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Abstract. In this note we will investigate some particular classes of ideals

in Hilbert algebras with supremum. We shall study the relation between α-

ideals and annihilator ideals in bounded Hilbert algebras with supremum. We

shall introduce the class of σ-ideals and we will see that this class is strongly

connected with the deductive systems. We will also characterize the bounded

Hilbert algebras with supremum satisfying the Stone identity.

1. Introduction

Hilbert algebras are algebraic models of the implicative fragment of Intuitionistic

Propositional Logic. These algebras form a variety as was shown by A. Diego in

[13] (see also [18], and [10]). On the other hand, it is well known that in every

ordered set with last element 〈A,≤, 1〉 the binary operation → given by a → b = 1,

when a ≤ b, and a → b = b, when a � b, define a Hilbert algebra 〈A,→, 1〉. This

implication is called the implication given by the order. This example allows us to

define Hilbert algebras on posets, semilattices or lattices. These examples motivate

the study of Hilbert algebras with lattice operations. Works in this direction are

the papers [4] and [8]. In this note we will consider Hilbert algebras where the

order define a join-semilattice. We note that Hilbert algebras are also known as

positive implicative BCK-algebras, and Hilbert algebras with lattice operations are

a particular case of the BCK-algebras with lattice operations studied by Idziak in

[16] and [17].
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An important notion recently considered in the literature on Hilbert algebras

is the concept of order-ideal. In Hilbert algebras where the order define a join

operation the notion of order-ideal is equivalent to the usual notion of ideal of

join-semilattice. This notion is used in the topological representation theory for

Hilbert algebras given in [7], and the representation theory for Hilbert algebras with

supremum recently developed in [8]. In the study of bounded Hilbert algebras with

supremum, or H∨-algebras, we can consider other classes of ideals. For example, in

[9] we will introduce the notion of α-ideal. As was proved in [9] the set of all α-ideals

is a Heyting algebra isomorphic to the set of all ideals of the Boolean algebra of the

regulars elements. Another interesting class of ideals that can be defined in bounded

Hilbert algebras with supremum is the class of σ-ideals. It is well-known that a

subset I is an ideal of a Boolean algebra A iff the set (I)∗ = {a∗ | a ∈ I} is a filter of

A, where a∗ is the negation of a. For bounded Hilbert algebras with supremum we do

not have a similar condition, but we can identify a class of ideals strongly connected

with the deductive systems. A σ-ideal in a bounded Hilbert algebras with supremum

A is an semilattice ideal I such that I = ((F )∗] = {a | ∃f ∈ F : (a ≤ f∗)}, for some

deductive system F . In general every σ-ideal is an α-ideal, but the converse is not

always true. We prove that the bounded Hilbert algebras with supremum where

the converse is valid are exactly those that they satisfies the Stone identity.

The paper is organized as follows. In Section 2 we will recall some notions

that will be needed in the sequel. In Section 3 we shall define the class H∨ of

Hilbert algebras with supremum. The class H∨ is a subclass of BCK-algebras with

supremum studied by P. M. Idziak in [16]. In Section 4 we shall study the relation

between α-ideals and annihilator ideals in bounded Hilbert algebras with supremum.

In Section 5 we shall study the σ-ideals in the class of bounded Hilbert algebras

with supremum or H∨
0 -algebras. In Section 6 we will give different characterizations

of the class of H∨
0 -algebras that satisfies the Stone identity.

2. Preliminaries

For basic concepts in Hilbert algebras we refer to [10], [13] and [18], for Hilbert

algebras with lattices operations we refer to [4], and for basic concepts in distributive

lattices we refer to [1].

Definition 1. A Hilbert algebra is an algebra A = 〈A,→, 1〉 of type (2, 0) such that

the following axioms hold in A:

(1) a → (b → a) = 1.

(2) (a → (b → c)) → ((a → b) → (a → c)) = 1.

(3) a → b = 1 = b → a imply a = b.
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It is easy to see that the binary relation ≤ defined in a Hilbert algebra A by

a ≤ b if and only if a → b = 1, is a partial order on A with greatest element 1. This

order is called the natural ordering on A.

A Hilbert algebra A is bounded if there exists an element 0 ∈ A such that

0 → a = 1, for all a ∈ A. We shall write a∗ for a → 0. We will note by H and H0

the varieties of Hilbert algebras and bounded Hilbert algebras, respectively.

Lemma 2. Let A be a bounded Hilbert algebra. Then the following properties are

satisfied for all a, b, c ∈ A :

(1) a → a = 1.

(2) 1 → a = a.

(3) a → (b → c) = b → (a → c).

(4) a → (b → c) = (a → b) → (a → c).

(5) a ≤ ((a → b) → b).

(6) a → (a → b) = a → b.

(7) (a → b) ≤ (b → c) → (a → c).

(8) (a → b) ≤ (c → a) → (c → b).

(9) a ≤ b → a.

(10) a ≤ a∗∗.

(11) a∗ = a∗∗∗.

(12) a → b ≤ b∗ → a∗.

(13) a → b∗ = b → a∗.

(14) (a → b)∗∗ ≤ a∗∗ → b∗∗.

Proof. See [3], [4], [10], [13], or [18].

Let us consider a poset 〈X,≤〉. A subset U ⊆ X is said to be increasing

(decreasing) if for all x, y ∈ X such that x ∈ U (y ∈ U) and x ≤ y, we have

y ∈ U (x ∈ U). For each Y ⊆ X, the increasing (decreasing) set generated by Y

is [Y ) = {x ∈ X | ∃y ∈ Y (y ≤ x)} ((Y ] = {x ∈ X | ∃y ∈ Y (x ≤ y)}). If Y = {y},

then we will write [y) and (y] instead of [{y}) and ({y}], respectively. The set of

all subsets of X is denoted by P (X), and the set of all increasing subsets of X is

denoted by Pi (X). Let Y ⊆ X. The complement of Y in X is denoted by X − Y ,

or by CXY .

Let A ∈ H. A subset D ⊆ A is a deductive system of A if 1 ∈ D, and if a, a →

b ∈ D then b ∈ D. The set of all deductive systems of a Hilbert algebra A is noted

Ds (A). It is easy to prove that Ds(A) is closed under arbitrary intersections. The de-

ductive system generated by a set X is 〈X〉 =
⋂

{D ∈ Ds (A) | X ⊆ D}. If X = {a},

then we will denote X = 〈a〉. Let us recall that 〈a〉 = {b ∈ A | a ≤ b} = [a). Given a
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sequence a, a1, . . . , an ∈ A, we define (a1, . . . , an; a) = a1 → (a2 → . . . (an → a) . . .).

So, the deductive system generated by a subset X ⊆ A can be characterized as the

set 〈X〉 = {a ∈ A | ∃ (a1, . . . , an) ∈ An, such that (a1, . . . , an; a) = 1}.

Let D ∈ Ds (A)−{A}. We shall say that D is irreducible if and only if for any

D1, D2 ∈ Ds (A) such that D = D1 ∩D2, it follows that D = D1 or D = D2. The

set of all irreducible deductive systems of a Hilbert algebra A is denoted by X(A).

Let us recall that a deductive system is irreducible iff for every a, b ∈ A such that

a, b /∈ D there exists c /∈ D such that a, b ≤ c (see [5], [13] or [18]). A subset I of A

is called an order-ideal of A if b ∈ I and a ≤ b, then a ∈ I, and for each a, b ∈ I

there exists c ∈ I such that a ≤ c and b ≤ c. The set of all order-ideal of A will

denoted by I(A). It is clear that the set (a] = {b ∈ A | b ≤ a} is an order-ideal, for

each a ∈ A.

The following is a Hilbert algebra analogue of Birkhoff’s Prime filter Lemma

and it is proved in [5].

Theorem 3. Let A be a Hilbert algebra. Let D ∈ Ds(A) and let I ∈ I(A) be such

that D ∩ I = ∅. Then there exists P ∈ X(A) such that D ⊆ P and P ∩ I = ∅.

Lemma 4. Let A ∈ H0, a ∈ A and P ∈ X(A). Then

(1) a∗ /∈ P if and only if there exists Q ∈ X(A) such that P ⊆ Q and a ∈ Q.

(2) a∗ /∈ P if and only if there exists a maximal deductive system M such that

P ⊆ M and a ∈ M .

Let A be a Hilbert algebra. Let us consider the poset 〈X(A),⊆〉 and the

mapping ϕ : A → Pi (X(A)) defined by ϕ (a) = {P ∈ X (A) | a ∈ P} . In [5] was

proved that ϕ is an injective homomorphism of Hilbert algebras. If A ∈ H0, then

it is easy to prove that ϕ (0) = ∅, and ϕ(a∗) = X(A)− (ϕ(a)].

Let A ∈ H0. The set of regular elements of A is the set R(A) = {a ∈ A |

a∗∗ = a}. It is know that R(A) = 〈R(A),∨,∧,¬, 0, 1〉 is a Boolean algebra, where

the lattice operations ∨ and ∧ are defined by means of the following conditions:

a∧b = (a → b∗)∗,

a∨b = (a∗ → b)∗∗,

respectively. The set D(A) = {a ∈ A | a∗ = 0} is a deductive system called the set

of dense elements of A (for more details see [3] and [14]).

3. Hilbert algebras with supremum

Definition 5. An algebra A = 〈A,→,∨, 1〉 of type (2, 2, 0) is a Hilbert algebra with

supremum, or H∨-algebra, if
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(1) 〈A,→, 1〉 ∈ H.

(2) for every a, b ∈ A, there exists a ∨ b ∈ A (relative to natural ordering on A.

(3) For all a, b ∈ A, a → b = 1 if and only if a ∨ b = b.

An important example of Hilbert algebras with supremum are the Tarski

algebras, also called Implication algebras. Let us recall that a Tarski algebra is a

Hilbert algebra 〈A,→, 1〉 such that (a → b) → b = (b → a) → a, for all a, b ∈ A.

It is known that 〈A,→, 1〉 is a join semilattice under the operation ∨ defined by

a ∨ b = (a → b) → b (see [4], [10] or [18]).

The class of H∨-algebras is indeed a variety, denoted by H∨. An H∨
0 -algebra

is a bounded H∨-algebra. The variety of H∨
0 -algebras is denoted by H∨

0 . The fact

that H∨ is a variety follows from the work on BCK-algebras with lattice operations

given by P. M. Idziak in [16]. In the subsequent paper [17] Idziak also proved that

the lattice operations are compatible with the BCK-congruences. For completeness,

we prove these facts.

Theorem 6. Let us consider an algebra A = 〈A,→,∨, 1〉 of type (2, 2, 0). Then A

is an H∨-algebra if and only if

(1) 〈A,→, 1〉 is a Hilbert algebra.

(2) For every a, b ∈ A there exists a ∨ b ∈ A, (relative to the natural ordering

of A).

(3) A satisfies the following equations:

(a) a → (a ∨ b) = 1,

(b) (a → b) → ((a ∨ b) → b) = 1.

Proof. ⇒) (a) We note that a ∨ (a ∨ b) = a ∨ b if and only if a → (a ∨ b) = 1.

We prove (b). We recall that for any a, b ∈ A, we have a ≤ (a → b) → b, and

b ≤ (a → b) → b. Then,

a ∨ (a → b) → b = (a → b) → b,

and

b ∨ (a → b) → b = (a → b) → b.

So, (a ∨ b) ∨ ((a → b) → b) = (a → b) → b, and by hypothesis we deduce that

a∨b ≤ (a → b) → b. Therefore, a → b ≤ (a∨b) → b, i.e., (a → b) → ((a∨b) → b) = 1.

⇐) We prove that a → b = 1 if and only if a ∨ b = b, for all a, b ∈ A. Suppose

that a → b = 1. Hence,

1 = (a → b) → ((a ∨ b) → b) = 1 → ((a ∨ b) → b).
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So, (a ∨ b) → b = 1. As b → (a ∨ b) = 1, we get from properties of Hilbert algebras,

that a ∨ b = b.

Assume that a ∨ b = b. Thus, 1 = a → (a ∨ b) = a → b.

Let A ∈ H∨
0 . It is well known that if a, b are elements of a BCK-algebra

such that a ∨ b exists, then for each element c, (a → c) ∧ (b → c) also exists and

(a ∨ b) → c = (a → c) ∧ (b → c). Hence for a, b ∈ A, we have:

(a ∨ b)∗ = a∗ ∧ b∗. (3.1)

A well-known result given by A. Diego and A. Monteiro (see [13], [10], [18], or

[14]) ensures that the lattice of congruences of a Hilbert algebra is isomorphic to

the lattice of the deductive systems. This result can be extended to Hilbert algebras

with supremum as we shall see below.

Let A = 〈A,→,∨, 1〉 be an H∨-algebra. The lattice of all congruences of A

we will denoted by Con(A,→,∨), and the lattice of all congruences of 〈A,→, 1〉 we

will denoted by Con(A,→). Let us recall that for each D ∈ Ds(A), the relation

θ(D) =
{

(a, b) ∈ A2 | a → b, b → a ∈ D
}

,

is an element of Con(A,→), and for each θ ∈ Con(A,→), the set

1θ = {a ∈ A | (a, 1) ∈ θ} ,

is a deductive system. Moreover, D = 1θ(D) and θ = θ(1θ). Now we shall prove

that the congruences of an H∨-algebra A are the same that the congruences of the

Hilbert algebra 〈A,→, 1〉. This result is based in the following lemma.

Lemma 7. Let A ∈ H∨. Let D ∈ Ds(A). For every a, b, c ∈ A, if a → b ∈ D, then

(a ∨ c) → (b ∨ c) ∈ D.

Proof. Suppose that a → b ∈ D. As a → b ≤ a → (b ∨ c) ∈ D, we get

(a ∨ c) → (b ∨ c) = (a → (b ∨ c)) ∧ (c → (b ∨ c))

= (a → (b ∨ c)) ∧ 1 = a → (b ∨ c) ∈ D.

Theorem 8. Let A ∈ H∨. Then Con(A,→,∨) = Con(A,→).

Proof. It is clear that Con(A,→,∨) ⊆ Con(A,→). Let θ ∈ Con(A,→). Let (a, b) ∈

θ. Then a → b, b → a ∈ 1θ, and from Lemma 7 we have that (a ∨ c) → (b ∨ c),

(b ∨ c) → (a ∨ c) ∈ 1θ, i.e., (a ∨ c, b ∨ c) ∈ θ. So, Con(A,→) ⊆ Con(A,→,∨).
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Now we give a characterization of maximal deductive systems in bounded

H∨-algebras.

Lemma 9. Let A ∈ H∨
0 and P ∈ Ds(A). Then the following conditions are equiva-

lent:

(1) P is maximal.

(2) for all a ∈ A (a /∈ P , implies that a∗ ∈ P ).

(3) for all a ∈ A (a /∈ P , implies that a∗∗ /∈ P ).

(4) P is irreducible and D(A) ⊆ P .

Proof. The equivalences between the items (1), (2) and (3) follows by the results

given in [3] and [18]. The direction (3) ⇒ (4) is immediate.

We see (4) ⇒ (1). If by contrary P is not maximal, then there is a /∈ P such that

a∗ /∈ P . Since P is irreducible, there is b /∈ P such that a, a∗ ≤ b. Then b∗ ≤ a∗ ≤ b.

So, b∗ → b = 1, and consequently b∗∗ = 1, i.e., b∗ = 0. Then b ∈ D(A) ⊆ P , a

contradiction.

Let A ∈ H∨
0 . We say that a deductive system D is prime if and only if D 6= A

and for every a, b ∈ A such that a ∨ b ∈ D, we have that a ∈ D or b ∈ D. It is easy

to prove that a deductive system D is irreducible if and only if D is prime.

The next lemma is needed later. The statement and proof of item (1) of the

following lemma was suggested by the referee.

Lemma 10. Let A ∈ H∨
0 . Then the following properties are satisfied:

(1) for a, b ∈ A there exists a∗∗ ∧ b∗ and (a → b)∗ = a∗∗ ∧ b∗.

(2) (a∗ → b)∗ = (a ∨ b)∗.

(3) If a ≤ b∗1 ∨ · · · ∨ b∗n, then (b1, . . . , bn; a
∗) = 1, i.e., a∗ ∈ 〈b1, . . . , bn〉.

Proof. (1) Since b ≤ a → b and a∗ ≤ a → b, then (a → b)∗ ≤ a∗∗ and (a → b)∗ ≤

b∗∗.

If consider t ∈ A such that t ≤ a∗∗ and t ≤ b∗, then from a → b ≤ b∗ → a∗,

we deduce b∗ ≤ (a → b) → a∗. Since t ≤ b∗, we have t ≤ a∗∗ → (a → b)∗, i.e.,

t → [a∗∗ → (a → b)∗] = 1. Then

1 = [t → a∗∗] → [t → (a → b)∗] = 1 → [t → (a → b)∗] = t → (a → b)∗.

Thus, t ≤ (a → b)∗.

(2) Let a, b ∈ A. Then from (1) above we get that

(a∗ → b)∗ = a∗∗∗ ∧ b∗ = a∗ ∧ b∗ = (a ∨ b)∗.
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(2) Assume that a ≤ b∗1∨· · ·∨b
∗
n. If (b1, . . . , bn; a

∗) 6= 1, there exist P,Q ∈ X(A)

such that b1, . . . , bn ∈ P , P ⊆ Q, a∗ /∈ P and a ∈ Q. So, b∗1 ∨ · · · ∨ b∗n, and as Q is

prime, b∗
i
∈ Q for some 1 ≤ i ≤ n. Then bi, b

∗
i
∈ Q, and this implies that 0 ∈ Q,

which is impossible.

Remark 11. Let A ∈ H∨
0 . As a consequence of the previous result we have that the

join ∨ in R(A) can be defined by a∨b = (a ∨ b)∗∗, for each pair a, b ∈ R(A).

4. α-ideals and annihilators

If A is an H∨-algebra, then the usual notion of ideal in a join-semilattice coincides

with the notion of order-ideal, i.e., a subset I of A is an ideal of 〈A,∨, 1〉 iff I is an

order-ideal of A. Moreover, the ideal generated by a set X is the set I(X) = {a ∈

A | a ≤ x1 ∨ · · · ∨ xn, for some {x1, . . . , xn} ⊆ X}.

Definition 12. Let A ∈ H∨
0 . Let I be an ideal of A. We shall say that I is an α-ideal

if a∗∗ ∈ I, whenever a ∈ I.

Let Iα(A) be the set of all α-ideals of A. We note that as a ≤ a∗∗, for all

a ∈ A, an ideal I of A is an α-ideal iff ∀a ∈ A (a ∈ I iff a∗∗ ∈ I).

Let A ∈ H∨
0 . Let X ⊆ A. It is easy to see that for any set X ⊆ A, the set

X⊥ =
⋂

{(x∗] | x ∈ X} ,

is an ideal of A, called the annihilator of X. So, X⊥⊥ is also an ideal. We shall

say that an ideal I is an annihilator ideal if I = I⊥⊥. When X = {a}, we write a⊥

instead of {a}⊥. We note that a⊥ = (a∗]. Let I⊥(A) be the set of all annihilator

ideals of A.

Let A ∈ H∨
0 . An order -filter of A is a subset F ⊆ A such that for each pair

a, b ∈ F there exists c ∈ F such that c ≤ a and c ≤ b. A proper ideal I of A is

irreducible if for all ideals I1 and I2 such that I = I1 ∩ I2, then I = I1 or I = I2.

It is easy to prove that an ideal I is irreducible iff for every a, b /∈ I there exists

c /∈ I and i ∈ I such that c ≤ a∨ i and c ≤ b∨ i (see [6]). A proper ideal I is prime

if A − I = {x ∈ A | x /∈ I} is an order-filter. We note that an ideal I is prime iff

for any a, b ∈ A, if (a] ∩ (b] ⊆ I then a ∈ I or b ∈ I. It is easy to check that every

irreducible ideal is a prime ideal.

In the next two results we study the relation between α-ideals and annihilator

ideals.
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Lemma 13. Let A ∈ H∨
0 .

(1) I⊥(A) ⊆ Iα(A).

(2) Let I be a prime ideal such that I⊥ 6= {0}.

Then I is an α-ideal.

Proof. (1) Let I ∈ I⊥(A). Let a ∈ I = I⊥⊥ =
⋂
{

(x∗] | x ∈ I⊥
}

. Let x ∈ I⊥.

Then x ≤ y∗ for all y ∈ I. As a ≤ x∗ implies that a∗∗ ≤ x∗, we have that a∗∗ ∈ I,

i.e., I ∈ Iα(A).

(2) Since I⊥ 6= {0}, there exists a ∈ I⊥ =
⋂

{(x∗] | x ∈ I} with a 6= 0. We

prove that I = (a∗] . As a ≤ x∗, for all x ∈ I, we have that x ≤ x∗∗ ≤ a∗, for all

x ∈ I. Thus, I ⊆ (a∗]. Let x ≤ a∗. We prove that (x] ∩ (a] = {0} . Suppose that

z ≤ x and z ≤ a. Then z ≤ a∗ = a → 0. So, z ≤ 0, i.e., z = 0. As 0 ∈ I, we have

(x] ∩ (a] = {0} ⊆ I, and as I is prime, we obtain that x ∈ I or a ∈ I. We note that

a /∈ I, because in contrary case, as a ∈ I⊥, we have a ≤ a∗, and this implies that

a = 0, a contradiction. So, x ∈ I. Therefore (a∗] = I. Now, if x ∈ I = (a∗], then

x∗∗ ≤ a∗∗∗ = a∗. So, x∗∗ ∈ I, and thus I is an α-ideal.

In the previous proposition we prove the inclusion I⊥(A) ⊆ Iα(A). In the

next result we characterize when is valid the other inclusion.

Proposition 14. Let A ∈ H∨
0 . Then the following conditions are equivalent:

(1) Iα(A) ⊆ I⊥(A).

(2) I⊥ 6= {0}, for each proper α-ideal I.

(3) I ∩D(A) 6= ∅, for each ideal I such that I⊥ = {0}.

Proof. (1) ⇒ (2) . Suppose that there exists a proper α-ideal I such that I⊥ = {0}.

As I is an annihilator ideal we have I = I⊥⊥ = {0}⊥ = A, a contradiction . Thus,

I⊥ 6= {0}.

(2) ⇒ (3) . Let I be an ideal such that I⊥ = {0}. Suppose that I ∩D(A) = ∅.

As D(A) is a deductive system of A, there exists P ∈ X(A) such that D(A) ⊆ P

and P ∩ I = ∅. From Lemma 9 we have that P is maximal. It is easy to see that

H = A − P is an α-ideal. As I ⊆ H, we have H⊥ ⊆ I⊥ = {0}. Then H⊥ = {0},

which is a contradiction because H is a proper ideal. Thus, I ∩D(A) 6= ∅.

(3) ⇒ (1) Let I be an α-ideal. It is clear that I ⊆ I⊥⊥. Let a ∈ I⊥⊥. Let us

consider the ideal I ∨ I⊥ =
(

I ∪ I⊥
]

. Then it is not hard to prove that

(

I ∨ I⊥
)⊥

= I⊥ ∩ I⊥⊥ = {0} .

So,
(

I ∨ I⊥
)

∩ D(A) 6= ∅. Thus there exists d ∈ D(A), x ∈ I and y ∈ I⊥ =
⋂

{(x∗] | x ∈ I} such that d ≤ x ∨ y. As, y ≤ x∗, we get x ≤ y∗. So, y∗∗ ≤ x∗. On
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the other hand, (x ∨ y)∗ = d∗ = 0. By this identity it is easy to see that y∗ ≤ x∗∗.

Thus, y∗ = x∗∗. We note that x∗∗ ∈ I because I is an α-ideal. As a ∈ I⊥⊥, and

y ∈ I⊥, we obtain that a ≤ y∗ = x∗∗ ∈ I. Thus a ∈ I.

Definition 15. Let A ∈ H∨
0 . We shall say that a deductive system F is a deductive

order-filter if it is an order-filter of A.

In general, for a deductive system F , the decreasing set ((F )∗] is not an ideal.

Now we prove that if F is also an order-filter, then ((F )∗] is an α-ideal.

Lemma 16. Let A be an H∨
0 -algebra. Let F be a proper deductive order-filter of A.

Then ((F )∗] is an α-ideal such that ((F )∗] ∩ F = ∅.

Proof. Let a, b ∈ ((F )∗]. Then there are elements x, y ∈ F such that a ≤ x∗ and

b ≤ y∗. Since F is an order-filter, there exists c ∈ F such that c ≤ x and c ≤ y.

Then a ∨ b ≤ c∗. Thus, a ∨ b ∈ ((F )∗] . It is clear that 0 ∈ ((F )∗], because 0 = 1∗.

Let a ∈ ((F )∗] . Then a ≤ f∗, for some f ∈ F . So, a∗∗ ≤ f∗. This shows that

a∗∗ ∈ ((F )∗] and thus ((F )∗] is an α-ideal.

We prove that ((F )∗] ∩ F = ∅. Suppose that there exists a ∈ ((F )∗] ∩ F .

Then there exists f ∈ F such that a ≤ f∗. So, f ≤ f∗∗ ≤ a∗, and this implies that

a∗ = a → 0 ∈ F , and as a ∈ F and it is a deductive system, 0 ∈ F which is a

contradiction.

5. σ-ideals

Let A ∈ H∨
0 . For each ideal I of A we consider the following set:

σ(I) = {a ∈ A | (a∗] ∨ I = A} .

Lemma 17. Let A ∈ H∨
0 . Let I be an ideal. Then σ(I) is an ideal such that σ(I) ⊆ I.

Proof. It is clear that σ(I) is a decreasing subset of A such that 0 ∈ σ(I). Let

a, b ∈ σ(I), i.e., (a∗] ∨ I = A and (b∗] ∨ I = A. As 1 ∈ A, there exists x, y ∈ I such

that a∗ ∨ x = 1 and b∗ ∨ y = 1. Suppose that a ∨ b /∈ σ(I), i.e., ((a ∨ b)∗] ∨ I 6= A.

So, there exists c ∈ A such that c /∈ ((a ∨ b)∗] ∨ I. From Lemma 3 there exists

P ∈ X(A) such that (((a ∨ b)∗] ∨ I) ∩ P = ∅, and c ∈ P . So, (a ∨ b)∗ /∈ P and

I ∩P = ∅. By Lemma 4 there exists Q ∈ X(A) such that P ⊆ Q and a∨ b ∈ Q. As

I ∩ P = ∅, we have that x, y /∈ P . Then, a∗, b∗ ∈ P . As a ∨ b ∈ Q and Q is prime,

a ∈ Q or b ∈ Q. In the first case we obtain that a∗, a ∈ Q, and as Q is a deductive
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system, 0 ∈ Q, which is impossible. If b ∈ Q then we obtain also a contradiction.

Thus, ((a ∨ b)∗] ∨ I = A, i.e., a ∨ b ∈ σ(I).

We prove that σ(I) ⊆ I. If a ∈ σ(I) but a /∈ I, there exists P ∈ X(A) such

that P ∩ I = ∅ and a ∈ P . As a∗ ∨ x = 1 for some x ∈ I, we get that a∗ ∈ P , which

is a contradiction. Thus, σ(I) ⊆ I.

Definition 18. Let A ∈ H∨
0 . Let I be an ideal of A. We shall say that I is a σ-ideal

if I = σ(I).

Now we prove that each σ-ideal is generated by a set (F )∗, where F is a

deductive system. Recall that I(X) denote the ideal of join-semilattice generated

by the set X.

Proposition 19. Let A ∈ H∨
0 . For each ideal I there exists a deductive system F

such that σ(I) = I((F )∗).

Proof. Let I be an ideal. Consider the set

F = {a ∈ A | (a∗∗] ∨ I = A} .

We prove that F is a deductive system. Let a, a → b ∈ F. Suppose that (b∗∗]∨I 6= A,

i.e., 1 /∈ (b∗∗] ∨ I. Then there exists P ∈ X(A) such that ((b∗∗] ∨ I) ∩ P = ∅. Then,

b∗∗ /∈ P and I ∩ P = ∅. As 1 = a∗∗ ∨ x, and 1 = (a → b)∗∗ ∨ y, for some

x, y ∈ I, we have a∗∗ ∈ P and (a → b)∗∗ ∈ P . From Lemma 10 we have that

(a → b)∗∗ ≤ a∗∗ → b∗∗ ∈ P , and thus we obtain that b∗∗ ∈ P , which is impossible.

Therefore, F is a deductive system.

We prove that I((F )∗) ⊆ σ(I). Let x ∈ I((F )∗). Then there are elements

f1, f2, . . . , fn ∈ A such that x ≤ f∗
1 ∨ f∗

2 ∨ · · · ∨ f∗
n and (f∗∗

i
] ∨ I = A, for each

1 ≤ i ≤ n. Then there exist y1, . . . , yn ∈ I such that

1 = f∗∗

1 ∨ y1 = f∗∗

2 ∨ y2 = · · · = f∗∗

n ∨ yn.

We prove that x∗ ∨ y1 ∨ · · · ∨ yn = 1. Suppose the contrary. Then there exists

P ∈ X(A) such that x∗ /∈ P and y1 ∨ · · · ∨ yn /∈ P . Then there exists Q ∈ X(A)

such that P ⊆ Q and x ∈ Q, and f∗∗
i

∈ P , for all 1 ≤ i ≤ n. So, f∗
1 ∨f

∗
2 ∨· · ·∨f

∗
n ∈ Q,

and as Q is irreducible, f∗
i
∈ Q for some 1 ≤ i ≤ n. From f∗

i
, f∗∗

i
∈ Q we obtain

that 0 ∈ Q, which is impossible. Therefore, x∗∨y1∨· · ·∨yn = 1. As y1∨ . . .∨yn ∈ I,

we have that x ∈ σ(I).

We prove that σ(I) ⊆ I((F )∗). Let x ∈ σ(I). Then x∗ ∨ y = 1 for some y ∈ I.

So, (x∗)∗∗ ∨ y = x∗ ∨ y = 1. Then x∗ ∈ F , and thus x∗∗ ∈ (F )∗. Since x ≤ x∗∗, we

get that x ∈ I((F )∗).
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Proposition 20. Let A ∈ H∨
0 . For each σ-ideal I there exists a maximal deductive

system U such that I ∩ U = ∅.

Proof. Let I be a σ-ideal. By Proposition 19 there exists a deductive system F

such that I((F )∗) = I. We prove that I((F )∗) ∩ F = ∅. Suppose that there exists

a ∈ I((F )∗) ∩ F . Then there exists f1, . . . , fn ∈ F such that a ≤ f∗
1 ∨ f∗

2 ∨ · · · ∨ f∗
n.

By Lemma 10, (f1, . . . , fn; a
∗) = 1 ∈ F , and this implies that a∗ ∈ F . As a ∈ F ,

we have that 0 ∈ F , which is a contradiction. Then, I((F )∗) ∩ F = ∅. By Theorem

3 there exists P ∈ X(A) such that F ⊆ P and ((F )∗] ∩ P = ∅. We prove that

P is maximal. Let a /∈ P . We prove that a∗ ∈ P . As 〈P ∪ {a}〉 ∩ I((F )∗) 6= ∅,

there exists b ∈ A such that a → b ∈ P , and there exists f1, . . . , fn ∈ F such that

b ≤ f∗
1 ∨ f∗

2 ∨ · · · ∨ f∗
n. From Lemma 10, (f1, . . . , fn; b

∗) = 1 ∈ F , and this implies

that b∗ ∈ F ⊆ P . As a → b ≤ b∗ → a∗ ∈ P , we have that a∗ ∈ P . By Lemma 9 we

deduce that P is maximal.

6. Stone H
∨

0
-algebras

Definition 21. Let A ∈ H∨
0 . We shall say that A is a Stone H∨

0 -algebra if A

satisfies the identity a∗ ∨ a∗∗ = 1.

Now, we characterize the σ-ideals in a Stone H∨
0 -algebra.

Lemma 22. Let A be a Stone H∨
0 -algebra. Then I((F )∗) is a σ-ideal for any

deductive system F .

Proof. Let F a deductive system. Let I = I((F )∗). By Lemma 17, σ(I) ⊆ I.

We need to prove the inclusion I ⊆ σ(I). Let a ∈ I. Then there are elements

f1, f2, . . . , fn ∈ F such that a ≤ f∗
1 ∨ f∗

2 ∨ · · · ∨ f∗
n. From Lemma 10 we have

a∗ ∈ 〈f1, f2, . . . , fn〉 ⊆ F.

Then, a∗∗ ∈ (F )∗ ⊆ I((F )∗). So, 1 = a∗ ∨ a∗∗ ∈ (a∗] ∨ I. Thus, (¬a] ∨ I = A.

Corollary 23. Let A be a Stone H∨
0 -algebra. An ideal I is a σ-ideal if and only if

there exists a deductive system F such that I = I((F )∗).

Proof. If I is a σ-ideal, then by Proposition 19 there exists a deductive system F

such that I = σ(I) = I((F )∗). Conversely, if there exists a deductive system F such

that I = I((F )∗), then by Lemma 22, I is a σ-ideal.

Now we give different characterizations of Stone H∨
0 -algebras, but first we

need see some concepts.
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Lemma 24. Let A ∈ H0. Let I be an order-ideal. Then

I∗ = {a ∈ A | ∃x ∈ I (x∗ ≤ a)}

is a deductive system of A.

Proof. Let a, a → b ∈ I∗. Then there exist x, y ∈ I such that x∗ ≤ a and y∗ ≤ a → b.

As I is an order-ideal there exists z ∈ I such that x, y ≤ z. Then z∗ ≤ a, z∗ ≤ a → b.

As [z∗) is a deductive system, z∗ ≤ b. Thus I∗ is a deductive system.

Let A ∈ H∨
0 . Recall that if D is a deductive system, then

θ(D) = {(a, b) | a → b, b → a ∈ D}

is the congruence generated by D. Let I be an ideal of A. We define an equivalence

relation θ∨(I) on A by:

(a, b) ∈ θ∨(I) iff ∃x ∈ I (a ∨ x = b ∨ x).

It is clear that θ∨(I) satisfies the substitution property for the operation ∨, i.e. θ∨(I)

is a ∨-congruence, but in general θ∨(I) is not a congruence of Hilbert algebras.

Lemma 25. Let A ∈ H∨
0 . Then θ∨(I) ⊆ θ(I∗), for any ideal I.

Proof. Let (a, b) ∈ θ∨(I). Then there exists x ∈ I such that a ∨ x = b ∨ x. Assume

that (a, b) /∈ θ(I∗). Then it is easy to see that there exists P ∈ X(A) such that

a ∈ P , I∗ ⊆ P , and b /∈ P . As x ∈ I, we have x∗ ∈ I∗ ⊆ P . Then x /∈ P . As

a ≤ a∨x = b∨x ∈ P , we obtain that b ∈ P , which is absurd. Thus, θ∨(I) ⊆ θ(I∗).

In the next theorem we prove that the class of Stone H∨
0 -algebras can be char-

acterized as H∨
0 -algebras where θ(I∗) ⊆ θ∨(I), for each α-ideal I, and consequently

the relation θ∨(I) is a congruence of Hilbert algebras.

Theorem 26. Let A ∈ H∨
0 . Then the following conditions are equivalent:

(1) θ(I∗) ⊆ θ∨(I), for each α-ideal I.

(2) A is a Stone H∨
0 -algebra.

(3) For all a, b ∈ A, and for all P ∈ X(A), if 〈{a, b}〉 = A, then a∗ ∈ P or b∗ ∈ P .

(4) For all a, b ∈ A, if 〈{a, b}〉 = A, then (a → b) ∨ (b → a) = 1.

(5) Each irreducible deductive system P is contained in a unique maximal deduc-

tive system.

(6) For any increasing subsets U, V ⊆ X(A), we have (U ] ∩ (V ] = (U ∩ V ].

(7) a∗ ∨ b∗ = a → b∗, for all a, b ∈ A.

(8) I = σ(I) for every α-ideal I.
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Proof. (1) ⇒ (2). Let a ∈ A. Let I =(a∗∗]. It is clear that I is an α-ideal. As

a∗ ≤ a∗ and a ∈ (a∗∗] , we have that (a∗, 1) ∈ θ(I∗) = θ∨(I). So, there exists

x ∈ I = (a∗∗] such that a∗ ∨ x = 1 ∨ x = 1. Since x ≤ a∗∗, we get a∗ ∨ a∗∗ = 1.

Thus A satisfies the Stone identity.

(2) ⇒ (3) Let a, b ∈ A, and P ∈ X(A). Suppose that 〈{a, b}〉 = A. As

0 ∈ 〈a, b〉, a ≤ b∗. If a∗ /∈ P , then a∗∗ ∈ P . As a∗∗ ≤ b∗, because 0 ∈ 〈a, b〉, we get

b∗ ∈ P .

(3) ⇒ (4) Let a, b ∈ A. Suppose that 〈{a, b}〉 = A. If (a → b) ∨ (b → a) 6= 1,

then there exists P ∈ X(A) such that a → b /∈ P and b → a /∈ P . By hypothesis,

a∗ ∈ P or b∗ ∈ P , and as a ≤ a → b, and b∗ ≤ b → a, we have a → b ∈ P or

b → a ∈ P , which is a contradiction. Thus, (a → b) ∨ (b → a) = 1.

(4) ⇒ (5) Let P ∈ X(A). Suppose that there exist maximal deductive systems

U1, U2 of A such that P ⊆ U1, P ⊆ U2, and U1 6= U2. Then there exists a ∈ U1−U2.

As U1, U2 are maximal deductive systems, a∗ /∈ U1 and a∗ ∈ U2. Since 〈{a, a∗}〉 = A,

(a → a∗) ∨ (a∗ → a) = 1 ∈ P . So, if a → a∗ ∈ P , then a∗ ∈ U1, which is absurd. If

a∗ → a ∈ P , then a ∈ U2, which also is absurd. Therefore, U1 = U2.

(5) ⇒ (6) Let U, V be increasing subsets of X(A). Let P ∈ (U ] ∩ (V ]. Then

there exists Q ∈ U and there exists D ∈ V such that P ⊆ Q and P ⊆ D. Let

M1 and M2 be maximal deductive systems such that Q ⊆ M1 and D ⊆ M2. As

P ⊆ M1 and P ⊆ M2, by hypothesis we get M1 = M2. Since U and V are increasing,

M1 ∈ U ∩ V . Thus, P ∈ (U ∩ V ]. The inclusion (U ∩ V ] ⊆ (U ] ∩ (V ] is trivial.

(6) ⇒ (7) Suppose that there exist a, b ∈ A such that a → b∗ � a∗ ∨ b∗.

So there exists P ∈ X(A) such that a → b∗ ∈ P , and a∗ /∈ P , and b∗ /∈ P . So

P ∈ (ϕ(a)] ∩ (ϕ(b)] = (ϕ(a) ∩ ϕ(b)]. Then there exists Q ∈ X(A) such that P ⊆ Q

and a, b ∈ Q. As a → b∗ ∈ P ⊆ Q, we have that b∗ ∈ Q, which is a contradiction.

Thus, a → b∗ ≤ a∗ ∨ b∗. On the other hand, as a∗ = a → 0 ≤ a → b∗ and as

b∗ ≤ a → b∗, we get that a∗ ∨ b∗ ≤ a → b∗.

(7) ⇒ (8). Let I be an α-ideal. We prove that I ⊆ {a ∈ I | (a∗] ∨ I = A}. Let

a ∈ I. As I is an α-ideal, a∗∗ ∈ I. Then a∗ ∨ a∗∗ = a → a∗∗ = 1. So 1 ∈ (a∗] ∨ I,

i.e., (a∗] ∨ I = A. The other inclusion is immediate.

(8) ⇒ (1). We prove the inclusion θ(I∗) ⊆ θ∨(I). Let (a, b) ∈ θ(I∗). As I is

an ideal, there exists z ∈ I such that z∗ ≤ a → b, z∗ ≤ b → a. As (z∗] ∨ I = A,

there exists x ∈ I such that and x ∨ z∗ = 1. We prove that a ∨ x = b ∨ x. Suppose

that there exists P ∈ X(A) such that a ∨ x ∈ P and b ∨ x /∈ P . Then a ∈ P , and

b, x /∈ P . As P is irreducible, and x ∨ z∗ = 1 ∈ P , z∗ ∈ P . So, a → b ∈ P , and

consequently b ∈ P , which is an absurd. Thus (a, b) ∈ θ∨(I).

Let us recall that a join semilattice 〈A,∨〉 is distributive if for all a, b, c ∈ A
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such that c ≤ a∨b there exist a1, b1 ∈ A such that a1 ≤ a, b1 ≤ b and c = a1∨b1. In

[15] it was proved that a join semilattice 〈A,∨〉 is distributive iff the set of all ideals

is a distributive semilattice. Moreover, in [6] it was proved that a join semilattice

〈A,∨〉 is distributive iff every irreducible ideal is prime.

Definition 27. We shall say that an H∨
0 -algebra A = 〈A,→,∨, 0, 1〉 is distributive

if the join semilattice 〈A,∨〉 is distributive.

We finish giving a characterization of the Stone H∨
0 -algebras when the join

semilattice 〈A,∨〉 is distributive. First, we recall the following result.

Proposition 28. [15] Let A be a distributive H∨
0 -algebra. Let F be an order-filter

and I be an ideal (α-ideal) such that F ∩ I = ∅. Then there exists a prime ideal

(prime α-ideal) J such that F ∩ J = ∅ and I ⊆ J .

Lemma 29. If A is a Stone H∨
0 -algebra, then ((A− I)∗] is a prime ideal for each

prime α-ideal I.

Proof. Let I be a prime α-ideal. Let H = A− I. We prove that H is a deductive

system. It is clear that 1 ∈ H. Let a, a → b ∈ H. Since I is prime, there exists z /∈ I

such that z ≤ a and z ≤ a → b, i.e., a, a → b ∈ [z). Then b ∈ [z), i.e., z ≤ b, because

[z) is a deductive system. Thus, H is a deductive system. As H is an order-filter,

we have H is a deductive order-filter. By Lemma 16 we have that ((H)∗)] is an

ideal such that ((H)∗] ⊆ I.

We prove that ((H)∗] is prime. Let a, b ∈ A such that (a] ∩ (b] ⊆ ((H)∗] . As

((H)∗] ⊆ I and I is prime, a ∈ I or b ∈ I. Assume that a ∈ I. As I is an α-ideal,

a∗∗ ∈ I, and as a∗∗ ∨ a∗ = 1 /∈ I, we have that a∗ /∈ I. Then a∗∗ ∈ (H)∗. As

a ≤ a∗∗, we obtain that a ∈ ((H)∗]. If we assume that b ∈ I, then we will deduce

that b ∈ ((H)∗] . Thus, ((H)∗] is a prime ideal.

Theorem 30. Let A be a distributive H∨
0 -algebra. Then the following conditions

are equivalent:

(1) A is a Stone H∨
0 -algebra.

(2) ((A− I)∗] is a prime ideal for each prime α-ideal I.

Proof. The direction (1) ⇒ (2) follows by the previous lemma. We prove (2) ⇒ (1).

Suppose that there exists a ∈ A such that a∗ ∨ a∗∗ 6= 1. Let us consider the ideal

(a∗ ∨ a∗∗]. As (a∗ ∨ a∗∗)∗∗ = a∗ ∨ a∗∗, we have that I is a proper α-ideal. Then

by Proposition 28 there exists a prime α-ideal J such that I ⊆ J . We note that

a∗, a∗∗ ∈ J . By hypothesis the ideal ((A− J)∗] is a prime ideal. It is clear that

((A− J)∗] ⊆ J . We prove that a, a∗ /∈ ((A− J)∗)]. If a ∈ ((A− J)∗], then there
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exists d /∈ J such that a ≤ d∗. So, d ≤ d∗∗ ≤ a∗, and as a∗ ∈ J and J is decreasing,

we obtain that d ∈ J , which is a contradiction. If a∗ ∈ ((A− J)∗], then there exists

g /∈ J such that a∗ ≤ g∗. So, g ≤ g∗∗ ≤ a∗∗, and as a∗∗ ∈ H, we obtain that g ∈ J ,

which is an absurd. Thus a, a∗ /∈ ((A− J)∗]. Since ((A− J)∗] is prime, there exists

z /∈ ((A− J)∗] such that z ≤ a and z ≤ a∗. But this implies that z ≤ 0. Then

z = 0 /∈ ((A− J)∗], which is impossible, because ((A− J)∗] is an ideal. Therefore,

a∗ ∨ a∗∗ = 1, for all a ∈ A.
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