u({xeR:|f)|>y}) <1},

with u(E) = f g 4(x)dx, and the weak-type Lorentz space is
AT ) ={ f € MENFI ypoeg) =sup fEOW /7 < 00,
t>0

where W(t) = fot w(s)ds. In order to avoid trivial cases, we will assume that
u(x) >0,a.e. x eR.

The motivation for studying (1.1) comes naturally, as a unified theory, from the fact
that weighted Lorentz spaces include, as particular examples, the weighted Lebesgue
spaces L?(u) and the classical Lorentz spaces A” (w), and in both cases the bound-
edness of the Hilbert transform is already known [9, 12, 20]. They also include the
case of the Lorentz spaces L7 (u), where only some partial results were previously
known [8].

(1) If w =1, (1.1) is equivalent to the fact that

H:LP(u)— L")

is bounded, and this problem was solved by Hunt, Muckenhoupt, and Wheeden [12].
An alternative proof was provided in [9] by Coifman and Fefferman and the solution
is the A, class of weights, if p > 1 [17]:

1 1 p=1
sup(—/u(x)dx) (—/u‘”“"”(x)dx) < 00,
1 \1J; 1] J;

where the supremum is considered over all intervals I of the real line.
This condition also characterizes the strong-type boundedness

H:L?(u)— L?(u),
andif p=1

H:L'(u)— L")
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is bounded if and only if u € Ay:
Mu(x) < Cu(x), ae.xeR,

with M being the Hardy-Littlewood maximal function:

1
Mf(x)=sup— /I|f(y)|dy,

xel |I|

where the supremum is taken over all intervals / containing x € R.
Recall [10] that a weight u € A if and only if there exist C;, > 0 and § € (0, 1)
such that, for every interval I and every measurable set £ C I,

“EB) ¢ <@)3 (1.2)
u(l) = "\11)” '

and it holds that

Aso = UAP.

p=1

(ii) On the other hand, if # = 1, the characterization of (1.1) is equivalent to the
boundedness of

H: AP (w) — AP (w),

given by Sawyer [20]. A simplified description of the class of weights [19] that char-
acterizes this property is B, oo N B, where a weight w € B if

r t r
/0 %/0 w(s)dsdth/(; w(s)ds, (1.3)

forall r > 0, and w € B « if the Hardy operator

1 t
Pf@) = ;/0 f(s)ds

satisfies that

P:L”

fee (W) —> L7 (w)

is bounded, where
LE. (w)={f € LP(w): f is decreasing}.

These weights have been well studied (see [3, 6, 18]) and it is known that if p <1
then, w € By  if and only if W is p quasi-concave: for every 0 <r <t < 00

W _ W)

P~ P’
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and if p > 1, By oo = Bp, where w € B, if

rp/ Mdth/rw(s)ds (1.4)
r 0

tp
for every r > 0. Moreover, for every p > 0,
M : AP (w) — AP (w),

if and only if w € By -
If we consider the strong-type boundedness

H: AP (w) — AP (w),

this is equivalent to the condition w € B, N B,.
In [1] we gave the following characterization of the weights w for which (1.1)
holds under the assumption that u € A;:

H:Al(w)— A (w) <= weB,~NBi, p>0.
We also proved that if p > 1 and u € Ay, then
H:A(w)—> Af(w) <= weB,NBL.

The main result of this paper solves the weak-type boundedness of H for a general
weight u, as follows:

Theorem 1.1 For every 0 < p < 00,
H: AL (w) — AP (w)

is bounded if and only if the following conditions hold:

(1) ueAx.
(ii) w € BZ,.
(i) M : AP (w) — AP (w) is bounded.

Remark 1.2 The necessity of the condition u € A in (i) was, for us, an unexpected
result since in the case of the Hardy—Littlewood maximal operator it was proved
in [6] that u € A, or even the doubling property, was not necessary to have the
corresponding weak-type boundedness; that is

M:AP(w) - ADCw) & ueAs.
Remark 1.3 Tt is worth mentioning that the characterization of the weak-type bound-

edness of the Hardy—Littlewood maximal operator in terms of the weights # and w
was left open in [6], for p > 1. The case p < 1 is given by the following condition [6]:
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for every finite family of disjoint intervals {/ j}jj.: 1> and every family of measurable

sets {Sj}jj.zl, with §; C I}, for every j, we have that

EK95253522_<67HMX<}§1)”
WuUl_ S~ 1=i=s\ISj1)

We list now several results that are important for our purposes [1, 6]:

Proposition 1.4 (a) AL (w) and AL (w) are quasi-normed spaces if and only if w
satisfies the Ay condition; that is, for every r > 0,

WQr) < CW(r). (1.5)
() Ifu ¢ L'(R), w ¢ L'(R") and w € Ay, then C°(R) is dense in Alj (w).

Definition 1.5 The associate space of AL (w), denoted as (AL (w))', is defined
as the set of all measurable functions g such that

| [ f0)g(x)u(x)dx|
||g||(A5’°°(w))’ = su <00
feal®wy I lapew)

In [6], these spaces were characterized as follows:
Proposition 1.6 [6] If0 < p < oo, then
(AL @) = al(w07).

Proposition 1.7 [1] Assume that the Hilbert transform H is well defined on AL (w)
and that (1.1) holds. Then, we have the following conditions:

(@) ugL'(R) and w ¢ L'(RT).
(b) There exists C > 0 such that, for every measurable set E and every interval I,
such that E C I, we have that

Wwa»<c(gg”
WwE) = \IEl) -

In particular, W o u satisfies the doubling property; that is, there exists a constant
¢ > O such that W(u Q1)) < cW(u(l)), for all intervals I C R, where 21 denotes
the interval with the same center as I and double the size length.

(c) W is p quasi-concave. In particular, w € A;.

(d) weBp .

As usual, we shall use the symbol A < B to indicate that there exists a universal
positive constant C, independent of all important parameters, such that A < CB.
A~ B means that A < B and B < A.
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Taking into account Proposition 1.7, we shall assume from now on, and without
loss of generality, that

wedy, u¢L'(R) and w¢L'(RT).

Also, we want to emphasize that, for a weight # in R we say that u satisfies the
doubling property or u € A, if, for every interval I, u(21) < u(I), while in the case
of a weight w in R™, the condition w € A; is given by (1.5).

Let us start by giving some important facts of each class of weights appearing in
our results.

2 Several Classes of Weights
2.1 The B}, Class

In this section we shall study weights satisfying (1.3) and we shall prove several
properties that will be fundamental for our further results.

Lemma 2.1 Let ¢ : (0, 1] — [0, 1] be an increasing submultiplicative function such
that o(A) < 1, for some A € (0, 1). Then,

¢ 35 1 +log(1/x)°

Proof Since 0 < A < 1, given x € (0, 1), there exists k € N U {0} such that x €
[kk+1, kk) and, using that (1) < 1, it is clear that

sup(M)’ (14 (j + Dlog(1/1)) = C. < o0.
jeN

Therefore,

. . I 1
p0) <9(M) <0 S T h Diog(1/3) ~ T Tog(1/x)’

as we wanted to see. O

Corollary 2.2 If ¢ : (0, 1] — [0, 1] is an increasing submultiplicative function, the
following conditions are equivalent:

(1) There exists A € (0, 1) such that ¢ (1) < 1.
(2) 9(x) < (1 +1log(1/x)~".

(3) Given p >0, p(x) < (1 +1log(1/x))~P.
@) limy_0p(x) =0.

Proof Clearly (2), (3) and (4) imply (1) and, (2) and (3) imply (4). On the other
hand, by Lemma 2.1, (1) implies (2). Hence, it only remains to prove that (1) im-
plies (3). Suppose that ¢(1) < 1 and take p > 0. If y = ¢!/7, then / is also increas-
ing, submultiplicative and ¥ (A) < 1, and by Lemma 2.1 we get (3). Il
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In what follows, the following function will play an important role,

— W(st)
W) = .
0= %

Proposition 2.3 The following statements are equivalent (see also [2]):

(i) we B, .
(i1) There exists ) € (0, 1) such that W (L) < 1.

(i) o S (1+log(s/0)~", forall 0 <1 <s.

(iv) Given p > 0, m < (1 +4log(s/1)" P, forall0 <t <s.
(v) W) =0.
(vi) For every € > 0, there exists 6 > 0 such that W(t) < eW (s), provided t < 4s.

Proof Since W is submultiplicative we have, by Corollary 2.2 and letting ¢ =
WKQ, 1], the equivalences between (ii), (iii), (iv) and (v). Also, note that if (vi) holds,
then taking A =1 /s, we get W (As) <eW (s), for every s € [0, 0o) if A < §, and hence
we get (v). On the other hand, taking + < As, we get, by (v), that W(t) < eW(s)
whenever ¢t < §s.

Now, if (i) holds, for every s <r,

Wil < [ a<wo),
N

N

and since W is increasing we deduce that W(s)(1 + log ?) < W(r), and (iii) holds.
On the other hand if (iv) holds with p = 2, then

fr W dt SW(r) /r(l +10g(r/t))_2ﬂ SW(r),
0 t 0 t
and hence (i) holds. Il

Proposition 2.4 [2, 19] Let Q be the conjugate Hardy operator defined by

© d
orm=[ ro.
t S
Then, for every 0 < p < oo,
Q:L) (w)— LP®w) <<= weBl <= Q:L] (w)— L’(w).

dec dec

Using now interpolation on the cone of decreasing functions [7], we obtain the
following corollary:

Corollary 2.5 Let 0 < p < 00. Then,

weBl < Q:LI7w)— LP®w).

dec

Birkhauser



J Fourier Anal Appl (2013) 19:712-730 719

2.2 The B o Class

As was mentioned in the introduction, if p > 1, w € B « if and only if w € B, and
in this case the following result follows:

Proposition 2.6 If1 < p < oo and w € By, , then

u(E)

IXE I 22 (pyy 2 WP (u(E))

Proof By Proposition 1.6, we obtain that

u(E) 1
00 Ny = — dt,
”XE”(AL’ (w)) /() Wl/p(t)

but, since w € B, we have that [21],

r 1 r
/ dt < ,
o WUr(r) wi/r(r)

and hence,

u(E) </”<E> 1 < u(E)
WUrw(E) ~Jo  WUP@) ™~ WUP(u(E))’

as we wanted to see. O
23 ue As and w € BX,

It is known that, if u € A, then there exists g > 1 such that

ud o <ﬂ)q @.1)
u(E) ~\IE|) "’ .

for every interval / and every set E C [ [14, p. 27].

Proposition 2.7 We have that u € Ay, and w € B%, if and only if the following con-
dition holds: for every ¢ > 0, there exists 0 < n < 1 such that

W (u(S)) <eW(u(D)), (22
for every interval I and every measurable set S C I satisfying that | S| < n|I|.

Proof Let us first assume that w € BY, and u € Ax. Then, by Proposition 2.3 we
have that, for every ¢ > 0, there exists § > 0 such that W(¢) < eW(s), whenever
t <3és.

On the other hand, if S C I is such that |S| < n|I|, for some 1 > 0,

u(S) B
LYo () <cur,
u(l) 1]
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where r € (0, 1) and C,, > 0 are constants depending on the A, condition. So, choos-
ing n € (0, 1) such that C,n" < § we obtain the result.

Conversely, let us see first that u € Ay. Let e =1 /2"’1, with £k € N and let
g < l/ck, where ¢ > 1 is the constant in the A, condition of w. Let § = §(¢’) be
such that, by hypothesis, |S| < §|I| implies,

1
W(u(S)) <e'W(u)) < C—kW(u(I)).

If

I _
ZES; < 2k1 we get

1 u(l) 1
W(u(9) < C—kw<mu(5)> < EW(u(S)),

which is a contradiction. Hence, necessarily u(S) < 2,(#_]u(l ) =¢eu(I). Thus, we have
proved that,

Ve>0,38>0; |[S|<8|I] = u(S)<eud),

and this implies that u € Ay [10].

Let us now prove that w € B} . By (2.2), we have that there exists A < 1 such that
W(u(E))/Wu(l)) <1/2,provided E C I and |E| < A|I].

Now, since u € As, We have by (2.1), that there exists g > 1 and C,, > 0 such that,

forevery S C I,
N u(s)\"4
—<C 2.3

1|~ “(u(l)) ’ @3

and hence if we take 8 such that C,8'/9 < X, and S C I such that u(S)/u(l) <6, we
obtain W (u(S))/Wu(l)) < 1/2.

Then, if 0 < # < §s and we take an interval I such that u(/) = s and S C [ satisfies
u(S) =t, we obtain W(t)/W(s) < 1/2, and consequently W (8) < 1. The result now
follows from Proposition 2.3. g

3 Main Results

It is known (see [11, p. 256]) that if f € C2°, then

(Hf) = f*+2H(fH), 3.1
and, using this equality, it was proved that, if p > 1,
H:LP - L' = H:L” L%,
Using the same sort of ideas we obtain the following result:

Birkhauser
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Theorem 3.1 If (1.1) holds, for some 0 < p < 0o then, for every r > p,
H: A (w) — Al (w)
is bounded.

Proof By (3.1), we have that

1/2 1/2

IHFI| 2000, —||(Hf)2||Am =2 +2H(HD) fpoe )

<C(

1/2
2wy T |H(FH) HA{,"“’(w))
1/2
< (CNS W apny, + ColFHF Nagn)
Now, we have that

(FHf);(1) < fr(t/2)(Hf);(t/2)
and hence, since w € Aj, we obtain that

1/p

I HF Py S ( fo (@) ((HE0) w(@) dt)

= U r 1/p
:</o %(W‘“Ww(fff);(n)pw(nd,)

< WHF N znco ) 11 g2

where the AJ'” (w) spaces are defined [6] by the condition

o0 r_y 1/p
11 g7 ) = ( / FroPwa (r)w(r)dt) < o0,
0
Therefore, we have that

VHF 1 200, S O I 2nse )+ ColF Il jzrn g I W yaos

(w)

and, consequently,

H 2 2

A By Mgy | VT,
2 — 2 P :

”f”/‘gp,p(w) ||f||A§p.p(w) ”f”/\gl”l’(w)

Using that Aip’p(w) — Aip’oo(w), we obtain that

p

’

VHF I g2poc 0y \ 2 |1 y2poc
<A7<w>> <ctrc, i w

||f||Ag[7~P(w) ||f||A5Pv[7(w)

Birkhauser



722 J Fourier Anal Appl (2013) 19:712-730

from which it follows that

VHF I g2roo gy S UF g2
and hence

H: Aip’P(w) — Aﬁp’oo(w)

is bounded. Finally, by interpolation (see [6, Theorem 2.6.5]), we obtain that, for
every p < r <2p,

H: AL (w) — Al (w)

is bounded. The result now follows by iteration. g
Lemma 3.2 Ler 0 < p < o0 be fixed. If (1.1) holds, then
”H(uf)”_l H (AP (w)y 5 ”f”(ALf"‘DO(w))/-

Proof The result follows easily from the definition of the associate spaces and the
fact that

[ nwswax=— [ dowrwas. .
Lemma 3.3 If p > 1 and (1.1) holds then, for every measurable set E,

sup Jr 1 Huxe)(x)|dx < u(E) ’
P WYPu(F) WP (u(E))

where the supremum is taken over all measurable sets F'.

Proof Using duality and Lemma 3.2, we can prove that (recall that u(x) > 0,
ae. x € R):

fF|H<uxE)(x>|dx:fF|H<uxE>(x>u—1<x>|u<x)dx

-1
S lixe ||(A5~°°(w))/ | xF ||A{j(w),

and the result follows by Proposition 2.6. O
As an immediate consequence, we obtain the following:

Corollary 3.4 If (1.1) holds for some 0 < p < 00, then
1
sup —— /]H(ux[)(x)’ dx < 00, 3.2)
roull) Jg

where the supremum is taken over all intervals 1.
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Proof By Theorem 3.1, we can assume that p > 1 and therefore Lemma 3.3 holds.
Taking F = E = I in this lemma, we obtain the result. O

Theorem 3.5 If H satisfies (1.1) for some 0 < p < 00, then u € Aso.

Proof 1t is known that if

1
Cf(@):p.v.f de
0

tan (6 — x)
is the conjugate operator, then for an f € LI(O, 1) such that Cf € Ll(O, 1), the

non-tangential maximal operator Nf € L0, 1) [5]. Moreover, if f =0, itis also
known [5] that Nf &~ M f and, in fact,

1 1 1 1 1
/ Mf(x)dng f(x)dx—i—/ |Cf(x)\dx5/ f(x)dx—i—/ |Hf (x)|dx.
0 0 0 0 0

Now, if f is supported in an interval I = (a, b), we can consider f; defined on
(0, 1) as fr(x) = f((b — a)x + a) and, by translation and dilation invariance of the
operators M and H, we have that

/Mf(x)dx< /f(x)dx+ /|Hf(x)’dx

7] 7] 7]

Consequently, if we take f = uy; and use (3.2) we obtain that, for every interval I,
fM(u)u)(x)dx Sull),
I
and hence u € A [13, 22]. O

It was proved in [1] that if u € A}, the weak-type boundedness of H implies that
w € B%,. Now, an easy modification of that proof (we include the details for the sake
of completeness) also shows that if u € A, the same results holds.

Theorem 3.6 If H satisfies (1.1) for some 0 < p < 00, then w € B,.

Proof Let 0 <t <s < oo. Since u ¢ L'(R), there exists v € (0, 1] and b > 0 such

that
bv b
t:/ u(rydr 5/ u(r)ydr =s.
—bv —-b

Now, simple computations of the Hilbert transform of the interval (0, ) show [1]
that, for every b > 0, and every v € (0, 1],

Birkhauser
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bv —p
W([,, u(s)ds) < (1 +log %) 3.3)

W’ usyds) ~

and hence

W (1) 1\77?
—W(s) < (1 + log ;) .

Let S = (—bv,bv) and I = (—b, D). Since u € A, we obtain by (2.3), that there

exists g > 1 such that
N u(S) 1/q £\ Ve
V=— < = -
1]~ \u(l) s

W AT
W) ~ <1 + log t) .

and therefore

From here, it follows by Proposition 2.3 that w € BZ,. O

Our next goal is to prove that
H:Af(w)—> AT w) = M:Alw)— Al w).

Let us start with some previous lemmas. We need to introduce the following no-
tation: given a finite family of disjoint intervals {/;};, we shall denote by I = 1011;.
Then,

50
* — ..
7= 5
j=-50
where [; ; is the interval with |; ;| = |I;],

dist(1; j, Ii) = (1jl = 1)Ll j#0 34

and such that ; ; is situated to the left of I;, if j <0, and to the right, if j > 0. Also,
Lio=1.

If the family of intervals {/;}; are pairwise disjoint, we say that {/;}; is well-
separated.

Lemma 3.7 Let u € A;. Then, given a well-separated finite family of intervals {I;};,

it holds that
- -

1

for any choice of j; € [—50, 50].

Birkhauser
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Proof Since w is also in A,, we have that

wl/p (u (LlJ 15,,,',»)) < wl/r (u (LlJ Ii*>> —wl/p <Xl:u(1l*)>

() (o U)

1

On the other hand, I; C I;‘ i and hence

”(U 1i> = Zu(li) S ZM(I:]-,-) S Z“(li,j;) =M<U Ii,ji)

i i i

o)) o)

1

and therefore

and the result follows. O

Lemma 3.8 Let f be a positive locally integrable function, ). > 0 and assume {1},
is a well separated family of intervals so that, for every i,

fnd
,\s—f” J;[y| Y oo

Then, for every 1 <i < m, there exists j; € [—50, 50]\ {0} such that

|H(fXU,'~":11i)(x)’ > %, forevery x € UI,-,J-,..

ieJ

Proof Given 1 <i <m, let us define, for every x ¢ | J/_, I,

i—1 m
Ai<x>=2/l W 4y gw=Y [ L2,
j=1"14

xX—y m LY
and

Ci(x) = Ai(x) + Bi(x).
If we write g = f xym, 1> we have that

Hg(x)=Ci(x) +

I;

f dy.
T

It also holds that if I; = (a;, b;), then A;, B;, and hence C;, are decreasing functions
in the interval (b;_1, a;).
Let us write I; _1 = (a;,—1, bi —1).

Birkhauser
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(a) If Ci(a;,—1) < A/4, then C;(x) < A/4, for every x € I; _ and since for these x,

f» y‘ o >f,,.f(y>dy2%

y >
LX—y L 1x =yl 21|

we obtain that, for every x € I; _;

A
Hg(x) < _Z

4>|>J
l\.)|>—’

and consequently |Hg(x)| > %, for every x € I; _;. Hence, in this case, we
choose j; = —1.

(b) If Ci(a;,—1) > A/4, then C;(x) > 1/4, for every x € I; ; with j € [-50, —2].
Now, by (3.4), we have thatif x € [; ;,

d
fO) dy‘=f fQ) 4y S IO 2
L 1x =yl dist(f; ;, I;) ~ 1jl—1

LXxX—=y
and thus, if we take j = —17, we obtain that, for every x € I; _17
Hg(x)zé—&=&,
4 8 8
and consequently, in this case, with j; = —17 the result follows. O

Theorem 3.9 If p > 0, then
H:Al(w) > AP®w) = M:Alw)— AP w).

Proof Let us consider a positive locally integrable function f. Let A > 0 and let us
take a compact set K such that K C {x : M f(x) > A}. Then, for each x € K, we can
choose an interval 7, such that

[ fo)dy
< — <
Il

Then, considering K C |J, g I, we can obtain, using a Vitali covering lemma,
a well-separated finite family {/;}7" | C {I,},, such that K C J; 31" and hence,

WP (u(K)) < W”P( <U31 )) < Wl/p(u(U Ii)). (3.5)

i

Now, by Lemma 3.8, we obtain that there exists j; such that

U iji C {|H(fXU"’11)(x)|>_}
i=1
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Hence, by Lemma 3.7, we have that

()= ((0e)

1 l

< W<u<{|H(fxu;”1 )| = %}))

1
< p
< 1)
and by (3.5), we obtain that
AWP ((K)) S -

Finally, the result follows by taking the supremum on all compact sets K C
{Mf > A} 0

We finally present the proof of our main Theorem 1.1.

Proof of Theorem 1.1 1f (1.1) holds, then we have, by Theorems 3.5 and 3.6, that u €
A and w € BX,. Also, by Theorem 3.9, the weak-type boundedness of M follows.
Conversely, it was proved in [4] that if u € A,

(H* )5 () S (QMf)5) (/).

for all t > 0, provided the right hand side is finite, where

[ 6] dy‘
x—y|>e X — Y

is the Hilbert maximal operator. Then, by Corollary 2.5 and the boundedness hypoth-
esis on M, we have that

H*f(x)zlsup

T >0

[ f gy S S0 WO QM5 0/4)
u t>
o0
<sup WO PPN S / FrOPw()d,
>0 0
and therefore
H*: AL (w) > AP (w)

is bounded. Now, since C2° is dense in AP (w) and Hf (x) is well defined at almost
every point x € R, for every function f € CZ°, it follows by standard techniques that,
for every f € AL (w), Hf (x) is well defined at almost every point x € R and

H: AP (w) —> AP (w)

is bounded, from which the result follows. O
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Observe that we have also proved the following result:

Theorem 3.10 [f0 < p < oo, then
H*: Al (w) — AL (w)
is bounded if and only if conditions (1), (i1) and (iii) of Theorem 1.1 hold.

Taking into account Remark 1.3 and Proposition 2.7, we have the following char-
acterization of (1.1), in terms of geometric conditions on the weights, in the case
O<p<l.

Corollary 3.11 If 0 < p < 1, (1.1) holds if and only if u € As, w € BX, and for
every finite family of disjoint intervals {I j}jj.zl, and every family of measurable sets
{Sj}J with §; C 1}, for every j, we have that

j=r
WU 1) <C max <|I—’|)p (3.6)
Ww(UJi_, S0~ 1==/\IS;l
or equivalently (3.6) holds and, for every € > 0, there exists 0 < n < 1 such that
W(u(S)) < eW (u(D)),
for every interval I and every measurable set S C I satisfying that | S| < n|I|.

As mentioned in Remark 1.3, the characterization of the weak-type boundedness
of M in the case p > 1 was left open in [1] and it will be studied in a forthcoming

paper.
3.1 Application to the L?9(u) Spaces

In the case of the Lorentz spaces L”9(u) we observe that LP9(u) = Af(w) and
L) = AT (w), with w(r) = 19/P~1 and since in this case w € B}, and the
boundedness of

M : LP9(u) — L)

is completely known (see [6, Theorem 3.6.1]), we have the following corollary, ex-
tending the result of [8, Theorem 5] in the case of the Hilbert transform.

Corollary 3.12 For every p,q > 0,
H:LP%(u) — L7 (u)

is bounded if and only if p > 1 and
(@) ifp>landg>1:ueAy;
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p
0 <()
u(S) S|
for every measurable set S C I

(c) if p=1, then necessarily q < 1 and the condition is u € A.

®) ifp>landqg <1:

Remark 3.13 We observe that Corollary 3.12, together with Theorem 3.9, gives us
that,if p>1,g>1landu € A, then M : L”9(u) — LP-°°(u), which was proved
in [8].
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