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Abstract

Frequently we revise our first opinions after talking over with other individ-
uals because we get convinced. Argumentation is a verbal and social process
aimed at convincing. It includes conversation and persuasion and the agreement
is reached because the new arguments are incorporated. Given the wide range
of opinion formation mathematical approaches, there are however no models of
opinion dynamics with nonlocal pair interactions analytically solvable. In this
paper we present a novel analytical framework developed to solve the master
equations with non-local kernels. For this we used a simple model for modeling
opinion formation where individuals tend to get more similar after each inter-
actions, no matter their opinion differences, giving rise to nonlinear differential
master equation with non-local terms. Simulation results show an excellent
agreement with results obtained by the theoretical estimation.
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1. Introduction

In group discussions individuals exchange arguments over a specific subject
of conversation, and then selectively either incorporate what they have dis-
covered or at least learn to understand one another better. That is to say,
individuals may want to change their own opinions about an issue in order to
get closer to or farther from others in the group. These interactions give rise to
the formation of different kinds of opinions in a society. At the end of the dis-
cussion the group will be characterized either by a so called opinion consensus
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or coexistence of opinions (fragmentation). The processes of opinion formation
and opinion change have always been under the close supervision for modeling.
Until now various approaches exist and they all differ in their focus and com-
plexity ([1, 2, 3, 4, 5]). We recently published a new threshold model of opinion
formation [6], in which the opinion change emerges as a consequence of a per-
suasion interacting dynamics between convinced agents, or between convinced
and undecided agents; and a repulsion effect occurs whenever the agents belong
to opposite groups. The model has been studied through simulations, and we
showed that the system presents a wide spectrum of solutions, as a function
of the fraction of undecided individuals and the adjustment in the individual’s
persuasion after interaction. We achieved to derive the masters equations that
govern the process of opinion formation dynamics. These equations, a nonlinear
coupled system of first order differential equations of hyperbolic type with non-
local terms, are driven by two competitive terms representing two ubiquitous
mechanisms in opinion formation: agreement and negative influence. They are
of special interest for their nontrivial properties but they are very hard to being
solved numerical or analytically. There are few models of this type, even for a
single equation. For instance, in [3] where only agents with similar opinion can
interact, the nonlocal terms involve a small neighbourhood of a given opinion
and they simplify them by performing Taylor expansions. With this approach
they recover local equations of Fokker-Planck type, but this is only possible in
the frame of bounded confidence models and the long range interactions are lost.
In [7], the authors deal with a model of opinion formation where nonlocal terms
are not simplified, but they involve a coupling between each individual opinion
and the mean of the opinions. As far as we know, there are no models of opinion
dynamics with nonlocal pair interactions analytically solvable. A logical step
then is to face this problem focusing in one of the main mechanism involved in
most of the opinion models [8]: persuasion interacting dynamics and the com-
promise hypothesis. In order to proceed and work out the analytical framework
we reduced the original model [6] to a single population, where whenever two
individuals interact, their opinions get changed by a fixed discrete quantity. We
obtain a continuous approximation of the master equation that rule the evo-
lution of the system, and in this case, it is possible to solve it explicitly using
a method developed by Li and Toscani [9]. This method permits to find the
exact solutions of the continuous approximation of the master equation, which
then are compared with numerical simulations. Let us mention that the same
idea was applied by Aletti, Naldi and Toscani [7] to a different model of opin-
ion dynamics, where a first order equation was derived and the mean opinion
of the population appears as a coefficient of the drift. Here, we get a kind of
nonlocal Porous Media type equation, which can be thought as a first order
hyperbolic equation with a nonlinear, nonlocal flux. This partial differential
equation develops a shock at the median of the distribution, and the median
value moves toward the mean. We show that the distribution of individual’s
opinions converges to a Dirac’s delta function concentrated at the mean opinion
of the initial distribution. Let us mention that introducing the bounded confi-
dence hypothesis and restricting the interaction to sufficiently close agents, the
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equation converges to a Porous Media equation backward in time similar to the
ones appearing in [3]. However, in this case we obtain an ill-posed problem, lack-
ing the continuity with respect to small perturbations of the initial data or the
solutions, and this explains why the system is difficult to analyze from both the
numerical and theoretical point of view. There exist few theoretical results and
numerical methods for these problems, which are currently being under active
research. What we observe is that we can obtain an analytical solution that can
be useful to solve more complex problems where this dynamics is present, such
as for instance [5], [6]. The paper is organized as follows. First we present the
model and derive the master equations. Then, we derive the solutions, compare
them with the numerical model and present some mathematical definitions and
theorems. Last, we discuss the results and conclude.

2. Models and Methods

Consider the following agent-based model. Let {1, · · · , N} be the agents,
and at time t = 0 we assign a real number σ(i) (where −∞ < σ < ∞) which
represents the opinion of agent i about a certain topic of discussion. The agent’s
opinion can only change due to pairwise interactions between agents engaged in
a discussion.

Given the discrete nature of an argument exchange process, we assume that
every time two agents interact, they increase or decrease their opinions by a fixed
quantity h, which accounts for the influence of the new argument incorporated
by the agent. We assume also the compromise hypothesis that both agents
are compromising to reach an agreement. So, if agents i and j interact, and
σ(i) < σ(j), then

σ∗(i) = σ(i) + h,

σ∗(j) = σ(j)− h. (1)

In this way, the persuasion dynamics is not instantaneous and could be inter-
preted as a discussion process in which agents get closer in opinions with time.

In order to obtain the master equations of this model, let us subdivide the
real line in a family of intervals {Ij}j∈Z, of length h, and define:

s(j, t) =
#{i : σ(i, t) ∈ Ij}

N
, (2)

for j ∈ Z, as the density of agents with opinion σ in the intervals Ij . Let us note
that, being a finite set of agents, we have s = 0 outside some interval [−M,M ].

Let us deduce the master equation for the density s. Fixing some character-
istic time τ related to the rate of interactions, we have

s(j, t+ τ) = s(j, t) +
2

N
(G(j, t)− L(j, t))

,
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where G(j, t) stands for a gain term and L(j, t) for a loss term. In a time
interval of length τ only two agents change their opinions, and then the pro-
portion of agents sj increases or decreases by 1/N . The factor 2 appears since
we can choose an agent located at Ij as the first or the second agent in the
interaction.

The gain term G is computed as the probability of an interaction between
some agent located at Ij+1 (respectively, Ij−1) at time t and another agent
located at Ii with i ≤ j (resp., i ≥ j). The loss term L is computed as the
probability of an interaction between some agent located at Ij and any another
agent outside Ij , since in this case there are no changes.

Therefore, for each j ∈ Z we have

N

2

(
s(j, t+ τ)− s(j, t)

)
=G(j, t)− L(j, t)

=s(j + 1, t)
∑
i≤j

s(i, t) + s(j − 1, t)
∑
i≥j

s(i, t)− s(j, t)
∑
i 6=j

s(i, t)

=
(
s(j + 1, t)− s(j, t)

)∑
i≤j

s(i, t)−

−
(
s(j, t)− s(j − 1, t)

)∑
i≥j

s(i, t) + 2s2(j, t), (3)

where we have rearranged the series with the same terms in the last step. Let
us recall that this equations must be complemented with the initial distribution
at time t = 0.

The resulting system of equations is easier to study if considering the contin-
uous version. To this end, we introduce a smooth function u(x, t) : R× [0,∞)→
R≥0 such that,

s(j, t) =

∫
Ij

u(x, t)dx.

This means that u restricted to the interval Ij behaves like s(j, t)/h.
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Let us observe that, for x ∼ hj,

[s(j + 1, t)− s(j, t)] =
h

h
[s(j + 1, t)− s(j, t)]

=h2
[
u(x+ h, t)− u(x, t)

h

]
≈h2 ∂u(x, t)

∂x
,∑

i≤j

s(i, t) =
h

h

∑
i≤j

s(i, t)

=
1

h

∑
i≤j

s(i, t)h

≈
∫ x

−∞
u(y, t)dy,

and therefore(
s(j + 1, t)− s(j, t)

)∑
i≤j

s(i, t) ≈ h2 ∂u
∂x

∫ x

−∞
u(y, t)dy.

Similar formulas hold for the other differences and sums, so for τ and h
small, the equation of the continuous model reads:

τN

2h

∂u(x, t)

∂t
=
∂u(x, t)

∂x

(∫ x

−∞
u(y, t)dy −

∫ ∞
x

u(y, t)dy
)

+ 2u2(x, t)

=
∂

∂x

(
u(x, t)

(∫ x

−∞
u(y, t)dy −

∫ ∞
x

u(y, t)dy
))

.

Finally, we re-scale times to get rid off the term τN/2h. We call s = 2ht/Nτ ,
and then

∂u

∂s
=
∂u

∂t

dt

ds
=
τN

2h

∂u

∂t
, (4)

and then (renaming s as t) we obtain the following integro-differential equation

∂u(x, t)

∂t
=

∂

∂x

(
u(x, t)

(∫ x

−∞
u(y, t)dy −

∫ ∞
x

u(y, t)dy
))

, (5)

together with some initial distribution of opinions at t = 0, say

u(x, 0) = u0(x).

We can see that this equation is a nonlocal, nonlinear, first-order partial dif-
ferential equation. The nonlinear drift at x involves the difference of the density
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of agents with opinions located at right and left of x. From the mathematical
point of view, it shares some properties with the Burger equation

∂u(x, t)

∂t
=

∂

∂x

(
u2(x, t)

)
.

Here, the agents point toward the median of their distribution and they will
accumulate at their mean, while in Burgers equation singularities appear when
fast particles reach positions occupied by slow particles.

Indeed, equation (5) is closer to the Porous Media equation, a nonlocal
version different from the ones obtained recently in [10], and it shares properties
like mass preservation and finite time propagation.

In order to see this, we can proceed heuristically assuming that the interac-
tions occurs only among agents with similar opinions. If we add a mechanism
like the bounded confidence hypothesis, and fix some small and positive param-
eter d, we get the same update as in equation (1) only for

|σ(i)− σ(j)| ≤ d.

We can truncate the integrals in the drift term, since long range interactions are
prohibited. Assuming that U(y, t) is a primitive of u(y, t) in the spatial variable,
Barrow’s rule together with Taylor expansions give∫ x

x−d
u(y, t)dy −

∫ x+d

x

u(y, t)dy =U(x, t)− U(x− d, t)− U(x+ d) + U(x, t)

≈− d2 ∂
2U(x, t)

∂x2

=− d2 ∂u(x, t)

∂x

So, we get

∂u(x, t)

∂t
=− d2 ∂

∂x

(
u(x, t)

∂u(x, t)

∂x

)
=− d2

2

∂2

∂x2
(
u2(x, t)

)
Moreover, we observe that this is a Porous Media equation reversed in time,
and in this case we expect a finite time blow up, namely, the solution growth
unboundedly in finite time. This result was proved in the 70th by Levine and
Payne [11], and it is known that this equation is ill-posed, without continuous
dependence on the initial data.

Let us observe that a similar equation, with a different scaling on d, was
presented by Deffuant, Neau, Amblard and Weisbuch in [3], for a different model
where the agents opinions are updated following some weighted mean of their
opinions. However, neither theoretical analysis, nor numerical approximations
were provided for their model.
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In the rest of the paper we study the existence of solutions for equation (5),
and we show how to solve it explicitly following the ideas of Li and Toscani in
[9] Finally, we show that the population reaches consensus in finite time, and
the opinions converge to the mean opinion of the initial distribution.

2.1. Existence of solutions

By a classical solution we understand u ∈ C1,1(R × (0,∞)) satisfying the
differential equation and

lim
(x,t)→(x0,0)

u(x, t) = u0(x).

However, let us observe that we expect a measure u as a solution, not necessarily
a differentiable function. So, we need to introduce a notion of a weak solution.

Definition 1. Given the following equation,

∂u(x, t)

∂t
=

∂

∂x
[u(x, t)G(t, x, F (x, t))],

with initial condition u(x, 0) = u0(x), where F (x) =
∫ x
−∞ u(y, t)dy is the cu-

mulative distribution function associated to the density u. We say that u ∈
C1((0,∞), L1) is a weak solution if u(x, 0) = u0(x), and

d

dt

∫ ∞
−∞

h(x)u(x, t)dx = −
∫ ∞
−∞

h′(x)u(x, t)G(t, x, F (x, t))dx (6)

for any h ∈ C1
0 (R).

Condition u ∈ C1((0, T ), L1(R)) means that, for each t ∈ (0, T ), the function
u(·, t) is an integrable function on R, and this assignation is C1 in the variable
t. Observe that weak solutions are not necessarily differentiable in the classic
sense in the variable x.

In what follows we are going to solve exactly Eq. (5) following a method in-
troduced in [9] in order to deal with granular flows. Giving F (x) =

∫ x
−∞ u(y, t)dy,

we will show that we can re-write Eq. (5) as:

∂u(x, t)

∂t
=

∂

∂x

(
u(x, t)[2F (x)− 1]

)
. (7)

To this end, the method starts assigning a new variable for the cumulative
function,

ρ = F (x) =

∫ x

−∞
u(y, t)dy. (8)

When u > 0 for any x and t, we can introduce the inverse function X(ρ, t) =
F−1(ρ, t). In other terms,

ρ =

∫ X

−∞
u(y, t)dy.
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However, since u can be zero in some interval, it is convenient to define

X(ρ, t) = inf{x : F (x, t) ≥ ρ}.

With this change of variables, Eq. (7) becomes an infinite system of ordinary
differential equations,

dX(ρ, t)

dt
= 1− 2ρ, (9)

one for each value of ρ, which can be solved explicitly as:

X(ρ, t) = (1− 2ρ)t+ X(ρ, 0), (10)

where X(ρ, 0) is obtained from the initial datum, that is,

ρ =

∫ X(ρ,0)

−∞
u0(y)dy.

We have obtained an implicit function for ρ, and for each value of t, we can
obtain it in terms of X, and since ρ = F (X), we recover the solution u as

u(x, t) = ∂Xρ(X, t).

Let us prove the previous claims. Let us start with the following Lemma:

Lemma 1. Let h ∈ C1
0 (R). Then∫ ∞
−∞

h(x)u(x, t)dx =

∫ 1

0

h(X(ρ, t))dρ.

Proof. Just change x = X, and formally

dx =
∂X
∂ρ

dρ =
∂F−1

∂ρ
dρ =

1

u(x, t)
dρ.

Hence, ∫ ∞
−∞

h(x)u(x, t)dx =

∫ 1

0

h(X(ρ, t))dρ,

and the proof is finished.

We are ready to prove the main result:

Theorem 1. Let X(ρ, t) be a solution of{
∂tX(ρ, t) = 1− 2ρ, t ∈ (0, T ),

X(ρ, 0) = inf
{
x :
∫ x
−∞ u0(y)dy ≥ ρ

}
.

(11)

Then there exists a weak solution of{
∂
∂tu(x, t) = ∂

∂x [u(x, t)(2F (x)− 1)] (x, t) ∈ R× (0, T )
u(x, 0) = u0(x) x ∈ R

with
∫
R u(x, t)dx = 1 for 0 < t < T .
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Proof. Take any function h ∈ C1
0 (R), and then, using Lemma 1

d

dt

∫ ∞
−∞

h(x)u(x, t)dx =
d

dt

∫ 1

0

h(X(ρ, t))dρ

=

∫ 1

0

h′(X(ρ, t))
dX(ρ, t)

dt
dρ.

On the other hand,

−
∫ ∞
−∞

h′(x)u(x, t)(2F (x)− 1)dx = −
∫ 1

0

h′(X(ρ, t))(2F (x)− 1)dρ.

We get that condition (6) is satisfied if∫ 1

0

h′(X(ρ, t))
dX(ρ, t)

dt
dρ = −

∫ 1

0

h′(X(ρ, t))(2ρ− 1)dρ,

or, equivalently, ∫ 1

0

h′(X(ρ, t))
[dX(ρ, t)

dt
+ 2ρ− 1

]
dρ = 0,

which trivially holds if X(ρ, t) is a solution of Eq. (11).
The proof is finished.

With an extra effort, it could be proved also that the existence of a weak
solution u(x, t) implies the existence of solution X(ρ, t). Here, the simplicity of
Eq. (11) makes unnecessary such equivalence.

2.2. Convergence to the mean

Observe that
∂tX(ρ, t) = 1− 2ρ

is positive for ρ < 1/2, and negative for ρ > 1/2. Therefore, since ρ = 1/2 gives
the median of the distribution, we get that

X(ρ, t) = inf

{
x :

∫ x

−∞
v(y, t)dy = ρ

}
strictly increases for 0 < ρ < 1/2, and decreases for 1/2 < ρ < 1. Hence, there
exists some c0 such that

lim
t→T

X(ρ, t) = c0,

which implies that u(x, t) → δc0 as t → T . In other words, the distribution
of opinions concentrates on the mean value of the initial distribution and the
population reaches consensus.
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2.3. Examples with different initial conditions

Let’s solve explicitly the theoretical asymptotic values of u(x, t) for two dif-
ferent initial conditions: a symmetrical one (u(x, 0) = cte) and an asymmetrical
(u(x, 0) = 2x). We will compare them with computer simulations in both cases.

2.3.1. a.- Constant opinion’s initial distribution

Let u0(x) = 1
2χ[−1,1](x), where χ[a,b](x) is equal to one if x ∈ [a, b] and zero

outside. Then,

X(ρ, 0) = inf

{
x :

∫ x

−1
dy ≥ ρ

}
= 2ρ− 1.

So,
X(ρ, t) = (1− 2ρ)t+ X(ρ, 0) = (1− 2ρ)t+ 2ρ− 1,

and inverting, since 0 ≤ ρ ≤ 1,

ρ =

(
x− t+ 1

2− 2t

)
χ[t−1,1−t](x)

Finally, for 0 ≤ t < 1, since u ≥ 0,

u(x, t) = ∂x

(
x− t+ 1

2− 2t
χ[t−1,1−t](x)

)
= (2− 2t)−1χ[t−1,1−t](x).

Observe that the solution blows up when t reaches 1, and

lim
t→1

u(x, t) = δ0.

and ∫ 1

−1
xu(x, t)dx = 0,

2.3.2. b.- Linear opinion’s initial distribution

Let u(x, 0) = x+1
2 χ[−1,1](x). Then,

F (x, 0) =

∫ x

−∞

y + 1

2
χ[−1,1](y)dy

=

∫ x

−1

y + 1

2
χ[−1,1](y)dy

=
(x+ 1)2

4
χ[−1,1](x).

Hence, X(ρ, t) = F−1(ρ) and we have

X(ρ, 0) = (2
√
ρ− 1)χ[0,1](ρ).

A direct computation gives

X(ρ, t) = (1− 2ρ)t+ (2
√
ρ− 1), 0 ≤ ρ ≤ 1,
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Figure 1: Time evolution of opinion’s density. Time evolution of an agent’s based
model governed by Eq.1, for a population of N = 10000 agents and h = 0.01, and two initial
distributions of opinions: Uniform (Upper panel) and Linear (Down panel).

and we recover u(x, t) = ∂xX−1(x) from

x = (1− 2ρ)t+ 2
√
ρ− 1, 0 ≤ ρ ≤ 1,

by computing the inverse function as before.
Finally, observe that, for any t,∫ 1

−1
xu(x, t)dx =

∫ 1

0

X(ρ, t)dρ =
1

3
,

and so u(x, t)→ δ1/3.
In order to compare these theoretical results with numerical simulations of

the agent based model sketched above, we implement a system of N = 10000
agents, which follows the dynamics given by equation (1) with h = 0.01. Initial
opinions are distributed in [−1, 1]. In this numerical implementation, one time
step corresponds to N interactions.

In Fig.1 we can observe the dynamics of u(x, t) obtained for the two men-
tioned initial conditions u(x, 0) (uniform and linear), and in Fig.(2) the dynam-
ics of the medians. We have to take into account that the relation between the
re-scaled time used to derive the analytical solution and the time used in simu-
lations differ by a factor (2h)/(Nτ), with τ = 1/N . This factor makes that the
theoretical re-scaled time corresponds to the time used in simulations divided by
50. We can observe how the distributions and the median converge to the pre-
dicted theoretical values 0 and 1/3, at times predicted in theory (t = 50, rescaled
is T = 1) showing the perfect agreement between theory and simulations.

2.4. Final Remarks

It is possible to extend the previous model including some repulsion effect,
and in this case the difference between the agents opinions can increase after
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Figure 2: Median and average value dynamics. Time evolution of the median (solid
lines) and the average value of the distribution (dashed lines) for a population of N = 10000
agents and h = 0.01, and two initial distributions of opinions: Uniform (red lines) and Linear
(black lines).
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the interaction. To this end, we can fix two probabilities p and q determining
if they tend to agree or not. However, this introduces a diffusive process, and a
second order differential equation appears,

∂u(x, t)

∂t
= a1(p, q)

∂2u(x, t)

∂x2
−a2(p, q)

∂

∂x

(
u(x, t)

(∫ x

−∞
u(y, t)dy −

∫ ∞
x

u(y, t)dy
))

,

where a1 and a2 are coefficients depending on the rates of positive and negatives
interactions.

This equation cannot be studied with the techniques above, and interesting
phenomena appears due to the competition between p and q. This equation
resembles the one obtained in [12],

∂u(x, t)

∂t
= a

∂2u(x, t)

∂x2
− ∂2u2(x, t)

∂x2
,

where free thinking of the agents generates the diffusive term, and prevents the
formation of consensus for a big enough.

3. Conclusions

On a previous work [6] we have developed a new threshold model of opinion
formation, in which the opinion change emerges as a consequence of a persua-
sion interacting dynamics between convinced agents, or between convinced and
undecided agents; and a repulsion effect occurs whenever the agents belong to
opposite groups.

We achieved to derive the masters equations that govern the process of
opinion formation dynamics, but they are very hard to being solved analytically
given the nonlinearities, the non-local interactions and the coupling between
populations of three different groups.

In this work, we developed an analytical framework where we have reduced
the complexity of the original model [6] to a single population, where whenever
two individuals interact, their opinions get changed by a fixed discrete quantity.
We have obtained a continuous approximation of the master equation that rule
the evolution of the system, and in this case, we solved it explicitly by using a
method developed in [9].

In particular, we have made the explicit computations for two kind of ini-
tial opinion distributions: a symmetrical one (uniform) and an asymmetrical
(linear). In both cases, the agreement with numerical simulations of the agent
based model described in Eq.(1) are remarkable: the median of the distribution
converge to the average (0 and 1/3 respectively) in the time predicted in the
theoretical calculations.

Given the importance of persuasion dynamics in opinion models, we believe
that this theoretical framework for will help to develop analytical solutions in
more complex models, as for instance those developed in [5] and [6], where no
bounded confidence constraint is imposed.
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