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Abstract: We introduce the algorithm for the direct phase estimation
from the single noisy interferometric pattern. The method, named implicit
smoothing spline (ISS), can be regarded as a formal generalization of the
smoothing spline interpolation for the case when the interpolated data is
given implicitly. We derive the necessary equations, discuss the properties
of the method and address its application for the direct estimation of
the continuous phase in both classical interferometry and digital speckle
pattern interferometry (DSPI). The numerical illustrations of the algorithm
performance are provided to corroborate the high quality of the results.
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1. Introduction

In optical metrological systems the measured quantity modifies such light beam parameters
as its amplitude (intensity), propagation direction, frequency, phase and polarization state. De-
coded light intensity changes are related to the measurand. In the case of studying phase mod-
ulating objects (transmitting or reflecting) interferometry constitutes well established and pow-
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erful indirect demodulation technique frequently used in science and technology. The so-called
full-field measurement techniques with parallel data acquisition and processing for all objects
points imaged onto the 2D matrix sensor deliver the output in the form of a fringe pattern, e.g.,
an interferogram (i.e., classical two-beam, holographic, speckle correlogram), moiregram, elas-
tooptic polariscope image, and raster or structured illumination. Note that each fringe pattern
has its characteristic features strongly dependent on the optical method used (e.g., coherent or
noncoherent) and object under test (e.g., with specular of diffuse reflection).

The automated fringe pattern analysis (AFPA) enables optical methods to be user friendly,
reliable and accurate [1, 2]. For out-of-laboratory tests single frame techniques are highly de-
sired. They can be implemented using much simpler experimental hardware, are much more ro-
bust with respect to environmental disturbances and facilitate investigation of transient events.
Simplified setup configurations call for more sophisticated software (algorithmic) solutions
to provide demanded measurement accuracy. Among single frame AFPA techniques being dy-
namically developed over the last two decades we have: the Fourier (FT) and windowed Fourier
(WFT) transform methods [3–6], spatial carrier phase shifting (SCPS) [7–9], regularized phase
tracking (RPT) [10–14], continuous wavelet (CWT) [15–20] and S-transform (ST) [21, 22]
methods, and Hilbert transform (HT) aided by empirical mode decomposition (EMD) [23–27].
Because of quite extensive literature related to each mentioned technique we have quoted only
a few selected papers including original contributions and articles with extensive reference
lists. Yet another recent development, influential on the presented paper, is the algorithm of
the radial basis functions (thin plate splines in particular) phase interpolation on the fringe
pattern skeleton [28]. Two main phase estimation solutions can be distinguished (see, for ex-
ample, [5, 6, 17, 18]):

• Phase estimation: in the WFT, CWT and ST methods the phase is estimated locally from
the transform result. This approach provides high estimation accuracy but requires further
unwrapping process;

• Frequency estimation: the instantaneous frequencies are estimated and subsequently in-
tegrated (FT, WFT, CWT, ST). Since the phase distribution obtained in this way is con-
tinuous, no further unwrapping process is required.

The phase unwrapping process, especially when processing and analyzing complex fringe pat-
terns with considerable background and modulation (contrast) variations and high noise con-
tamination (e.g., multiplicative speckle noise inherently met in digital speckle pattern interfer-
ometry, DSPI, correlation patterns) is not straightforward. The situation becomes even more
complex when dealing with closed fringe patterns.

In this paper we present the new algorithm capable of extracting the continuous phase dis-
tribution from the noise corrupted interferogram. The method is based on the smoothing spline
concept. Splines are piecewise polynomial functions used abundantly for interpolation and
curve/surface design [29]. Spline built with polynomials of degree (highest argument power)
n is continuous and has first n− 1 continuous derivatives. The smoothing spline [29, 30] gives
opportunity to enforce increased smoothness while limiting admissible error, which is of great
importance when the noisy data approximation is to be considered. The smoothing spline is not
unknown to the optical community, e.g., as a tool for the signal denoising [31,32]. Overall, it is
a well established and very successful concept in signal (and image) processing.

In this work, instead of tackling the task of the noise removal from the intensity fringe image
as an image enhancement technique, we address the direct estimation of the phase distribution
with the newly introduced algorithm named implicit smoothing spline (ISS). In this way the
error in the sought phase distribution can be minimized directly, unlike in the methods aiming
at the intensity pattern filtering. The method also offers, under proper conditions (initial phase
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guess), capability to estimate the continuous phase distribution, without the mod 2π ambiguity
or function symmetry ambiguity. Thus, we may avoid potentially difficult phase unwrapping at
the cost of providing a reasonable initial approximation to the phase distribution. The common
problem of numerous fringe processing algorithms (RPT, CWT, Fourier) in the low fringe fre-
quency regions is not severe for the ISS, since it does not explicitly depend on the concept of
the fringe frequency. Finally, it constitutes a new framework for the phase demodulation and
with very small number of parameters that need to be specified, the method is not difficult to
automatize.

2. About the method

The implicit smoothing spline (ISS) method, reported in this paper, can be regarded as the
generalization of the classic smoothing spline algorithm [30]. It allows to define the smoothing
spline approximation in the case when the provided noised input data represents some known
function of the approximated distribution rather than the approximated distribution itself. In this
section we show the formal relation between the smoothing spline and the ISS. We exclusively
discuss the cubic spline, as this is by far the most popular variant, well motivated by the cubic
spline strain energy minimization property.

2.1. Cubic smoothing spline

The reason behind the significant success of smoothing spline as the data analysis tool is that it
offers a simple framework for the balance between smoothness and interpolation error magni-
tude, regulated with a single parameter, hereafter denoted with p. On the opposite sides of the
spectrum of solutions described by the smoothing spline are the direct spline interpolation (no
restriction on smoothness, p = 0) and straight line least squares fit (for p → ∞). Formally, the
cubic smoothing spline is a spline function of degree n = 3 minimizing the following penalized
sum of squares (PSS) functional

P(S) =
N

∑
i=0

[Yi −Si]
2 + p

∫
Ω

[
S′′(x)

]2
dx , (1)

where Si = S(xi), the spline function S(x) evaluated at the interpolation knots xi (one knot for
each pixel in this case) and Ω represents the interpolation domain, i.e., in 1D it is the interval
Ω = [x0,xN ]. Data value at the i-th interpolation knot is denoted by Yi. The stunning fact is that
there exists an unique solution Ŝ(x), specified with the vector of values Ŝ, minimizing such a
PSS functional and that formula for calculating such a spline function can be given explicitly.
There is no need for any special numerical procedure aimed at the PSS functional minimization,
the solution is found just by the means of the elementary linear algebra. This is possible because
the penalizing part of Eq. (1) can be written as a simple bilinear form [30]

∫
Ω

[
S′′(x)

]2
dx = ST KS . (2)

K is an N ×N matrix of constant coefficients that only depends on the spline degree and the
knots distributions (see Appendix A for details in case of the cubic spline). Differentiating the
PSS functional we find the system of equations

∂P(S)
∂Si

=−2(Y −S)+2pKS . (3)

Equaling derivatives to zero we find the solution Ŝ(x), given by

(I + pK)Ŝ = Y , (4)
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with identity matrix I. The numerical implementations of the smoothing spline typically take
advantage of the K matrix sparsity to solve the system of Eqs. (4), which is of particular impor-
tance if the large data set is considered.

2.2. Implicit smoothing spline

We aim at exploring the case, in which the data vector Yi does not correspond directly to the
sought distribution Si = S(xi), but rather to the known scalar function f of Si. Therefore we
modify the first component (the error) of the PSS functional, leaving the second component
(the smoothness) untouched. Following the derivation outlined in the former section, we find

Pf (S) =
N

∑
i=0

[Yi − f (Si)]
2 + p

∫
Ω

[
S′′(x)

]2
dx . (5)

After differentiation and some straightforward algebra we find the following system of alge-
braic equations

f ′(Ŝ) · [Y − f (Ŝ)] = pKŜ , (6)

where we denoted elementwise multiplication by dot and differentiation with the apostrophe.
Observe that if f (S) is an identity, i.e., f (Si) = Si, Eq. (6) reduces to Eq. (4) and we have a
standard smoothing spline problem. We emphasize that this is not the differential equation,
since we are looking for the vector Ŝ and the function f (and hence its derivatives) is known
explicitly. For normalized fringe pattern, which is of our interest, f (Si) = cos(Si) and Eq. (6)
becomes

sin(2Ŝ)−2Y · sin(Ŝ) = 2pKŜ , (7)

constituting a nonlinear system of equations with the unknown vector Ŝ. This is unlike the case
of a regular smoothing spline, where the system to be solved was linear, Eq. (4). However, as
long as functions involved in Eq. (7) are continuous and smooth, the gradient-based nonlinear
algebraic solvers are expected to work fine. In case of f (Si) = cos(Si), the minimizer of the
PSS given in Eq. (5) can not be unique even for the simple reason of the cosine function 2π
periodicity. This means that some attention has to be given to the choice of the initial condition
for the nonlinear solver, which we discuss further.

A simple numerical illustration of the ISS algorithm performance and its comparison to the
regular smoothing spline is presented in Fig. 1. The data is in the form of cos(φ)+N(x), φ = x2

function spoiled with the additive white Gaussian noise N(x) of standard deviation σ = 0.5.
Figures 1(a) and 1(b) show the phase demodulation approach with the smoothing spline, i.e.,
denoise the intensity first and then decode phase with direct inversion of the cos(φ) function.
On the other hand, Figs. 1(c) and 1(d) show the ISS approach where it is phase distribution
to be directly approximated by the smoothing spline. Constant function was used as the initial
phase guess for the nonlinear solver. While the phase estimation quality obviously depends on
the smoothing parameter p, we have repeatedly found the direct phase estimation superior to
intensity filtration and subsequent phase decoding.

3. Application for the fringe pattern phase decoding

In order for the ISS algorithm to be applied to the phase decoding of the fringe patterns with
f (Si) = cos(Si), some details of the method need to be further clarified. In Fig. 2 we show the
flowchart of the general algorithm allowing to utilize ISS for the fringe pattern phase decoding.
Subsequently, the algorithm is discussed in more details.
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Fig. 1. Smoothing spline intensity denoising (a) and phase calculation (b) compared with
the ISS-estimated phase (d) and the corresponding intensity (c).
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Fig. 2. Flowchart of the proposed phase demodulation algorithm based on the ISS.

3.1. Nonlinear solver initial condition

Solving the nonlinear system of Eqs. 7 can be problematic without the reasonable initial con-
dition, as distinct parts of the Ŝ(x) may converge to the solution branches mutually shifted by
2kπ , integer k. Initial phase guess must be provided. While the guess does not need to be very
accurate and constant value was enough in the example shown in Fig. 1, it should indicate the
closest solution branch to the nonlinear solver. In any situation, when the approximate phase
distribution is known a priori (e.g., when departure from the ideal object shape is measured),
it can be used as the initial guess. In the subsequent demonstrations we address the more com-
plicated case, when nothing is known about the expected phase distribution. Following [28],
we use the thin plate spline (TPS) interpolation on the interferogram skeleton set to approx-
imate phase distribution. Such a smooth interpolation built on the ungridded skeleton set is
subsequently used as the ISS initial phase guess. This part is indicated with dashed lines on the
flowchart.

3.2. Choice of the smoothing parameter

In the ISS algorithm there is a single parameter p, controlling the smoothness of the phase
estimate Ŝ(x). Wrong choice of p may result either in preserving the unwanted noise component
or oversmoothing the phase estimation. Many methods of selecting the smoothing parameter
value were developed for the classic spline interpolation, among which the generalized cross-
validation (GCV, see, e.g., [33]) seems to be the most successful. While the basic idea could
be directly implemented to ISS, this would result in very much unpractical processing times.
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One of the reasons of the GCV method success is that effective, non-direct implementation
is available. It can only be employed for the classic smoothing spline though, where linear
equations are solved. While further investigations can reveal GCV methods (heuristic, most
likely) available for the ISS algorithm, we are currently satisfied with the intuitive selection of
the smoothness parameter p. Larger values of p provide better estimation quality for the data of
lower signal to noise ratio. In all of the numerical tests presented further values of p were kept
around p = 0.1.

3.3. Equation or functional?

To find the ISS problem solution we need to solve a nonlinear set of equations (7). On the
other hand, we may also attempt to minimize the Pf (S) functional from Eq. (5). Not only these
formulations are not strictly equivalent from the mathematical point of view, they also need
numerical methods to be employed in a different manners. We investigated both cases, utilizing
the powerful nonlinear solver based on the trust-region dogleg method [34, 35] (free Fortran
and commercial Matlab implementations available). While for both problems solution should
converge to the same vector Ŝ under proper initial conditions, we observed different numeri-
cal performance. The method solving Eq. (7) repeatedly found the solution of higher quality,
indicating better robustness of this formulation. This observation is consistent with the compu-
tational mathematic practice, see chapters IX-X of [36]. Since both approaches yielded similar
time performance, we limit further demonstrations to the variant of the ISS implementation in
which Eq. (7) is solved.

3.4. Extension to 2D

The examples shown so far were calculated for the single dimensional case. In principle 1D
algorithms can be used for the interferometric pattern processing purposes, being applied to
each line of pixels separately. Nevertheless, 2D algorithms are preferred for their overall better
robustness. Generalizing the presented algorithm to 2D (or, for that matter, arbitrary dimen-
sion) is straightforward using the tensor product of the 1D splines in their basis form, as long as
the knots are distributed on the regular grid. The details, which are similar for ISS and regular
smoothing spline, are thoroughly discussed in the monograph [29], chapter XVII. Nevertheless,
we found different approach to be of lower computational complexity and sufficient robustness.
We calculate two 1D ISS rasters, for rows and for columns. Then we average so-obtained im-
ages and apply standard 2D tensored smoothing spline to the result. In further demonstrations
all ISS results refer to such a variant of the algorithm. In the first of the simulations we also
show the performance of the method without final 2D smoothing.

3.5. Data normalization

ISS assumes that the normalized interferometric pattern is given as an input. Assuming that the
experimentally registered intensity pattern obeys (random noise ignored)

I(x) = b(x)+m(x)cos[φ(x)] , (8)

with background illumination intensity b(x) and fringe modulation m(x), it is necessary to
transform data into form

Î(x)≈ cos[φ(x)] . (9)

Therefore, preprocessing is necessary to remove background illumination influence and the
possible contrast variations from the input. However, the noise component does not need to be
effectively treated at the preprocessing stage - the filtering properties of the implicit smoothing
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spline account for it. There are many methods available in the literature to perform the neces-
sary preprocessing when the low quality fringe pattern is analyzed. One example is the fast and
data-driven technique based on the fast and adaptive empirical mode decomposition [26, 27],
with Matlab implementations available online. If the phase initial guess is based on the fringe
skeleton estimation, one can utilize its construction for the pattern normalization, simply trans-
forming the intensity in such a way that its mean value becomes 1 along each top fringe ridge
and -1 along each bottom fringe ridge. Note that this very basic procedure also approximately
removes the background component.

3.6. Relation to other phase estimation methods

While there exist other algorithms aiming at direct phase estimation, such as the RPT algorithms
family, there are fundamental differences between the proposed technique and other methods
considered in the literature, namely

• phase estimation is typically performed based on the local model, typically of a lin-
ear [13] or quadratic [14] polynomial. WFT, CWT and ST can also be regarded as meth-
ods employing locally the linear phase model. Spline, on the other hand is a global func-
tion represented with a different polynomial between each adjacent knots. Since in our
approach every single pixel constitutes a knot, we can represent any function defined on
our discrete domain using splines, there is no model limitation whatsoever;

• thanks to the smoothing splines algebraic properties, Eq. (2), we globally optimize just
the phase values themselves rather than local sets of polynomial coefficients or other
model parameters and since we are able to cast the optimization problem in the closed
form of the system of algebraic equations depending only on the data values and unknown
phase distribution, we may easily apply robust nonlinear algebraic solvers;

• global character means stronger dependence on the quality of the initial phase condi-
tion than in case of the local approaches. On the other hand this is the reason why the
continuous phase distribution is found without the frequency integration;

• the smoothness term of the ISS is curvature-based, while methods such as RPT typi-
cally enforce smoothness based on the phase variability. This means that if smoothness is
pushed to the limit, ISS is likely to find the best-fit constant frequency term while other
methods will tend to reduce any phase variability. This implies that the choice of the
smoothness parameter p is less critical in the presented approach.

4. Numerical tests

We present processing results for several typical interferometric data inputs. Some of these
include regions of very low fringe frequency. All the synthetic data is in 256 × 256 pixels
format. The quality of the retrieved phase is evaluated with the root mean square error (RMS),
mean absolute value of the error (MAE) and the maximum error value (Peak), all given in
radians.

4.1. General comparison between the compared methods

We compare the ISS approach with the wavelet transform method and the skeleton interpolation
method of [28]. The former is well-established and successful fringe pattern analysis technique
while the latter is somewhat close to the ISS method, which can be regarded as its extension
(since in the presented simulations we use the skeleton-interpolated phase as the nonlinear
solver initial condition). Below we give short summary of these two methods:
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1. Interpolation on the skeleton is a direct phase estimation based on the set of interpolation
knots being the positive and negative fringe ridges, i.e., the skeleton. Thin plate spline
(TPS) interpolation is used, since it allows to perform calculations with the ungridded
set of knots, results in smooth function and performs well even with low fidelity, discon-
nected skeleton [28]. The skeleton acts like a set of contour lines of phase distribution,
separated by π radians (2π if only positive ridges are taken into account). Thus, the denser
are the fringes and higher skeleton evaluation quality, the better method’s performance.
Unlike ISS, this approach ignores the points outside of the skeleton. Also, the skeleton is
fixed as the set of interpolation knots, while ISS allows, to certain extent, to correct the
skeleton calculation errors, as it is only utilized for the nonlinear solver initial guess. Thin
plate spline is expensive to evaluate, so this may not be the preferred technique when the
skeleton is a very large set, e.g., for the spatial carrier fringe pattern. For some details
regarding the skeleton calculation methods, see [2]. In the examples considered further,
we assume that fringe ridges are calculated exactly and the adequate integer multiplicity
of π is assumed as a ridge value. While this is not the true value at the ridge pixel for the
realistic (i.e., discretely sampled) image, it is still a high quality estimation - more than
one could expect from the skeleton estimation on the real, noisy data. Note that such an
approach renders results independent of the synthetic pattern noise level. We refer to this
method further with the TPS acronym. Note that whenever the ISS algorithm utilizes the
TPS method output as an initial phase, the final phase error can not become any larger in
result of the ISS processing. Hence, to be precise, we rather observe how much more can
ISS reduce the phase error than compare ISS to TPS.

2. Wavelet transform methods constitute both popular and highly acknowledged phase de-
coding algorithms. In this comparison we utilized 2D complex continuous Morlet wavelet
(CWT), that can be regarded as a windowed Fourier transform improved by utilizing ad-
ditional relation between the frequency and the window width [17]. When it helped the
phase calculation quality, we used unusually small value of the envelope wideness pa-
rameter (such an effect is not surprising for the low fringe densities). While theoretically
this limits the mid-pass filter properties of the CWT, we found overall results to be much
better - for typical width of the envelope Morlet CWT could not compete neither with
TPS nor ISS in any of the considered examples other than the high frequency carrier im-
age. Big advantage of the CWT is that there is no need for the additional preprocessing
such as normalization or skeleton calculation. On the other hand, the resultant phase is
mod 2π wrapped. Also, even function ambiguity (cos(φ) = cos(−φ)) is present, leading
to further unwrapping errors. One possible method to deal with this problem is described
in [37]. In the error calculations given further we assumed that all wrapped phase am-
biguities can be resolved with perfect accuracy. The quality was always worse when we
performed the actual phase unwrapping. In the corresponding figures we show the phase
decoding results in the wrapped form and error distributions of the perfectly unwrapped
data.

4.2. Synthetic interferometric patterns

4.2.1. Test 1: small phase variation

In this example there is no carrier and phase variation is too small to produce fringes, hence we
need to simply invert the cosine function in the properly normalized image. The TPS method
fails since there are no fringe ridges present. Since no carrier is present, Fourier method can not
be applied and the Morlet wavelet application is cumbersome. One very basic approach is to
smooth the intensity image and find its arccos function. While there is a plethora of fringe image
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filtration methods, we only consider the optimal linear filtration, i.e., knowing the noiseless
image we choose the Gaussian convolution filter of size that minimizes the error (obviously
this is not even doable for the real data, the intention here is to compare ISS performance
with some very effective filtration algorithm). The comparison was performed for the phase
distribution φ1 shown in Fig. 3(e) for the intensity images with additive white Gaussian noise
of standard deviation σ1 = 0.1 and σ2 = 0.5. Image of the φ1(x,y) function is confined to the
[0,3] set. Constant phase was utilized as the initial phase guess for the ISS nonlinear solver,
since the skeleton interpolation was not feasible. We show phase estimation results for σ2 in
Fig. 3, while phase errors for both noise levels are given in Table 1. While we do not indicate
this in the results, it was also possible to perform the phase demodulation with the Morlet 2D
CWT, with the strongly narrowed envelope. The error magnitude was similar as in case of the
Gaussian filtration, far worse than for the ISS method.

(a) (b) (c) (d)

(e) (f) (g)

0.1

0.2

0.3

0.4

0.5

(h)

Fig. 3. Synthetic pattern spoiled with noise (a); underlying phase distribution (e); result
and residual error of Gaussian filtration and cosine inversion result (b),(f); ISS averaged
1D rasters result and error (c),(g); 2D ISS result and error (d),(h). Errors in radians.

4.2.2. Test 2: continuous phase estimation

Here we consider similar, yet scaled, phase distribution φ2 = 5.25 ·φ1. Phase variation is large
enough to produce some fringes, see Fig. 4, so the wavelet method is more applicable than in the
previous example. TPS skeleton interpolation and ISS are also viable. The Fourier method can
not be applied because of the fringe orientation variation. Because of the large fringe curvature
in relation to its frequency, envelope width parameter of the CWT was tuned for the higher
quality (it is 0.35 of the typically used value). We show results for the noise standard deviation
σ2 = 0.5 in Fig. 4 and give errors for σ1 = 0.1 and σ2 = 0.5 in Table 1.

4.2.3. Test 3: fringes with spatial carrier

In this example high frequency vertical carrier fringes distorted by φ3 = 2.625 ·φ1 distribution
are present. This is the kind of input for which Fourier (classic method described in [3], here
referred to as FFT) and CWT methods can be successfully applied. It is rather unusual to
address this kind of input with the TPS algorithm, but it can be done. The application of the
FFT method was preceded by the linear filtration with Gaussian convolution mask of optimized
width, standard deviation equal to 1 pixel and 2 pixels for noise of σ1 = 0.1 and σ2 = 0.5,
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Fig. 4. Synthetic pattern spoiled with noise (a); pattern skeleton used for the interpolation
(e); result and error of the TPS method (b),(f); result and residual error of the CWT method
(c),(g); ISS result and error (d),(h). Errors in radians.

Table 1. Errors comparison for the numerical tests 1 and 2

Test 1 Test 2
σ 0.1 0.5 - 0.1 0.5

Simple ISS1D ISS2D Simple ISS1D ISS2D TPS CWT ISS CWT ISS
RMS 0.178 0.076 0.056 0.245 0.182 0.136 0.327 0.222 0.124 0.224 0.211
MAE 0.087 0.054 0.043 0.166 0.139 0.115 0.196 0.151 0.083 0.161 0.131
Peak 0.625 0.396 0.198 1.273 0.853 0.436 1.167 1.778 0.214 1.849 1.299

respectively. As previously, figures are shown for the noise of σ2 = 0.5, see Fig. 5, while the
errors for σ1 = 0.1 and σ2 = 0.5 are indicated in Table 2.

4.3. DSPI images processing

The multiplicative character of the speckle noise makes DSPI image more challenging for the
fringe pattern processing algorithm to decode. Since the mean value of the noise-spoiled in-
tensity is proportional to the sought intensity [38] it is a common practice to analyze speckle
pattern with simple low-pass filtration denoising, yet many more sophisticated methods were
introduced as well. Here we demonstrate that the ISS algorithm works fine with the speckle
fringe images, maintaining all of its benefits. The subtractive speckle fringe pattern may be put
in the form

[ΔI(x)]2 = [I2(x)− I1(x)]
2 ∝ [sin(θ)cos(φ/2)]2 = 0.5sin2(θ) [1+ cos(φ)] , (10)

where intensities I2 and I1 represent speckle patterns registered for two different states of the
investigated object, θ is the random speckle phase distribution and φ is the sought phase dis-
tribution related to the measured physical quantity. We assumed uncorrelated noise values in
adjacent pixels (speckles of 1 pixel size), hence the simplified form of Eq. (10). In the ISS
framework we may estimate the function of phase f (φ) = 1+ cos(φ), which, using Eq. (6),
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Fig. 5. Synthetic pattern spoiled with noise (a); ideal noiseless intensity distribution (f);
result and error of the FFT method (b),(g); result and residual error of the TPS method
(c),(h); result and residual error of the CWT method (d),(i); ISS result and error (e),(j).
Errors in radians.

leads to the following system of equations

sin(2Ŝ)−2(Y −1) · sin(Ŝ) = 2pKŜ , (11)

Note that if we put Y := Y − 1, we arrive at Eq. (7) again, meaning that the phase estimation
in the speckle pattern may simply be performed with the same algorithm as for regular fringe
pattern.

4.3.1. Test 4: curved fringes

In this example we consider the same phase distribution distribution as in the test 2, but spoiled
with the multiplicative speckle noise, Fig. 6. Corresponding errors for the TPS, CWT and the
ISS algorithms are given in Table 2.

4.3.2. Test 5: low frequency phase variation

The final synthetic data example involves low frequency speckle pattern distribution, Fig. 7.
Errors are given in Table 2.

Table 2. Errors comparison for the tests 3-5

Test 3 Test 4 Test 5
σ - 0.1 0.5 - -

TPS FFT CWT ISS FFT CWT ISS TPS CWT ISS TPS CWT ISS
RMS 0.282 0.172 0.092 0.057 0.199 0.104 0.075 0.327 0.287 0.253 0.140 0.202 0.083
MAE 0.185 0.162 0.061 0.035 0.173 0.067 0.053 0.196 0.212 0.173 0.089 0.134 0.050
Peak 1.614 0.462 0.496 0.389 0.661 0.563 0.543 1.167 1.570 1.067 0.625 0.974 0.543
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Fig. 6. Synthetic DSPI pattern (a); ideal noiseless intensity distribution (e); result and error
of the TPS method (b),(f); result and residual error of the CWT method (c),(g); ISS result
and error (d),(h). Errors in radians.
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Fig. 7. Synthetic DSPI pattern (a); ideal noiseless intensity distribution (e); result and error
of the TPS method (b),(f); result and residual error of the CWT method (c),(g); ISS result
and error (d),(h). Errors in radians.
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4.4. Processing experimental patterns

Here we consider the experimental DSPI pattern from [39] obtained in nodestructive testing
with thermal waves. A temporally modulated IR lamp was used to heat the surface of a flawed
plate and the resulting out-of-plane displacements were monitored. There is no background in
the data, since it is obtained with the subtraction of two frames. The skeleton is estimated based
on the basic binarization and morphological operations. For normalization we only apply the
linear transformation based on the estimated skeleton, as indicated in Subsection 3.5. Hence,
no nonlinear operation on the image intensities is performed and the ISS algorithm optimizes
phase distribution using the image shown in Fig. 8(a). As the phase error distribution is not
available for the real data, we decided to present the rewrapped phase distributions, i.e., the
cosine function of the calculated phase in order to demonstrate the phase decoding quality.
Results are compared in Fig. 8, clearly indicating that the ISS yields smoother phase distribution
approximation.

(a) (b) (c) (d)

Fig. 8. Experimental DSPI pattern [39] as used by the ISS algorithm (a); enhanced contrast
DSPI pattern, shown solely for demonstratory purposes (b); rewrapped CWT-processed
pattern (c); rewrapped ISS-processed pattern (d).

In Fig. 9 an image obtained in testing a notch including specimen under tensile load is shown.
In case of these data the CWT method failed to find a reasonable approximation to the fringe
pattern. This is because of the presence of a discontinuity (very much local feature) in the low
frequency fringes (large scale changes). There is simply no Morlet wavelet family element that
could approximate the intensity in the discontinuity region. Similar problems may appear for
any algorithm utilizing locally linear phase model. ISS, on the other hand, performs well in the
whole domain. The last experiment, Fig. 10, utilizes the interferometric pattern produced by the
spherical mirror tested with Burch’s common-path scatterplate interferometer, [40]. This data
is critically difficult for the single-frame algorithm to process since the presence of the doubly
unscattered and doubly scattered parasitic terms. We approach it with the basic normalization
and background removal mentioned in the Subsection 3.5. We were unable to produce any
meaningful result with the CWT method.

4.5. Remarks on the numerical performance

The ISS algorithm indicates very good performance in all of the considered examples, without
doubts yielding quality superior to other discussed algorithms. A single disadvantage of the
method is a rather high processing time, in considered cases typically about 3 minutes per im-
age with 3.2GHz CPU personal computer. For the same data CWT or TPS processing typically
lasted no more than about 1 minute. While the performance should be significantly improved
with more sophisticated implementation, it also depends strongly on the inner parameters of
the solver. For instance, changing the maximum number of solver iterations from 100 to 15
resulted in processing time reduced from above 10 minutes to below 3 minutes with accuracy
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(a) (b) (c)

Fig. 9. Experimental DSPI pattern as used by the ISS algorithm (a); rewrapped CWT result
(b); rewrapped ISS-processed pattern (c).

(a) (b) (c)

Fig. 10. Experimental interferometic pattern [40], as used by the ISS algorithm (a);
rewrapped ISS-processed pattern (b); partially found pattern skeleton used to produce ISS
initial phase guess (c).

diminished just by about 1 percent. One may attempt to find a reasonable trade-off between
the processing speed and quality by adjusting maximum iterations number or other solver pa-
rameters. More attention shall be given to this issue in the future. On the other hand one could
reduce the number of the spline function knots, which is equal to the number of data points
(image pixels) in the discussed algorithm. On the one hand this could dramatically improve
the speed of such an implementation. Yet the price would obviously be the loss of the model
generality and corresponding resolution and accuracy loss.

5. Conclusions

We have proposed a new data approximation algorithm that can be regarded as the smoothing
spline generalization, namely the implicit smoothing spline method. The application for the in-
terferometric fringe pattern analysis was thoroughly discussed and demonstrated. We showed
that in the ISS framework, the solution to the phase evaluation problem can be found by solv-
ing a set of algebraic equations rather than minimizing the cost functional and found such an
approach to be more robust. A variety of numerical examples was given and all of them cor-
roborated the superior quality of the ISS phase decoding results. The largest benefits of the
method were expected in case of low density fringes, where most other methods will fail to
properly decode small phase variations (see Figs. 7(g)–7(h) and Fig. 9). We found that ISS may
outperform other techniques even with the high frequency spatial carrier fringes, Fig. 5(j). Nev-
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ertheless, an honest remark should be given, that determining the phase initial guess is expected
to be generally more difficult for the higher spatial frequencies of the fringe pattern. Since this
paper is the first introduction of the ISS algorithm, we conclude with the brief summary of the
further research directions that we see worth following:

• smoothing splines were formulated for arbitrary odd polynomial degree [30], in principle
one could imagine extension of this algorithm to the quintic (or even higher order) spline
interpolation.

• weighted errors or spatially varying smoothness parameter (see, e.g., [41]) should work
within the ISS framework in the same manner as with the classic smoothing spline. It
could be a very useful feature in case when the pattern quality and/or signal to noise ratio
vary throughout the domain.

• a reasonable method to automatically choose the smoothness parameter p is necessary.

• employing (meta)heuristic procedures, such as simulated annealing or genetic algo-
rithms, to solve Eq. (5) would relax the initial phase guess restrictions by enabling the
global extremum localization.

• more sophisticated ISS implementation will help with the computation time reduction.
In particular, since the initial stage of the algorithm works as the set of independent 1D
interpolation problems, parallelization should be feasible.

6. Appendix A

Consider cubic spline (n = 3) and the vector of interpolation knots xi. The differences vector
hi = xi+1 − xi. Note that for our needs, when knots correspond simply to subsequent image
pixels, h is likely to be constant. Nevertheless, we give a more general equations here. The
matrix K, introduced in Eq. (2) and utilized by both smoothing splines and ISS methods, is in
the form of

K = QT G−1Q (12)

with cubic spline basis Gram matrix of size N −2×N −2

Gii = hi +hi+1 ; Gi−1,i = Gi,i−1 =
hi

2
(13)

and matrix Q of size N −2×N

Qii =
1
hi

; Qi,i+1 =−hi +hi+1

hihi+1
; Qi,i+2 =

1
hi+1

(14)

While Eq. (4) is correct, from the numerical point of view it is not a preferred way to calculate
the smoothing spline. Typically, some equivalent linear equation is solved [29]. For the ISS
algorithm implementation, we are currently directly solving numerically Eq. (7).

7. Appendix B

Several definitions of the penalized smoothing spline functional were given in the literature,
leading to a confusing definition of the smoothing parameter. All functionals describe the same
spectrum of solutions and while finding the relation between different parametrizations is ele-
mentary, we believe that readers interested in using smoothing spline or ISS could save some
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time and avoid confusion using the following table, Table 3, indicating the relation between
three popular definitions of the PSS.

PSS1(S) =
N

∑
i=1

[Yi −Si]
2 + p

∫
Ω

[
S′′(x)

]2
dx (15)

PSS2(S) = ρ
N

∑
i=1

[Yi −Si]
2 +

∫
Ω

[
S′′(x)

]2
dx (16)

PSS3(S) = λ
N

∑
i=1

[Yi −Si]
2 +(1−λ )

∫
Ω

[
S′′(x)

]2
dx (17)

Table 3. Three popular PSS parametrizations

- PSS1(p) = . . . PSS2(ρ) = . . . PSS3(λ ) = . . .

. . .= PSS1(?) p 1
ρ

1−λ
λ

. . .= PSS2(?) 1
p ρ λ

1−λ
. . .= PSS3(?) 1

1+p
ρ

1+ρ λ

Even more confusion is introduced when matrices given explicitly in the Appendix A differ
by a scalar value. Unfortunately, it does happen between different implementations and can not
be solved with a simple table.
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