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Abstract

The main dials of the back face of the Antikythera Mechanism have partially survived 
together with the pointer of the upper dial and a few remains of the mechanism that 
supported and rotated it. The reconstruction of this mechanism, described in this 
article, fits perfectly its description in the Mechanism’s inscriptions. Our results also 
show that both spirals were Half Circles spirals, drawn from two different centres. 
The unwanted eccentricity that would be produced from the pointer’s being placed 
at one of the centres is proven to have been ingeniously avoided with the appropriate 
drawing of the cell divisions. 
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1. Introduction

The Antikythera Mechanism, the 2000-year old astronomical computer, has 
unfortunately not fully survived, its remains being broken into several fragments.1 
Its back face, bearing two main dials, both in the form of spirals, is preserved in 
Fragments A, B, E and F.2 Figure 1 shows computer tomography (CT) slices3 of 
Fragments A, B, E and F. 

The upper back dial had 235 divisions in a five-turn spiral, with 47 divisions per 
turn that represented a 19-year calendar (235 lunar months) known as the Metonic 
cycle.4 The Metonic cycle was equivalent to 12 years of 12 lunar months and 7 years 
of 13 lunar months (12 × 12 + 7 × 13 = 235) and reconciled remarkably well the 
solar year with the lunar months. The extra month is called intercalary. Fragment B 
preserves the surviving part of the Metonic dial (almost one third of it), its centre as 
well as part of the pointer whose guiding pin moved through the gap between the 
spiral scales. The last gear transferring the motion to the pointer is missing. 
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Fig. 1.  (a) CT slice from Fragment B showing the remaining parts of the Metonic dial. (b) Reconstruction 
of the Metonic dial of the Antikythera Mechanism. (c) CT slices from Fragments A, E and F 
showing the remaining parts of the Saros dial. The two thin circular lines on Fragment A are 
artifacts produced during the scanning of the fragment. (d) Reconstruction of the Saros dial of 
the Antikythera Mechanism.
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The lower back dial, a four-turn spiral with 223 divisions, displayed the Saros 
cycle, a periodicity of repetition of solar and lunar eclipses. The 223 divisions repre-
sented again 223 lunar months. Some divisions predicting eclipses were marked with 
inscriptions (glyphs) that described the type (solar or lunar) and time of eclipse to 
occur on that month. Fragments A, E and F preserve parts of this dial with its centre 
visible at Fragment A. The pointer of the dial is missing.

Since the last publication dealing with the back dial spirals,5 two new important 
inscriptions have been identified by our team.6 (a) In 2010 the examination of the 
cells of the Metonic dial led to the identification of ‘MACHANEUS’ (ΜΑΧΑΝΕΥΣ) 
as the intercalary month of the Antikythera calendar (unlike other calendars that had 
different intercalary months, it is most likely that the calendar of the Antikythera 
Mechanism used a single intercalary month (for more information, see Appendix 
A of the online edition)). More precisely, the name of this month was read in two 
consecutive cells, cells 128 and 129 (Figures 2(a) and 2(b)). (b) A new division of 
the Saros dial marked with glyphs, cell 61, was found (Figure 2(c)). This finding 
increased the number of preserved cells with glyphs from 18 to 19. The reconstructions 
of the Metonic and Saros dials, presented in Figure 1, include these new findings. 

2. The Pointer of the Metonic Dial

2.1. The Physical Remains

The remains of the pointer of the Metonic dial can be seen in Figure 3. Its dimensions 
are approximately 52 × 4.3 × 2.3 mm7 or slightly larger.8 At one end the pointer takes 
the form of a small vertical rectangular guiding pin that followed the gap of the spiral 
scales. Right above the guiding pin, a horizontal arrow-shaped cylindrical pin was 
used for precisely pointing at the divisions of the dial. The pointer is broken at the 
place where it was attached to the shaft that drove it.

The pointer, partially visible on Fragment B, was first described by Price,9 who 
noted that its length was clearly not sufficient to extend from the centre to the outside 
limb of the upper dial. For Price the back dials were concentric rings, not spirals. 
The spiral shape was later discovered by Wright.10 The existence of the guiding pin 
and its function in following the gap between the spiral scales in order to show the 
relevant month were identified by Freeth et al.11 However, their idea that the guiding 
pin was held on a sleeve, which slid along the pointer, is incorrect. The construc-
tion that supported the pointer transferring to it at the same time the rotation of the 
shaft is badly damaged. However, there are enough remains that allow for the initial 
arrangement to be reconstructed and they show that the whole pointer actually slid 
at its hub end. This discovery is surprising, since this clever arrangement of a sliding 
pointer is not known (to the best of our knowledge) in later history. Figure 4 shows 
two CT slices of these remains at the hub end. 

The reconstruction of the entire pointer mechanism is shown in Figure 5. The 
cylindrical rotating shaft was trimmed to a square-shaped end so that a head cap 
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Fig. 2.  (a) CT slice from Fragment B, Metonic dial, cell 128: month name Machaneus. (b)  CT slice 
from Fragment B, Metonic dial, cell 129: month name Machaneus. (c)  CT slice from Fragment 
E, Saros dial, cell 61, letter Σ (lunar eclipse). (d), (e) and (f) Traces of the letters of the CT slices.

Fig. 3.  Left: CT slice of the pointer from Fragment B. The white line traces the form of the pointer at the 
arrow-shaped cylindrical pin, depicted at the inset. Right: Side view of the pointer.

Fig. 4.  CT slices showing (left) the square-shaped shaft (small complete square), the round head cap and 
the bottom base (large partial rectangle) of the pointer bracket, (middle) the two holes of one of 
the sides of the pointer bracket and (right) the remains of the rotating shaft which is broken at 
the end of the wider middle section of the head cap (the inset shows the same image with white 
lines tracing the edges of the shaft).
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component could fit on it. The head cap was shaped by three cylindrical segments: 
a narrow end, a wider middle segment, and an even wider disc. Part of the preserved 
square-shaped shaft reaches the end of the wider middle section (Figure 4). The 
disk bore some rather strange formed quadrant cavities whose role is difficult to 
explain.12 The circular shape of this disk was cut to two straight parallel vertical 
surfaces (Figure 5), which fitted to the two sides of a pointer bracket. The pointer 
bracket had the form of a rectangular base with two orthogonal sides. Only one side 
is preserved, and in it two holes can be seen. The pointer went through the upper hole 
which was larger than the lower one. A square shaped pin (today lost) went through 
the bottom hole as well as the head cap, so fastening the head cap component to 
the pointer bracket. The role of the pin was crucial: it secured the pointer bracket 
to the head cap in such a position that the pointer (which slid through the upper 
hole) could freely follow the full Metonic spiral. The pointer mechanism assembly 
was probably tightly wedged to the square-shaped shaft (alternatively, if the bro-
ken end of the shaft reached the disk, then the assembly would be easily secured 
to the shaft by the pin). The Metonic pointer could be reset by slightly bending it 
and sliding it back to the beginning of the spiral. It was probably calibrated once 
during the construction of the Mechanism as the whole pointer mechanism does 
not allow for recalibration.13

There is another part of the Antikythera Mechanism in which the output was 
attached to a square-sectioned shaft. This is in the Moon phase device, identified by 
Wright.14 The arrangement there was simple: a square-sectioned shaft went through 
the front plate of the Moon phase cylinder and was held in place by a pin. In the case 
of the pointer of the Metonic dial, the idea was again to attach the pointer bracket to 
the rotating shaft, yet a more complicated structure was invented and the head cap 
was inserted in order to (a) provide a much more stable and secure attachment of 
the pointer bracket to the shaft, and (b) serve as an extra support of the pointer that 
facilitated its movement (by taking the form of a disk at its top). 

That the pointer mechanism was constructed in such a sophisticated way amazes 
us. A similar construction is thought to have existed in the Saros dial.

2.2. The Inscription Describing the Pointer’s Construction

The Antikythera Mechanism had a large number of inscriptions covering its front and 
back faces and covers. These inscriptions have partially survived. In the back cover 
inscriptions15 we find several technological construction terms together with terms 
about astronomical periodic cycles, and it seems that they described some parts of 
the Mechanism. Part of this inscription can be seen in Figure 6.16 The phrase “spiral 
divided into 235 sections” is the key to understanding the description of the Metonic 
dial. On the following lines we read about “two braces around a disk”, “holes to 
these braces”, and some parts that “slide through the holes”. This description matches 
exactly the reconstruction of the pointer mechanism that has just been presented. 
The braces are the vertical surfaces of the pointer bracket and the disk is the top part 
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Fig. 5.  Top: Exploded view of the reconstruction of the pointer mechanism. Middle: Section of the pointer 
mechanism. Bottom: Closer view of the head cap component (left) and assembled reconstruction 
of the pointer mechanism (right).

of the head cap component. The parts that slide through the holes are most probably 
the pointer and the pin. The inscription and the physical evidence turn out to confirm 
each other very nicely.17

The back cover inscription probably continued with a few more lines describing 
the pointer mechanism, but the text as preserved is heavily fragmented.
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3. The Type of the Back Plate Spirals

There are two basic types of spirals with constant width between the turns. The first 
type is the well known two-dimensional spiral with its radius proportional to the 
angle of rotation, the Archimedean spiral, named after Archimedes (287 b.c. – 212 
b.c.), who first described it. The second type is a Half Circles spiral, a spiral made 
from semicircles, drawn from two different centres. When Wright announced that the 
back dials were not concentric rings but spirals,18 he also reported that the circular 
gaps of the remaining part of the Saros dial were not concentric to the arbor but to 
a centre displaced from the arbor by about half the width of the distance between 
gaps, so proposing that the spirals were drawn as a set of arcs curved alternately 
from two centres. Freeth et al.,19 who identified the basic function of the dials (for 
the Meton and the Saros cycles) for the first time, supported Wright’s proposal for the 
Metonic dial, mentioning that the two centres are displaced in the vertical midline. 
The following analysis is a proof that indeed this is the case. For the Metonic dial, 
measurements from both the left and the right halves of the spiral showed that the 
centre of the right half of the Metonic spiral was the pointer centre while the centre 
of the left half was an upper centre situated above the pointer centre at half the 
distance between the windings of the spiral. For the Saros dial, measurements from 
the right half of the spiral, which alone has survived, showed that its centre was a 
lower centre situated below the pointer centre at approximately half the distance 
between the windings of the spiral.

3.1. Method Used

For each type of spirals that we examined (Archimedean or Half Circles), the surviving 
part was divided by drawing a number of almost equally spaced radial lines (Figure 
7) that began from either the same or different centres, according to the type under 
investigation. These lines intersected the gaps between the spirals in two places: the 
inner gap point and the outer gap point. The intersection points of the radial lines 
with the spiral gaps were named after the line designation (A, B, C, etc., in clockwise 
order as the spirals of both dials, Metonic or Saros, unfold clockwise), the gap number 
(Gap1, Gap2, etc.), and whether the point refers to the inner or outer intersection. In 
all cases, we measured (a) the length of the radius at each intersection point, and (b) 

Fig. 6.  Part of the back cover inscription describing the pointer mechanism, with translation in English. 
The transcription of the Greek text was made following the Leiden convention.
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the angle between the line-under-investigation and an arbitrary, chosen line (for the 
Metonic spiral, the chosen line was line A, whereas for the Saros spiral, the chosen 
line was line Ι). The above designations become obvious in Figure 7. All radii were 
measured in millimetres, all angles in degrees (°). 

3.2. The Metonic Dial

On the part of the preserved Metonic dial (Figure 7), the beginning of the spiral and 
its centre have survived. In the case of a Half Circles spiral, the division line between 
the two semicircles would be the vertical midline (Freeth et al.20), dividing thus the 
Metonic dial into a left and a right half. For our analysis, 10 radial lines were drawn 
starting from the (inner) beginning of the spiral (line A). The first 2 lines belong to 
the left half of the spiral while the other 8 to the right half. 

A close examination of the centre of the Metonic dial (Figure 8) showed that 
the visible centre (dark spot) does not coincide with the centre of the round hole 
(hereafter mentioned as the pointer centre, or pc) that was opened on the back plate 
in order for the shaft of the pointer (see §2.1) to go through. The visible centre was 
probably violently misplaced after the ship sank. The pointer centre is the centre 
of the circle that was fitted to the edge of the round hole of the back plate (marked 
with a ‘+’ in Figure 8). 

For each of the cases examined, plots of angle v. radius were made (Figure 9). 
Each diagram presents the resulting plots for both the inner and the outer spiral gap 
intersection points. The cases examined were:

 (i)  An Archimedean spiral, drawn from the visible centre. All lines begin 
from the visible centre. The plot of angle v. radius shows generally a linear 

Fig. 7.  The radial lines and their points of intersection with the spiral gaps for the Metonic (left) and 
Saros (right) dials. The lines are drawn from the visible centre for the Metonic dial and the pointer 
centre for the Saros dial.
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increase of the measurements. At each winding of the spiral though only the 
first points (C, D, E, F) of the right half of the spiral seem to have positive 
gradient (slope). The rest of the points have zero or negative gradient while 
the two points of the left half (A, B) tend to have radii equal to the first 
points of the right half of the previous winding. The plot does not support 
the case considered (Figure 9(i)).

 (ii)  An Archimedean spiral, drawn from the pointer centre. All lines begin from 
the pointer centre. The plot of angle v. radius shows zero gradient (Figure 
9(ii)). This indicates the existence of homocentric circles (not a spiral) which 
would not allow the pointer to follow the full Metonic cycle.  

 (iii)  An Archimedean spiral, drawn from a fitted centre. All lines begin from the 
centre that was determined when an Archimedean spiral was fitted to the 
remaining spiral. The plot of angle v. radius shows negative gradient which 
is not consistent with the case of an Archimedean spiral (Figure 9(iii)).

 (iv)  A Half Circles spiral, drawn from the pointer centre and a lower centre. 
The centre of the left half of the spiral is the pointer centre. The distance 
of the centre of the right half is taken 3.67mm below the pointer centre. 
This distance must be half the distance between the windings of the spiral. 
The radius of line-A_Gap1-inner (see §2.2) is 35.71mm and the radius of 
line-A_Gap2-inner is 43.09mm, so half the distance between the windings 
is 3.69mm, while the radius of line-A_Gap1-outer is 37.06mm and the 
radius of line-A_Gap2-outer is 44.36mm, so half the distance between the 
windings is 3.65mm. Hence the mean distance between the windings is 
7.34mm. The plot of angle v. radius shows that the two points of the left 
half (A, B) make sharp steps of ~7mm, while the rest of the points show 
an extreme negative gradient that does not agree with the fixed radii of 
semicircles (Figure 9(iv)). 

Fig. 8.  CT slices from the Metonic dial (left) and the Saros dial (right), showing (a) the visible centre 
(dark spot), (b) the fitted circle, and (c) the pointer centre (the cross).
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Fig. 9. Results of the Metonic dial for all cases considered.

 (v)  A Half Circles spiral, drawn from the pointer centre and an upper centre. 
The pointer centre is the centre of the right half of the spiral while the left 
half has its centre at 3.67mm above the pointer centre. The plot of angle v. 
radius shows two groups of points that succeed each other at intervals of 
~3.5mm (Figure 9(v)). The one group is composed of the points of the left 
half of the remaining spiral (A, B) and the other of the points of the right 
half (C to J). The exact mean interval between the two groups is 3.69mm, 
which is very close to 3.67mm (the mean distance between the windings 
calculated above). This plot shows exactly what it is expected for a Half 
Circles spiral, thus the plot confirms that the centre of the right half of 
the Metonic spiral is the pointer centre and the centre of the left half 
is the upper centre.

 (vi)  A Half Circles spiral, drawn from two centres symmetrically arranged about 
the pointer centre. None of the centres coincides with the pointer centre: 
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the two centres are symmetrically positioned above and below the pointer 
centre, at distances equal to 3.67/2 = 1.835mm. The plot of angle v. radius 
(Figure 9(vi)) is similar to the one in case (iv). The two points of the left 
half show sharp steps of ~7mm but the points of the right half form lines 
with negative gradient. 

3.3. The Saros Dial

The Saros dial is partially preserved. Remains of it have survived on Fragments A, E 
and F. The centre of the dial can be seen on Fragment A. A non-perfect placement of 
the Fragments E and F could result in errors and false conclusions, so only Fragment 
A was used for the investigation of the construction of the Saros spiral. Fragment 
A preserves only part of the right windings of the spiral. The state of preservation 
is however rather poor. Furthermore, the windings seem to be not equally spaced 
and the spiral is probably quite distorted. Consequently the measurements are less 
accurate compared to the ones of the Metonic spiral. 

The visible centre is very close to the pointer centre. Therefore measurements 
were made only for the pointer centre. The plots of angle v. radius for each of the 
cases examined are shown at Figure 10. We examined the following cases:

 (i)  An Archimedean spiral, drawn from the pointer centre. All lines begin from 
the pointer centre. The plot of angle v. radius shows a linear increase of the 
measurements (Figure 10(i)). The spiral however cannot be an Archimedean 
as most points diverge significantly from the fitted linear trend-lines added 
to the plot. 

 (ii)  A Half Circles spiral, drawn from the pointer centre and a lower centre: 
the centre of the left half of the Half Circles spiral is the pointer centre 
and the right half has its centre at about 4.5mm below the pointer  
centre. The distance of 4.5mm is half the calculated mean distance  
between the windings of the spiral (which is ~9mm). The plot of angle 
v. radius confirms that the centre of the right half of the Saros spiral 
is the lower centre and the centre of the left half is the pointer centre 
(Figure 10(ii)). The fitting of a trendline does not exclude an Archimedean 
spiral, but it would be strange and possibly even not practical to construct 
such a spiral from a centre other than the pointer centre. The results are not 
as clear as for the Metonic dial, as in this case we have no measurements 
of both halves of the spiral. Furthermore, as was mentioned above, the 
measurements are less accurate due to the rather poor condition of the dial. 
The exact lower centre could possibly be slightly off the pointer centre  
and the increasing slope of the inner and outer 3rd and 4th winding, seen at 
the plots, could possibly be due to this non-exact placement of the lower 
centre. 
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Fig. 10. Results for the Saros dial for all cases considered.

4. The Divisions of the Cells

The placement of the pointer and its rotation around one of the two centres of each 
spiral would result in producing some eccentricity in the readings of the pointer in half 
of the spiral (whose centre does not coincide with the pointer centre). We call this the 
eccentricity problem. Taking into account the radii of the windings and the distance of 
the two centres of each spiral, it can easily be calculated that the eccentricity problem 
reaches a maximum of 0.67 and 0.90 divisions for the Metonic and the Saros dial 
respectively. The effect of this problem would obviously be very significant. 

The simplest solution for the maker of the Antikythera Mechanism, in order to 
avoid the eccentricity problem, would be to draw the divisions of the cells in such a 
way so that they all point to the pointer centre. The analysis that follows checks this 
hypothesis for both the Metonic and the Saros spiral. Two methods of investigation 
were applied: (a) by taking into account the centres and measuring the angles of the 
divisions (for the fragments that preserve the centres, namely Fragments B and A), 
and (b) by using the preserved part of the spiral in order to find the centre of the 
windings and the centre of the divisions (for the fragments that preserve only part 
of the spiral). Both methods conclude that the cell divisions of both spirals have 
indeed been drawn so that they all point to the pointer centre. Measurements of the 
length of the chords of the cells, which should gradually become wider as we move 
clockwise along the winding whose centre is not the pointer centre, independently 
confirmed this result.

4.1.  Investigation of the Metonic and Saros Spirals Taking into Account Their Centres 
and Divisions

For each spiral we carefully measured two angles. (a) The angle between the first cell 
division line (i.e. the one coinciding with the vertical midline) and all other clearly 
visible division lines of the spiral. The vertex of this angle was the pointer centre and 
it will be referred to hereafter as the pc angle. (b) The similar angle whose vertex was 
the second centre (thus the upper one for the Metonic dial and the lower one for the 
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Saros dial). This angle will be referred to hereafter as the uc angle for the Metonic 
dial and the lc angle for the Saros dial. All angles were measured in degrees (°). These 
angles were compared with the ideal incremental constant angle of the equidistant 
(i.e. of equal width) cell divisions, calculated knowing (a) that for the Metonic dial 
the 235 divisions correspond to 5 × 360° (i.e. 7.65957° per division), and (b) that for 
the Saros dial the 223 divisions correspond to 4 × 360° (i.e. 6.45740° per division). 
This angle will be referred to hereafter as the ideal angle. For the Metonic dial, we 
used CT slices of Fragment B and for the Saros dial the PTM (Polynomial Texture 
Mapping)21 image of Fragment A. In order to locate the centres of the two spirals, all 
images were calibrated using VGStudio Max 2.0 measurements of Fragment B (for 
the Metonic dial) and Fragment A (for the Saros dial). Division line 1 was always 
the first line of each dial and angles were measured clockwise.

4.1.1. The Metonic back dial

Almost three-quarters of the right half of the Metonic Half Circles spiral is preserved, 
whereas only a small part of the left half has survived (too small for this analysis). 
As was shown above, the right half was drawn from the pointer centre (Figure 7). 
In the analysis that follows we shall examine whether the centre determined by the 
right half cell divisions is indeed the pointer centre. The cell divisions used for the 
calculations were from 32 to 50. The division line 40 was excluded as it was not 
clearly visible. Table 1 presents the three angles mentioned in the previous paragraph 
for divisions 32 to 50. 

In Figure 11 (left panel) we present the plot of the aforementioned angles v. the 
cell division number. It is obvious that the pc angle follows closely the ideal angle, 
whereas the uc angle shows systematic deviations. The deviations become even 
clearer if one plots the differences between the ideal angle and the pc or the uc angle, 
i.e., the error in angle from both centres (Figure 11, right panel). It is immediately 
obvious that the gradient of the error for the pc angle is practically 0, but this is  
not the case for the uc angle. Therefore the centre determined by the cell divisions 
of the right Half Circle of the Metonic spiral is the pointer centre, which lies below 
the second centre.

4.1.2. The Saros back dial: Analysis using Fragment A

Almost the entire right half of the Saros Half Circle spiral is preserved in Fragments 
A, E and F. Νo part of the left half has survived. As shown above, the right half 
was drawn from the lower centre (lc). So, for this dial we shall examine whether 
the convergence centre determined by the right half cell divisions is also the lower 
centre or the pointer centre. 

As we worked with the PTM image of Fragment A, we used only the cell divisions 
that were visible on its surface. Table 2 presents the aforementioned angles that were 
measured and calculated for cell divisions 124 to 128 and 177 to 185. For the plots 
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of Figure 12, the mod function, mod(angle, 360°), for the ideal, pc and lc angles 
was used — without the multiples, N*360° of the windings — (Table 2). Division 
line 184 was excluded as it is not visible. 

The pc angle values being closer to the ideal angles than the lc ones confirms 
the hypothesis examined, i.e. that the convergence centre of the cell divisions is the 
centre of the pointer, ensuring that no eccentricity was produced in the readings. 

4.2. Investigation of the Saros Spiral Taking into Account its Divisions

4.2.1. Analysis using Fragment F

The CT scans of Fragment F revealed a very well preserved part of the Saros dial that 
fitted nicely to the right edge of Fragment A and provided almost an extra quarter 

Fig. 11.  The Metonic dial. Left: Plot of the ideal, pc and uc angles v. the cell divisions. Right: Plot of the 
differences of the pc and uc angles from the ideal angle.

Fig. 12.  The Saros dial. Left: Plot of the ideal, pc and lc angles v. the cell divisions. Right: Plot of the 
differences of the pc and lc angles from the ideal angle.
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of the spiral, almost completing, with Fragment E, the right part of the Half Circle 
spiral. Fragment F preserves also the right bottom edge of the back plate, which 
facilitates very well the correct orientation of the preserved part of the dial. As the 
centre of the Saros dial is in Fragment A, two methods of analysis had to be applied 
to Fragment F (whose centre is the lower centre (lc)) in order to check whether the 
cell divisions were drawn from the lower centre or not: (a) one that determined the 
centre of the windings, and (b) one that determined the centre of the cell divisions. A 
two-fragment analysis, i.e. an analysis that would fit Fragment A and Fragment F and 
would then use the centre of the dial, preserved on Fragment A, was avoided as such 
an analysis involves uncertainties as to how exactly the two fragments fit (rotation, 
scale, and position would have to be taken into account). Moreover, the windings at 
Fragment A are somewhat damaged, making the fitting even more imprecise.

For both methods, an image stack of the CT scans of Fragment F was used. The 
origin of the coordinate system in both cases was the upper left corner of this image 
stack and the analysis was performed with all values referring to the image size. The 
values cited in the paper refer to Fragment F and are the ones that were found after 
calculating the scale factor between the image stack and Fragment F.

(a) The centre of the windings

In order to find the centre of the circular windings, the (x
i
, y

i
) coordinates of N

i
 well-

spaced points (approximately 5 for each winding) were determined.
Using these values and applying the iterative Solver method,22 provided by 

Excel, the centre of the windings of Fragment F was found to be at the position wc
1
 

= [47.13mm, 35.39mm]. The variables for the Solver method were the (x
wc

, y
wc

) 
coordinates of the lower centre and the radii of the windings (r

w
). The position of all 

points (i) was determined using the centre (x
i,w

 –x
wc

, y
i,w

 –y
wc

). The points of same 
winding were naturally set to have the same radius (r

w
) (as it was proven in §3) and 

the error was calculated by the formula
 

x x y y ri,w wc i,w wc w−( ) + −( ) −
2 2

. After

the application of the method the root mean square error was 0.047mm.
The analysis was repeated again with a new set of coordinates and the new centre that 

was found was wc
2
 = (47.12mm, 35.34mm), very close to the previous one, confirming 

that the method is basically correct. The root mean square error after the application of 
the method was 0.055mm. Table 3 summarizes the centres of windings that were found.

(b) The centre of the cell divisions

Using the same image stack, the convergence centre (x
dc

, y
dc

) of the lines of the 
divisions was determined by applying again the Solver method. The exact points 
that were used were the points where each division line intersected the outer part of 
the gaps. Two different sets of measurements were used so that the results could be 
compared. The division lines that are missing from the second set of coordinates are 
those with a rather poorly determined intersection point.
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Table 3.  The centres of the windings and the centres of the cell divisions of Fragment F, which were 
determined using an image stack of CT scans of Fragment F.

Type of centre Measurement Centre found Root mean square error

Windings centre (wc) 1 (47.13mm, 35.39mm) 0.047mm
2 (47.12mm, 35.34mm) 0.055mm

Divisions convergence centre (dc) 1 (47.13mm, 32.30mm) 2.155mm
2 (47.13mm, 32.39mm) 2.258mm

Using the first set of measurements, the convergence centre of the cell divisions 
was found at the position dc

1
 = [47.13mm, 32.30mm], while with the second set it 

was found at dc
2
 = [47.13mm, 32.39mm] (Table 3). The x

dc
 coordinate was set to 

be equal to the already determined x
wc

 of the centre of the windings, as both centres 
should be on the vertical midline (using the right bottom edge of the back plate, our 
set of pictures was vertically-oriented). 

The variables for the Solver method were the (x
dc

, y
dc

) coordinates of the con-
vergence centre of the division lines. The position of all division lines (i) was again 
determined using the centre (x

i–
x

dc
, y

i–
y

dc
) and the error was calculated by the formula

180 1° −
−
−



















 −

−tan
x x

y y
thetai dc

i dc
ideal

 

where theta
ideal

 is the ideal angle (= (i – 1) × 

6.45740°) from the vertical midline of each division line. 
The root mean square error that was found was quite large (around 2.2mm). 

Plotting the error for each division line, we got the upper graph in Figure 13 which 
shows that the large errors come from the cells at the end of each winding. Calculating 
the angular width (lower graph in Figure 13) of the cells of Fragment F (by measur-
ing the length of the chords of these cells and using the mean radii of the windings 
that were found in Section 3), it becomes clear that these cells (mainly cells 25, 
81, 136 and 192) are wider than the others cells of the dial. As Fragment F seems 
wholly undistorted, the plots of Figure 13 probably reflect an unintentional error of 
the craftsman23 who inscribed the division marks.24 We reapplied the Solver method 
again after omitting the errors of these division lines. The new centres were found to 
be at (47.13mm, 31.91mm) and (47.13mm, 31.93mm) respectively, which are very 
close to the previous found centres (so the convergence centre is not affected), and 
the root mean square errors were much smaller (around 0.7mm). 

(c) The distance between the two centres, wc and dc 

Figure 14 shows one of the slices of the image stack that was used for the analysis 
described in §4.2.1(a) and §4.2.1(b) of Fragment F together with the two centres, 
wc and dc, (indicated at the upper left corner) that do not coincide. The centre of the 
division lines, dc, is 35.39 – 32.30 = 3.09mm above the centre of the windings, wc. 
This distance is almost equal to half the distance between the gaps of the windings, 
as it can be seen in Figure 14, where we placed the symbols (○ and +) marking the 
two centres next to (a rotated image of) the windings of the Saros spiral (top inset 
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Fig. 13.  Plot of the error of each division line of Fragment F, for both sets of measurements (top) and 
plot of the angular width of the divisions of Fragment F (bottom). (Note that the numbers in the 
upper graph refer to the division lines with division line 1 being always the first line of each 
dial, while the numbers in the lower graph refer to the divisions with a division N extending 
from division line N to N + 1. Note also that the upper graph reflects the error of each division 
line from the calculated dc centre and that is why more cells (compared to the ones of the lower 
graph) seem to be problematic.)

of Figure 14). The centre of the division lines, dc, thus coincides with the pointer 
centre and so the eccentricity problem is avoided.

The distance of 3.09mm is quite different from the mean distance of 4.5mm 
(half the distance between the gaps of the windings) that was found in §3.3. As 
explained in Appendix B of the online edition, there seems to be a difference between 
the calibration of the two fragments when they were scanned in 2005. Half the 
mean distance between the gaps of the windings as measured on Fragment F with 
VGStudio Max is approximately 4.0mm. The distance of 3.09mm found above 
is quite close to the mean distance of 4.0mm, as it is also indicated by the image 
evaluation of Figure 14.
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Fig. 14.  Part of the Saros dial preserved in Fragment F, annotated with the division numbers. The inset 
above shows a detail of the spiral, rotated so that part of the windings becomes horizontal. 
The symbols indicate the position of the windings centre (wc, ‘+’) and divisions centre  
(dc, ‘o’). It is evident that the distance between the two centres (wc and dc) is almost exactly 
half the distance between the windings. The image is cropped so the origin of the coordinate 
system (at the upper left corner of the image stack) is not visible. The inset below shows how 
a circle drawn from the centre of the division lines does not fit the curvature of the windings.

If the centre of the windings coincided with the centre of the division lines then 
a circle drawn from the centre of division lines, dc, should fit the edge of a gap at 
all points. The inset at the bottom edge of Figure 14 shows that this is clearly not 
the case.

4.2.2. Analysis using Fragment E

The poor state of Fragment E prevented us from applying an analysis similar to that 
applied to Fragment F. As can be seen in Figure 15, Fragment E is broken into 4 
main pieces with just 2–3 division lines in each piece. Only the upper right piece that 
has some lines of text written on it could be orientated correctly. However, only two 
division lines are preserved on it, a very small number for any analysis. 
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Fig. 15.  CT slice of Fragment E showing the four broken parts. At the upper right part of the fragment, 
two division lines as well as some text can be seen.

4.3. The Length of the Arcs of the Cells

The use of the pointer centre for the drawing of the cell divisions of those 
windings designed from another centre (in this case, the lower centre) would result 
in differences of the cells arc lengths and angular widths. The geometry of the 
construction of the right half of the Saros spiral from the lower centre with cell 
divisions pointing to the pointer centre theoretically would result in cells gradually 
becoming wider as we move clockwise along the winding, as Figure 16 shows (in 
this image, for clarity and simplification, each semicircle was divided into 6 arcs 
(and not (223/4)/2 ≈ 28 arcs)). The equal arcs of the cells of a circle, drawn from 
the pc (i.e. the left semicircle and its mirror image (double-dash line) to the right 
side) can be calculated from equation: 

 
S

R
2

2

180
=

⋅ ⋅θ π

 
(1)

where θ (in °) is the corresponding central angle of each arc and R
2
 is the radius 

of this circle, while the increasing values of the arcs of the cells of the first right 
semicircle, drawn from the wc but converging to the pc, can be calculated from the 
following equation:
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Fig. 16.  A Half Circles spiral showing the equally spaced arcs (bold left-half and double-dashed right-half) 
from the pointer centre (pc) and the unequally spaced arcs (bold right-half) from the windings 
centre (wc).
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where R
1
 is the radius of this (semi)circle. The above equation can be easily derived 

by setting the origin (0,0) to the pc and by defining the equations of the two (semi)
circles (C

1
 for the right semicircle and C

2
 for the left semicircle) as follows:

 
C x y R R R and C x y R1

2
2 1

2
1
2

2
2 2

2
2: : .  + + −( )  = + =

 
(3)

Measurements of the chords of all clearly visible cells were also made so as to 
check the above anticipated effect that would independently corroborate our result 
of the analysis of §4.1 and §4.2.1. We should note that due to the small angle of 
each division (of the order of 6.6°) the length of the chords is slightly smaller than 
the length of the corresponding arcs. For the Metonic dial, only the length of the 
chords of the 1st winding was measured as the chords of the rest of the windings are 
proportional to the ones of the 1st winding. All chords were measured from their 
points of intersection with the outer part of the gap. Figure 17 shows the plot of these 
measurements for both spirals. The arcs of the right Saros windings of Fragment F 
and Fragment A show clearly a general linear increase (visible also at the bottom plot 
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Fig. 17.  Plot of the measurements of the chords of the cells of the first winding for the Metonic spiral 
and of several windings for the Saros spiral.

of Figure 13), unlike the ones of the right winding of the Metonic spiral (measure-
ments from Fragment B). The mechanic knew how to brilliantly design the divisions 
of the spirals.

5. Conclusions

The back face of the Antikythera Mechanism consisted of two main spiral dials. 
The pointer of the Metonic dial is the only pointer of a spiral on the Antikythera 
Mechanism that has survived. A careful examination at the point where it was attached 
to its axis reveals the structure of its pivot, a very clever mechanism that transferred 
the motion of the axis to the pointer allowing it at the same time to freely move so 
as to follow the gap between the windings of the spiral. Furthermore, the structure of 
the pivot of the pointer is quite extensively described on the back cover inscriptions 
of the Mechanism, confirming our reconstruction.

The analysis of the type of the spirals confirms Wright’s first report25 that the 
spirals are Half Circles Spirals. The results show that both the Metonic and the Saros 
dial of the back face of the Antikythera Mechanism were designed as Half Circles 
Spirals, drawn from two different centres. The two centres of the Metonic dial are 
the pointer centre and an upper centre while the two centres of the Saros dial are the 
pointer centre and a lower centre. 

The difference between the placement of the two centres in the two spirals may 
seem at first as a peculiarity in the way the mechanic worked, as one would expect 
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the extra centres to be either both upper or both lower centres. This difference 
however is due to the different structure of the two spirals. The mechanic worked in 
the same way in both spirals, e.g. beginning from the extra centre in order to draw  
the first semicircle of each spiral (the left one for the Metonic dial, the right one for 
the Saros dial) and moving on to the pointer centre (this being also the visible one 
when the Mechanism was constructed) in order to draw the opposite semicircle. He 
could have of course worked the other way around, beginning from the last semicircle.

The eccentricity that would be produced, by the half-circle spiral construction, 
to the readings of the semicircles that were not drawn from the pointer centre was 
skilfully avoided as these cell divisions are proven to have been drawn so that they all 
point to the pointer centre. The increasing length of chords seems to be a technique, 
well known to the constructor of the Antikythera Mechanism. Besides the Saros spiral 
(§4.3) a similar construction with increasing chord lengths has been proposed for 
the front zodiac dial by Evans et al.26 In the case of the zodiac dial it is proposed for 
producing a desired eccentricity, while, for the back dials, it was done for avoiding 
an unwanted eccentricity. The mechanic’s way of thinking and working is ingenious.
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