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Three analytical methodologies for the generation of third-order liquid chromatography—excitation
—emission fluorescence matrix (LC—EEM) data are presented. Instrumental requirements were evaluated
considering equipment complexity, costs and accessibility. A descriptive analysis of the generated data
was done along trilinearity concept and chemometric resolution. For trilinear decomposition, PARallel
FACtor Analysis (PARAFAC) model was utilized. Hence, possible effects that are caused in the resolution
due to loss of trilinearity are detailed. Then, several data pre-processing and processing alternatives are
proposed in order to successfully overcome the drawbacks that can be present in the chemometric
resolution. Additionally, a reported analytical method for the determination of three analytes is pre-
sented to showcase the potential of the methodology to generate third-order LC—EEM data with
quantitative aims. For data modelling, Augmented PARAFAC (APARAFAC) and Multivariate Curve
Resolution-Alternating Least Squares (MCR-ALS) were used. Both algorithms demonstrated to be able to
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1. Introduction

Over the last years, a remarkable growth in the number of
chemometric applications in the analytical chemistry field has been
noticed. The potential demonstrated for the combination of both
disciplines has been accompanied by a tireless interest in the
investigation of the advantages and benefits of multidimensional
data analysis. In this matter, recently published works have proved
that the increment in the number of instrumental modes repre-
sents a positive impact in the analytical properties of the methods,
which is traduced into an improvement in the analytical figures of
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merit, essentially, in the sensitivity and selectivity in a multi-
component system [1,2].

For multivariate calibration, first- and second-order data have
been extensively evaluated and countless analytical applications for
a wide variety of multi-component systems have been reported. In
this context, methods based on liquid chromatography (LC) with
spectral detection coupled to second-order data modelling have
proved to be an efficient and useful strategy for the analysis of
complex samples in presence of several components [3]. One of the
most remarkable benefits of second-order calibration methods is
that tedious and long sample pre-processing steps are not strictly
necessary due to the fact that second-order modelling can
accomplish the so-called “second-order advantage” [4].

At present, there is an important number of ongoing in-
vestigations of multidimensional data analysis aiming to prove
additional analytic advantages [5—8]. Thus, even though it is still in
the beginning of its progress, higher-order data analysis for
analytical applications constitutes a field worth to be explored [9].
Although no agreement about its existence has been reached
among the scientific community yet, some authors propose that
additional advantages over the second-order advantage can be


Delta:1_-
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:malcaraz@fbcb.unl.edu.ar
mailto:hgoico@fbcb.unl.edu.ar
mailto:hgoico@fbcb.unl.edu.ar
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trac.2017.05.011&domain=pdf
www.sciencedirect.com/science/journal/01659936
www.elsevier.com/locate/trac
http://dx.doi.org/10.1016/j.trac.2017.05.011
http://dx.doi.org/10.1016/j.trac.2017.05.011
http://dx.doi.org/10.1016/j.trac.2017.05.011

120 M. Montemurro et al. / Trends in Analytical Chemistry 93 (2017) 119—133

achieved in high-order multivariate calibration. Those additional
advantages are characterized as the enhancement in sensitivity and
selectivity, the possibility of relieving problems of collinearity and
the feasibility of decomposing the data array for each sample
individually, independent of other samples [10].

Although multidimensional instrumental signals are easy to be
obtained with the available modern instrumentation, and several
chemometric algorithms have been successfully developed to solve
multi-way data problems, the way in which the data are generated
may have a significant effect on the data structure and, in conse-
quence, the final results. Hence, developing a method based on
multidimensional data processing implies, among the develop-
ment of the method itself, an in-depth study of the properties and
the characteristics of the obtained data in order to select both
appropriate pre-processing strategies and the most suitable algo-
rithms for the chemometric resolution. For this reason, it becomes
crucial recognizing in advance the type of data by means of its
mathematical properties and establishing the correct procedure for
the analysis in order to achieve unequivocal results.

In univariate calibration, a very important concept to consider is
the linearity, i.e., the linear relationship between a dependent
variable and an independent one. This concept is the basis of the
validity of Beer—Lambert's law where the independent and
dependent variables are the concentration and the measured
signal, respectively [11,12]. In this way, the first topic that must be
considered for higher-order data analysis is the multilinearity of the
data. In third-order data analysis, in particular, it is important to
know if the data array fulfils the concept of trilinearity, which must
be evaluated in terms of the individual three-dimensional array for
a single sample.

Trilinearity can be seen as an extension from the concept of
linearity, where the linear relationship is given between a two in-
dependent variables and a dependent one. Then, trilinearity takes
place when the three instrumental modes are independent of each
other; therefore, if mutually dependent phenomena in more than
two modes occur, the third-order array is a non-trilinear data [2,13].
In sum, trilinearity is a concept that can be seen as an extension of
the Beer—Lambert's law. As an example, it can be considered the
second-order data generated by chromatography coupled to spec-
tral detection, e.g., three-way array built with several LC-DAD runs

from different samples with the same composition. Here, a trilinear
structure would indicate that the pure spectrum and the pure
retention profile of an analyte remain invariant in the different
experiments or runs. Considering that the experiments are per-
formed under same experimental conditions, the spectrum of a
pure compound does not change; however, lack of run-to-run
reproducibility due to differences in peak shape and position of
the pure retention profiles are usually observed. In consequence,
lack of trilinearity occurs and the data must be considered as non-
trilinear.

Furthermore, for four-way data generated from a set of data for
multiple experiments, both trilinearity and quadrilinearity con-
cepts for individual data cubes and multi-set data, respectively,
ought to be evaluated. In this case, quadrilinearity can be seen as an
extension of trilinear concept where the linear relationship is given
between three independent variables and a dependent one. In case
the individual data fulfils a trilinear model and no lack of quad-
rilinearity occurs in the four-way array, the data are classified as
quadrilinear. On the contrary, a further subdivision can be done
considering the number of quadrilinearity-breaking modes [14].
Then, it is possible to distinguish 4 types of non-quadrilinear data,
whose are schematically presented in the classification tree, which
has been introduced by Olivieri and Escandar (Fig. 1).

The correct selection of the mathematical model and algorithm
is influenced, in one sense, by the characteristics and the properties
of the generated data. In the literature, there are a vast number of
available algorithms that can be utilized for data processing. Al-
gorithms based on Alternating Least Squares (ALS) are the most
employed for second- and third-order data resolution, either for
descriptive or predictive analysis, being PARallel FACtor Analysis
(PARAFAC) [15] and Multivariate Curve Resolution (MCR) [16] the
most representative ones. Besides, algorithms mainly used for
quantitative purposes are based on Partial Least Squares (PLS)
[17,18] resolution, and the second-order advantage is achieved by
application of a Residual Bi-Linearization procedure (RBL) [19].
Unfolded and multi-way PLS coupled to RBL procedure (U-PLS/RBL
and N-PLS/RBL) are examples of the latter. Finally, there is a family
related to the Alternating Trilinear Decomposition (ATLD) algo-
rithm, which was firstly developed by Wu et al. in 1998 [20]. ATLD
is an iterative algorithm with similar characteristics to PARAFAC. It
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Fig. 1. Classification tree for four-way data for a set of samples, according to whether the individual three-dimensional arrays data are trilinear or not, and to the number of
quadrilinearity-breaking modes. Reprinted with permission of the authors of Ref [2]. Copyright 2014 Elsevier.
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is commonly used by virtue of the advantages of being insensitive
to excessive component number, fast convergence and fully
exploiting the second-order advantage.

In this review, a comparative study of three different third-order
liquid chromatography—excitation—emission fluorescence matrix
(LC—EEM) data generation approaches was carried out. Moreover,
three methods based on identical chromatographic conditions but
coupled to different fluorescence excitation and emission detection
systems for the quantitative analysis of antibiotics in aqueous
matrices are here discussed.

2. Analytical procedures

The methodology generally used to generate third-order
LC—EEM data consists on a chromatographic procedure coupled
to excitation—emission data matrix detection. At present, to the
best of our knowledge, only two strategies to generate third-order
LC—EEM data have been reported. One of these approaches is based
on the collection of discrete fractions at the end of the chromato-
graphic procedure with the subsequent excitation—emission data
matrix registering of each collected fraction [21—23]. In the second
procedure, multiple aliquots of a given sample are injected into the
chromatograph and the retention time-emission spectra matrix of
each injection is recorded using different excitation wavelength
[24—26]. In both cases, the three instrumental modes are retention
time, excitation and emission wavelengths.

Besides the aforementioned approaches, another way to
generate third-order LC—EEM data is described in the present re-
view, where a fast-scanning spectrofluorimeter with a flow-cell
connected at the end of the LC instrument is utilized.

It is worthwhile mentioning that even though the first two
strategies above-mentioned have been thoroughly described else-
where [21—-26], they were developed for different analytical pur-
poses. Therefore, to make an appropriate comparison and reach
reliable conclusions, it becomes necessary using an analytical

system with similar particularities, which permits the evaluation of
the instrumental characteristics and the generated data properties
avoiding as much as it is possible the effects that can be caused by
the inherent features of the system. In this regard, all the cases
evaluated in the present review were carried out by using the same
general chromatographic procedure, i.e., same LC instrument under
identical separation conditions (column and mobile phase
composition), but changing the detection methodology. Then, so-
lutions containing the same analytes were evaluated by using the
three analytical procedures. (For a better understanding, some
specific properties of the procedures will be depicted). It must be
clarified that samples containing different number of analytes were
used for each methodology due to the complexity of the generated
data, which is further demonstrated.

2.1. Methodology I — fraction collection

The first methodology described (MI) was firstly proposed by
Bro for a qualitative study [23] and it has been recently reported by
Alcaradz et al. [21] for quantitative purposes. It consists on an
instrumental analytical system that includes an automated custom-
made device connected at the end of the chromatograph, allowing
the collection of several discrete fractions in 96-well plates, whose
are commonly used for ELISA test. Upon completing the chro-
matographic procedure and collecting all the fractions in the 96-
well plate, the plate is placed into a spectrofluorimeter that is
equipped with a plate reader. Thus, the excitation—emission
matrices are separately measured, obtaining one matrix for each
collected fraction [21].

Here, for the analysis of a ternary solution, containing ofloxacin
(OFL), ciprofloxacin (CPF) and danofloxacin (DNF), 17 discrete
fractions were sampled from the LC instrument. Each EEM was then
measured in the range of 260—340 nm and 380—500 nm for exci-
tation and emission spectra, respectively. Fig. 2 summarizes the
data generation using ML
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Fig. 2. General procedure for the third-order data generation by using MI for a sample containing 3 compounds.
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2.2. Methodology Il — multiple chromatographic runs

Two different applications using the methodology II (MII) for
third-order LC—EEM data generation have been further reported. In
general, this methodology consists in the injection of several ali-
quots of a given sample into a chromatograph. For each aliquot, the
retention time-emission spectra data matrix is registered using
different excitation wavelength.

Using this methodology, the analysis of green pigments in olive
oil samples was performed by injecting 8 aliquots of a given sample
[24], and 6 injections were utilized for the pesticides evaluation in
fruits [26]. In the present review, and with the aim of making a fair
comparative analysis, binary solutions containing OFL and CPF
were employed. Then, 10 aliquots per sample were injected and the
emission spectra were registered in the range of 380—500 nm at
each retention time, using excitation wavelengths ranging from
260 nm to 305 nm. In Fig. 3, the data generation using MII is shown.

2.3. Methodology Ill — online excitation—emission matrices

Methodology III (MIII) comprises the measurement of several
consecutive  excitation—emission matrices by using a
chromatograph-spectrofluorimeter hyphenated system. Thus,
neither flow interruption nor fraction collection is required. For the
fluorescence matrix registering, a fast-scanning spectrofluorimeter
with a flow cell connected at the end of the LC instrument is used.
Besides, in order to avoid time lags that may occur from triggering
inaccuracies, a controller enabling the synchronization between
instruments becomes necessary. It is important to highlight the fact
that this approach, to the best of our knowledge, has not been
employed for LC-based applications yet.

With the purpose of comparing methodologies, solutions con-
taining CPF were analysed. Considering the fact that the spectro-
fluorimeter allows registering a complete excitation—emission
matrix in a reasonably short time, an acceptable number of

matrices (15) per sample were acquired, covering the excitation
and emission range of 260—300 nm and 390—490 nm, respectively.
The data generation using MIIl methodology is represented in Fig. 4.

3. Descriptive evaluation: requirements, properties and data
modelling

3.1. Instrumental requirements

In order to evaluate different strategies for multidimensional
data generation and to analyse the properties of the data obtained,
three instrumental arrangements based on chromatographic sep-
aration coupled to excitation—emission fluorescence matrix
detection are proposed. In this section, a comparative study be-
tween the three instrumental approaches is presented, evaluating
equipment complexity and the number of the required instruments
for each arrangement. The time of analysis consumed per sample
was also considered in this study.

3.1.1. Methodology 1

To perform an analysis utilizing MI, a conventional LC instru-
ment and a spectrofluorimeter equipped with a well plate reader
are required. Additionally, an automated device for the collection of
individual fractions in 96-well plates is demanded. For chromato-
graphic separation, the flow rate must be properly selected in order
to ensure the appropriate fraction collection, leading to an accurate
volume distribution in the wells of the well plates. Furthermore, the
time demanded for each fraction must represent a volume that
guarantees both the chromatographic resolution previously ach-
ieved and the proper matrix reading in the spectrofluorimeter.

The first disadvantage that can be clearly noticed for Ml is the
use of a device for the collection of fractions in a multi-well plate.
However, even though it would represent an instrumental re-
striction, an automatized custom-made device can be easily built
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Fig. 3. General procedure for the third-order data generation by using MII for a sample containing 2 compounds.
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Fig. 4. General procedure for the third-order data generation by using MIII for a sample containing a pure analyte.

in the laboratory, as it has been reported in previous works
[21,22].

The time consumed for the total analysis of a ternary solution
was approx. 42 min, including both the chromatographic procedure
(2 min) and the recording of 17 fluorescence matrices (40 min). As
can be seen, the considerably long time demanded for each sample
makes MI an inappropriate alternative for the study of unstable
analytes or volatile solutions. Even though it would be possible to
reduce the time of the analysis by using a fast-scanning spectro-
fluorimeter for the matrix recording step, the complexity and the
cost of the equipment will be incremented. On the other hand,
despite it is time-consuming, MI requires small amount of sample
and solvents resulting in a method included within the framework
of the green chemistry [27].

3.1.2. Methodology Il

Only a LC instrument is required to perform an analysis with MIL
Since several aliquots for a given sample are consecutively injected
and the retention time-emission spectra matrices using different
excitation wavelength are registered, an auto-sampler and a fast-
scanning fluorescence detector (FSFD) modules for the LC instru-
ment are thus needed. In this manner, despite only one instrument
is required to obtain third-order LC—EEM data, the modules needed
are not usually present in a conventional LC instrument.

In this work, the time spent for the evaluation of a CPF and OFL
solution was approx. 40 min, remarking the fact that the chro-
matographic run for each aliquot took only 2 min. Therefore, Ml is
highly time-consuming and can only be improved in spite of a
detriment in the excitation spectra quality, i.e., loss of spectral
resolution and/or reduction of the spectral range. Thus, same as
MI, MII results unsuitable for the evaluation of unstable samples or
volatile solutions. On the other hand, the multiple injections that
are necessary for a given sample demand important amounts of
sample and solvents, making MII an expensive alternative and a
method that does not conform to the principles of green chem-
istry [27].

3.1.3. Methodology Il

The new methodology here evaluated (MIII) comprises a com-
bination of two analytical instruments in tandem, where a quartz
flow-cell is connected at the end of a LC instrument and placed into
a spectrofluorimeter, which must be able to accomplish real-time
measurements at multiple wavelengths. It should be noticed that
fluorescence matrices are taken in a finite time, which in chroma-
tography means that the analyte concentration at the beginning of
the matrix registering is different than at the end, as it happens, in a
lower degree, for second-order LC—FSFD data generation [2]. In
consequence, the emission and excitation spectra are dependent on
the chromatographic retention time. In this regard, in order to
collect a complete fluorescence matrix in the shortest time
possible, as well as to diminish the effect of dependence modes
phenomenon, a fast-scanning spectrofluorimeter is the principal
requirement of this methodology. Additionally, a conventional LC
instrument is used for the chromatographic procedure, where so-
phisticated detectors or auto-sampler module are not strictly
necessary.

The first point to stress is that the time of the total analysis is
defined by the performed chromatographic method due to the fact
that the fluorescence matrices are registered in parallel with the
chromatographic procedure. Here, the evaluation of a solution
containing one analyte was carried out in 5 min, obtaining a total of
15 complete fluorescence matrices. For these reasons, MIII is pre-
sented as an alternative that allows obtaining third-order LC—EEM
data in a very short time, without requiring large amount of sam-
ples and reagents, as it happens with MI, which is one of the
principles of green chemistry [27].

3.2. Data properties

In this section, a qualitative analysis of the data obtained with
the three methodologies was carried out with the aim of evaluating
whether the data for a single sample are trilinear or not. Moreover,
different data processing strategies that can be applied to cope with
the data obtained are depicted.
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3.2.1. Methodology I

First, it must be considered that the collected fractions do
represent the corresponding retention time of each analyte in the
sample. Hence, to be able to rebuild the temporal profile, both the
waiting time in each well and the initial collection time should be
known.

A particularity of MI is the fact that the excitation—emission
matrices registered for each well are independent of each other,
which means that the emission and excitation spectra only depend
on the analyte properties and its surrounding medium, and the
intensities are given by the abundance of the analyte. So, consid-
ering a single substance and a chromatographic system operating
in isocratic mode, the composition of the surrounding medium
remains unchanged from the beginning to the end of the analysis
and, in consequence, the emission and excitation spectra of the
analyte will be identical in all the wells where it is present, but
differing in its intensity as consequence of the chromatographic
dispersion. In this manner, and taking into account that the exci-
tation—emission matrices (in absence of inner filter) are intrinsi-
cally bilinear, the third-order LC—EEM data obtained with MI are
trilinear due to the fact that the three data modes (excitation
wavelengths, emission wavelengths and retention times) are in-
dependent of each other. Fig. 5A shows the LC—EEM data obtained
for a ternary sample using MI.

On the other hand, an important issue to consider in multi-way
data is the number of data points obtained in each instrumental
mode. In this case, the third-order array comprises 17 x 17 x 25
data points for times, excitation and emission wavelengths,
respectively. Although it can be considered as an array with
balanced number of data points, only 17 discrete fractions were
collected from the LC instrument, which leads to a low resolution in
the retention time mode. However, time resolution could be
improved minimizing the collection waiting times or using multi-
well plates with a higher number of reduced volume wells.

3.2.2. Methodology II

The most important aspect needing to be addressed for MII is
that the excitation spectra are result of the multiple aliquots
injected for a given sample. Hence, the covered spectral region and
the spectral resolution are directly dependent on the number of
analysed aliquots. Thus, excitation spectra are obtained from the
time-emission wavelength data matrices, meaning that it is
possible to build a two-dimensional retention time-excitation
wavelength matrix with the chromatographic profiles registered
at the same emission wavelength (Fig. 5B). However, this is only
possible if the retention times among runs are reproducible,
otherwise, a lack of run-to-run reproducibility would lead to mis-
interpretations of the excitation spectra. Besides, a lack of run-to-
run reproducibility brings a loss of trilinearity in third-order data,
phenomenon that derives from the fact that the times and excita-
tion wavelength modes are mutually dependent. This fact can be
analogously pictured as a three-way array built with LC-DAD sec-
ond-order data corresponding to different samples, where sample-
to-sample peak shifting are observed [28]. In sum, third-order data
generated with MII are trilinear only if perfect reproducibility in
peak times among runs are observed for a given sample, but also if
the shape of the peaks remains invariant.

Finally, regarding the number of data points in each instru-
mental mode, for the present application example, only 10 wave-
lengths were registered in the excitation wavelength mode, while
150 and 45 times and emission wavelengths, respectively, were
recorded in the other modes. Thus, it is clearly shown the low
resolution in the excitation wavelength mode, which could be a
disadvantage for the analysis of multi-analyte systems with either
highly overlapped fluorescence signals or strong differences

between wavelengths of maximum fluorescence intensity. More-
over, it must be considered that an enhancement of the excitation
spectrum quality requires an increment of the number of injections
and, in consequence, an increment of the solvent and sample
consumption as well as time of analysis.

3.2.3. Methodology III

The most noticeable advantage of MIII is that the EEM are
recorded simultaneously with the LC procedure, entailing a dras-
tically reduction of the total time of analysis. On the other hand, the
first drawback to overcome is that, since the fluorescence matrices
are registered in a finite time, both the emission and the excitation
wavelength modes are dependent on the chromatographic reten-
tion time mode. However, due to the fact that emission wave-
lengths are scanned in a considerably short time (less than 1 s), the
consequent effect of the dependence between emission wave-
length and retention time modes is negligible. That is not the case
for the excitation wavelength mode where the time required for a
total spectrum scan may take on the order of seconds. Therefore,
the third-order data obtained with MIII does not fulfil the concept
of trilinearity.

In the light of the preceding, at least three strategies can be
proposed to overcome the lack of trilinearity: 1) instrumental
improvement: by using a spectrofluorimeter enabling faster fluo-
rescence measurements; 2) pre-processing procedure: by applying
mathematical procedures to transform the data into a trilinear data
array; 3) data processing: by using chemometric algorithms that
handle non-trilinear data. Unfortunately, none of these three ap-
proaches are suitable current options, since highly sophisticated
equipment are not easily available in a routine laboratory and new
chemometric algorithms have not been developed yet. In Fig. 5C,
LC—EEM data obtained for a pure analyte using MIII are depicted.

Regarding the number of data points in the instrumental modes,
for this application, a total of 15 complete fluorescence matrices per
sample were obtained. Moreover, compared with MI, smaller
excitation and emission spectral ranges, as well as lower spectral
resolution, were used in order to reduce the time required for the
registering of a complete fluorescence matrix. As a result, although
an array with balanced number of data points is obtained for each
sample (15 x 15 x 28), both retention time mode and excitation
and emission wavelength modes show low resolution considering a
chromatographic procedure and complete excitation—emission
matrices. Nevertheless, retention time resolution can be enhanced
in spite of a detriment in the spectral resolution, even if the latter
can also be improved by using a spectrofluorimeter that would
permit faster spectra scanning.

3.3. Data analysis

This section aims to chemometrically demonstrate the proper-
ties described in 3.2. Data properties section. For this purpose,
PARAFAC was employed as chemometric tool for the data model-
ling. PARAFAC is a trilinear decomposition algorithm that, from the
analytical chemistry standpoint, relies on the validity of Beer-
—Lambert's law of the investigated spectroscopic system. The
decomposition of the data is made into trilinear components and it
is achieved through alternating least-square procedure [15,29]. This
algorithm was selected because: 1) only trilinear data can be
decomposed properly; 2) the retrieved profiles bear physically
recognizable information; and 3) resolutions are often unique [30].
Hence, knowing in advance the real characteristics of the system,
i.e., excitation and emission spectra and chromatographic retention
time of pure analytes, it would be possible to achieve reliable
conclusions about the chemometric resolution. Although pre-
processing procedures to cope with non-trilinear data are here
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described, the chemometric modelling was accomplished with
non-pre-processed data in order to evaluate the effects on the re-
sults when lack of trilinearity, if present, is underestimated.

PARAFAC profiles retrieved from the decomposition of the third-
order LC—EEM data obtained with the three methodologies are
exposed in Fig. 6. For the modelling, initial estimates obtained by
random initialization were used and only non-negativity constraint
was applied (in the three modes) during optimization. The number
of components was determined by CORe CONsistency Dlagnostic
Analysis (CORCONDIA) [31].

3.3.1. Methodology I

For all the samples, the number of components was 3, which
agrees with the number of spectroscopically active compounds in
the samples. Comparison analysis revealed excellent agreement of
the PARAFAC spectral profiles retrieved with the real spectra of the
pure analytes. Additionally, peak times of each analyte obtained
from PARAFAC retention time profile were correlated with DAD-UV
reference chromatogram. This analysis showed a high degree of

M. Montemurro et al. / Trends in Analytical Chemistry 93 (2017) 119—133

similarity between times, although slight differences were
observed due to time lags among detection systems. On the basis of
these results, it is possible to conclude that the third-order data
array obtained with MI fulfil the trilinearity model. Fig. 6A shows
PARAFAC results retrieved from the decomposition of third-order
LC—EEM data obtained with ML

For multi-set analysis, the third-order data arrays obtained for
each sample are usually arranged into a four-way data array. Thus,
the quadrilinearity of four-way objects should be evaluated. In the
presented case, loss of quadrilinearity was shown due to lack of
reproducibility in retention times and the small differences be-
tween times of the collection of the fractions among samples. These
facts lead to a non-quadrilinear data of type 1, according to the
classification tree described by Olivieri and Escandar [14] (see Fig. 1).
Therefore, PARAFAC would not be the appropriate algorithm for the
resolution. Instead, algorithms such U-PLS/RTL, MCR-ALS and
APARAFAC can be conveniently applied to unfolded bilinear data
matrix or augmented trilinear three-dimensional data arrays
[21,22].
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3.3.2. Methodology II

In chromatography, the ideal situation is when excellent
reproducibility in peak times among runs is observed and also
when the shape of the peaks remains invariant. In a real situation,
these effects are not always accomplished, thus, the trilinearity of
the third-order data array is not fulfilled. A way to overcome this
drawback is utilizing mathematical procedures to turn the data into
trilinear before performing data processing. In this regard, there are
methods that digitally correct the chromatograms by correcting the
chromatographic peaks into the same position and shape. Some of
these methods, such as interval-correlation-shifting (i-coshift) [32],
are capable of aligning peaks but not modifying peak shapes,
whereas more sophisticated methods, e.g., Correlation Optimized
Warping (COW) [33], are able both to shift and stretch/compress
peaks until best correlation between data is achieved. However, the
available procedures at present cannot cope with the situation if
long peak shifts or severe shape distortions occur. Additionally, the
complexity of the system under study increases under high-
overlapping condition or in presence of unexpected compounds
[34,35]. Recently, an alternative data processing based on a com-
bination of second order resolution algorithms coupled to a peak
alignment procedure was proposed to tackle retention time shift
problems in second-order data [36]. Even though this strategy was
planned for second-order data resolution, it seems to be a clever
alternative that can be applied for the resolution of non-trilinear
three-dimensional data array with lack of retention time
reproducibility.

For MII data set (obtained herein for binary samples), the
number of components was ranging between 2 and 4. The differ-
ence between the numbers of components obtained (2—4) and the
number of the spectroscopically active compounds in the sample
(2) lies in the effects generated by the lack of run-to-run repro-
ducibility, i.e., peak shifting. In Fig. 6B, 3 components can be
distinguished with marked features in the retention time and the
excitation wavelength modes. However, 2 of the 3 profiles obtained
for the emission wavelength mode show strong similarities. Addi-
tionally, excitation spectral profiles determined by PARAFAC do not
match the spectra of the pure analytes. These unreliable solutions
indicate a significant loss of trilinearity, which should be consid-
ered in advance for a successful resolution.

For quantitative analysis, N-PLS/RTL [24], U-PLS/RTL [24,26] and
MCR-ALS [26] algorithms have been utilized for chemometric res-
olution obtaining better results than those obtained by PARAFAC
[24,26]. In those reports, the authors have reached the conclusion
that, for multi-set analysis, the better results are achieved due to
the fact that the first-mentioned algorithms can tolerate times
shifts among samples, whereas PARAFAC cannot cope with non-
quadrilinearity data array in means of loss of sample-to-sample
reproducibility [24,26]. Then, the authors consider the data as
non-quadrilinearity data of type 1. Also, it is interesting to note that,
even though the same phenomenon occurs, lack of run-to-run
reproducibility effect (for one sample) has not been evaluated,
then, the extent artefacts that are introduced in the results due to
the loss of trilinearity of the individual three-dimensional data
objects have not been considered [14]. These observations lead to
the conclusion that data set obtained with MII are included within
the type 4 non-quadrilinearity class, instead of type 1, as they were
considered. However, satisfactory results were achieved when U-
PLS/RTL or MCR-ALS were used due to the low degree of non-
trilinearity/quadrilinearity of the data array and the internal
structure flexibility of the utilized algorithms.

3.3.3. Methodology IIl
As it was stated above for MIII data, there is a strong retention
time mode-dependence with both spectral wavelength modes, not

fulfilling the concept of trilinearity. This phenomenon is demon-
strated, in principle, when the number of components is calculated,
indicating that more than 1 component is necessary to explain the
variance of the modelling when a pure analyte is analysed. In
Fig. 6C, it can be seen that, for a unique substance, 2 different
temporal profiles and 2 excitation spectral profiles were obtained,
while 2 identical emission spectral profiles were retrieved. This fact
asserts the assumption that excitation mode is strongly dependent
on the retention of the analyte, while the retention-dependence of
the emission mode seems to be inconsequential. Additionally, for
multi-set analysis, time shifting between samples leads to differ-
ences in the peak positions as well as in the features of the exci-
tation profiles, showing a severe loss of quadrilinearity. Here,
following the classification tree for four-way data for a set of
samples [14], and considering the lack of trilinearity of the three-
dimensional array for an individual sample, the generated data,
like MII, are included in the category of non-quadrilinear data of
type 4.

It is remarkable the high complexity of the third-order LC—EEM
data generated with this methodology as consequence of the strong
dependence of the instrumental modes. Unfortunately, no che-
mometric algorithms allowing a proper resolution of this kind of
data have been developed yet, and no pre-processing tools to turn
the data into trilinear have been further evaluated. Besides, it is
noteworthy that same phenomenon occurs when fluorescence
matrices are measured as function of reaction time. However,
works published at the present do not report major inconvenient in
the chemometric resolution mainly due to the low rates of the
studied reactions in combination of the use of a fast-scanning
spectrofluorimeter [37—42].

Accordingly, the development of new chemometric algorithms
and the search of novel alternatives to cope with this kind of data
represent an important and worthwhile challenge for chemo-
metricians, as well as an exceptional step forward for chemometrics
in the analytical chemistry field.

4. Analytical application

On the basis of the above-mentioned observations, it can be
assumed that methodology I is the most feasible and efficient
strategy for the generation of third-order LC—EEM data up to the
present. Thus, with the goal of illustrating the capability of the MI-
based analytical method for quantitative determinations, recently
published works reporting an analytical method for the determi-
nation of 3 f-QUI in drinking water are here analysed [21,22].
APARAFAC and MCR-ALS have been chosen as chemometric data
modelling algorithms and evaluation of algorithm performance has
been accomplished. Additionally, second- and third-order data
modelling was compared in terms of figures of merit and predictive
ability [1,2].

4.1. MCR-ALS modelling

MCR-ALS is a widespread and versatile soft-modelling tech-
nique that focuses on the mathematical resolution of the pure
component signals of a data matrix [43,44]. MCR-ALS enables
decomposition of data matrices that can be described by a bilinear
model, even when no prior information is available [45]. Its basic
premise lies in the validity of Beer—Lambert's law of the investi-
gated spectroscopic system, thus, profiles obtained for the pure
components after resolution gain chemical meaning and they can
be directly interpreted as abundance profile and spectra [46].

Bilinear model follows the expression that is shown in Equation
(1), where X is a two-way data matrix and C and S are the abun-
dance distribution and spectra, respectively, of the N components
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involved in the system. Additionally, an E matrix comprising the
residual variations of the data is obtained [43,45,46];

X—=CST+E (1)

Multi-set data analysis, obtained from multiple experiments
related to each other, can be accomplished through the extension of
the model. Here, multi-set data are simultaneously analysed
applying MCR-ALS to augmented data matrices [45,47]. In this re-
gard, MCR-ALS analysis is significantly improved and better
description of the system can be done.

4.1.1. Data structure

For third-order data modelling, MCR-ALS resolution, showed in
Fig. 7, is usually performed in the extended version using unfolded
matrices as follows [21,22,25,26,48,49]:

e Each EEM matrix X¢ (K x L) corresponding to the collected
fractions are unfolded generating row vectors XEn'fOf dimension
(1 x LK). Then, the unfolded matrices, or row vectors, XEn,f, are
appended obtaining a bilinear matrix Xunr (J x LK) for each
sample, with | fractions (retention times), K emission wave-
lengths and L excitation wavelengths. Therefore, all the obtained
Xunf Matrices are then combined to a column-wise data array
Xaug Of size [(I + 1) J x LK], in which I'is the number of calibration
samples and 1 represents the unknown, test or validation
sample. In this regard, the augmented two-dimensional array
conforms to the bilinear modelling requirements, since
augmentation is done along the quadrilinearity-breaking mode,
i.e., column wise.

Non-negativity, unimodality and correspondence between
common species in different data matrices are the most used
constraints applied to the retention time mode during ALS
optimization, whereas only non-negativity constraint is gener-
ally implemented in the spectral mode.

After chemometric modelling, the profiles corresponding to
retention times (Cayg) and fluorescence spectra (S) for the N
individual analytes are obtained, as well as a matrix E,yg that
comprises the residuals of the modelling. On one hand, the in-
formation related to the contribution of the analytes is gathered
from Cayg as the area under the sub-profiles in each of the
samples, which is used for quantitative purposes. On the other
hand, S comprises the unfolded fluorescence matrices of the
individual analytes that can eventually be refolded to restore the
two-dimensional fluorescence matrices. Hence, individual

excitation and emission profiles of the N components in the
samples are obtained, whose are then utilized for the identifi-
cation of the resolved components.

4.2. APARAFAC modelling

APARAFAC algorithm has been developed for the analysis of
third-order data that do not fulfil a quadrilinear model, for
example, in presence of retention times that change from sample to
sample [25]. APARAFAC model implies the construction of a
trilinear augmented three-way array, where augmentation is done
along the quadrilinearity-breaking mode. In principle, the appli-
cation of APARAFAC would only involve an initialization step and no
constraints would be necessary due to the uniqueness property of
the decomposition of a trilinear three-way data array [14,22],
analogous to the PARAFAC model for the modelling of a three-way
data array. However, aiming to obtain profiles with chemically
interpretable information, same MCR-ALS constraints are usually
implemented.

APARAFAC algorithm is based in three-way PARAFAC modelling
and inspired by the augmentation philosophy applied in MCR-ALS
analysis [25]. In this manner, APARAFAC can be interpreted as an
algorithm composed by the marriage of PARAFAC and MCR-ALS
that collects the essential particularities of each individual model,
i.e., the ability to overcome the lack of quadrilinearity by virtue of
its augmented structure, but maintaining the original three-
dimensional structure of the data [22,25]. Then, besides the abil-
ity to handle non-quadrilinear data, the most remarkable advan-
tage of this modelling is that, since the original data structure is
maintained, the statistical efficiency of decomposing a multiway
array is higher in comparison with unfolding into arrays of lower
dimensions, as it is required for the MCR-ALS analysis of four-way
data.

APARAFAC model can be represented by Equation (2), where
decomposition of the augmented three-way array X, retrieves
three loading matrices, Aayg, B and C, corresponding to retention
times and excitation and emission spectral profiles, respectively, for
the N number of responsive components, as well as an E,yg matrix
that comprises the model residuals;

Xaug = Aaug(BQC)T + Eaug (2)

“©" indicates the Khatri—Rao or column-wise Kronecker product
[25].
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4.2.1. Data structure
The APARAFAC algorithm is implemented by building an
augmented three-way array as follows [22,25] (Fig. 8):

e For each sample, a three-way data object Xt is constructed with a
size of (J x K x L), where J, K and L are, in this case, the collected
fractions (retention times), emission wavelengths and excitation
wavelengths, respectively. Then, an augmented three-way array
Xaug is built by appending all the individual three-way arrays,
generating a [(I + 1) x K x L] object, in which I is the number of
calibration samples and 1 represents the unknown, test or
validation sample. In this regard, it is worth noticing that the
augmented three-way object fulfils the trilinear modelling re-
quirements, since augmentation is performed in the direction of
the quadrilinearity-breaking mode.

For ALS optimization, same constraints as those applied in MCR-

ALS are implemented.

e At the end of the chemometric decomposition, retention time
(A), excitation spectral (B) and emission spectral (C) profiles are
acquired. Here, different to MCR-ALS, individual spectral profiles
are obtained, i.e., excitation and emission profiles are retrieved
separately and no data post-processing is needed. However,
similar to MCR-ALS, for quantitative purposes, the area under
the sub-profiles comprised in A is related to the individual
contribution of the analytes in each sample.

Fig. 9A displays the results obtained from MCR-ALS resolution of
a sample containing 3 analytes, as well as the individual excitation
and emission profiles retrieved from the refolded fluorescence
matrices. In Fig. 9B, results retrieved from APARAFAC modelling for
a sample containing 3 analytes are shown.

4.3. Quantitative analysis and figures of merit

In order to compare the performance of the applied chemo-

and spiked drinking water samples reported by authors elsewhere
[21,22] was analysed. Tables 1 and 2 summarize the prediction
results corresponding to the application of MCR-ALS and APARAFAC
for validation and spiked drinking water, respectively, in presence
of interferences. As can be seen, a satisfactory coincidence between
predictions values corresponding to both models is demonstrated,
and acceptable REP % values are obtained for both models.

Eventually, figures of merit were estimated for both models and
a comparative analysis was performed. Additionally, second-order
modelling was evaluated applying PARAFAC and MCR-ALS, and
figures of merit were compared with those calculated for third-
order modelling. It is important to highlight that, even though
the estimations of figures of merit for an analytic method based on
MCR-ALS model were obtained from well-stablished mathematic
expressions [ 1], equations for a method based on APARAFAC model
have not been developed yet. Thus, an extension of derived
expression from four-way calibration with PARAFAC has been uti-
lized, despite possible overestimations are introduced [5]. For
second-order modelling, only OFL was considered as target analyte
and the other components were considered as unexpected
compounds.

To estimate the sensitivities in MCR-ALS and PARAFAC for three-
way and four-way calibration, the following mathematical ex-
pressions were used:

SENMCR = Sn [](CTC) B ]7% 3)

where s, is the slope of the MCR-ALS pseudo-univariate plot, J is the
number of data points in each submatrix in the augmented mode,
and C is a matrix containing the profiles for all sample components
in the non-augmented direction [1,50]; and

NI

SENpARAFAC 3-way = Sn{ [(Bzall’s,uancm) * (CIach,unchal) ] - }

metric models for third-order data modelling, in terms of predictive (4)
ability and figures of merit, a recovery study in several validation

1421
SENPARAFACA—way = sn{ [(BzalpB,uancal) * (cZalPC,unxccal> * (DzalpD,unchal)] } ’ (5)
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Table 1
Recovery study for 3 FQ in validation samples using MCR-ALS and APARAFAC modelling. Reprinted with permission of the authors of Ref. [20]. Copyright 2015 Springer.”
Sample OFL CPF DNF
Nominal Predicted Nominal Predicted Nominal Predicted
MCR-ALS APARAFAC MCR-ALS APARAFAC MCR-ALS APARAFAC
Mo1 20.0 21.1 20.1 90.0 99.3 925 25.0 27.1 232
MO02 20.0 19.3 19.7 150.0 131.0 121.7 15.0 16.4 159
MO03 60.0 51.1 52.1 30.0 449 58.5 5.0 53 5.1
Mo04 100.0 101.0 99.7 90.0 95.8 90.9 5.0 8.6 8.9
MO5 60.0 68.1 70.1 150.0 144.8 147.0 25.0 284 28.8
MO06 100.0 98.9 99.1 150.0 132.7 136.9 15.0 17.8 18.2
Mo07 100.0 104.1 101.0 30.0 21.0 22.0 5.0 7.4 7.6
MO8 20.0 31.0 31.7 30.0 58.0 51.7 2.0 4.0 4.0
M09 60.0 45.3 55.2 30.0 19.8 25.6 8.0 9.6 9.4
M10 60.0 55.1 72.3 60.0 54.2 443 2.0 53 2.6
REP %° 145 13.8 19.0 215 199 191
Rex” 102.7 107.4 105.8 1074 146.0 1315

3 Concentrations are given in ng mL™".

b REP %: relative error of prediction given in percentage and calculated as REP% = 100 x 1/(1/)>"4 (Cnom — cp,ed)2/E, for I = 10.
¢ Rexp: average experimental recoveries given in percentage.
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Table 2
Recovery study for 3 FQ in spiked drinking water samples using MCR-ALS and APARAFAC modelling. Reprinted with permission of the authors of Ref. [20]. Copyright 2015
Springer.®

Sample” OFL CPF DNF

Taken Found Taken Found Taken Found
MCR-ALS APARAFAC MCR-ALS APARAFAC MCR-ALS APARAFAC

Mw_01 20.0 30.6 174 30.0 26.3 25.0 3.5 32 29

Mw_02 60.0 81.2 63.8 90.0 78.6 91.2 5.5 7.5 7.6

Mt_01 60.0 61.9 65.3 90.0 86.6 89.5 22 2.7 2.6

Mt_02 40.0 322 26.2 60.0 60.5 62.9 9.0 12.8 124

Mm_01 20.0 125 19.1 30.0 19.7 17.0 22 1.9 1.9

Mm_02 40.0 411 49.9 60.0 91.1 81.3 9.0 9.5 9.2

Rexp” 106 98 98 97 116 113

3 Concentrations are given in ng mL~'. Each mean value is the average of three replicates.
b Mw: well water from Colastiné City (Santa Fe, Argentina); Mt: tap wadter form Santa Fe City (Santa Fe, Argentina); Mm: commercial mineral water.

¢ Rexp, average experimental recoveries given in percentage.

where s, is the slope of the PARAFAC pseudo-univariate plot, By,
Cca1 and D¢, collect the loading matrices for the calibrated analytes,
* is the element-wise and Pgunx, Pcunx and Ppynx are projection
matrices given by I-BunyBinx, I-CunxCinx and I-DynxDinx, respec-
tively, being I the identity matrices, Bynx, Cunx and Dypx collect the
loading matrices for the unexpected samples constituents, and the
superscript + indicates the generalized inverse operation.

For the estimation of the limit of detection (LOD) and limit of
quantitation (LOQ), Equations (6) and (7), respectively were
utilized.

LOD = 2 x f g5 oo il — 3,3 e (6)
_ Sdtest
10Q = 107es (7)

where £y 05, iS the one-tail ¢ value assuming a large number of
calibration samples and a value of 0.05, and s4test represents the
standard deviation of the estimated net signal when its true value is
zero [5,50].

In Table 3, figures of merit obtained for third-order data
modelling using both models are shown. Figures of merit computed
for second- and third-order data modelling using MCR-ALS and
PARAFAC are depicted in Table 4.

It is noticeable that there is an important improvement in the
SEN, LOD and LOQ values obtained for third-order data modelling
when APARAFAC is used, in comparison to MCR-ALS, while a drastic
reduction of LOD and LOQ values is shown when the order or
dimension of the data increases. However, figures of merit obtained
for second- and third-order data using MCR-ALS modelling did not
show significant differences. On the other hand, the strong differ-
ence observed in LOD and LOQ values when second-order data
modelling is performed using MCR-ALS and PARAFAC lies, in
principle, in the loss of trilinearity caused by the lack of sample-to-

Table 3

Table 4

Figures of merit obtained for OFL using second- and third-order data modelling,
applying MCR-ALS and PARAFAC/APARAFAC chemometric models. Reprinted with
permission of the authors of Ref. [20]. Copyright 2015 Springer.*

Figure of merit® MCR-ALS PARAFAC/APARAFAC
Second-order Third-order Second-order Third-order

SEN 5.2 104 7.6 21.0

SEL 0.23 0.68 0.25 0.65

LOD 0.4 0.25 6.9 0.20

LoQ 11 0.75 21.0 0.60

2 For second-order data modelling, PARAFAC was applied, while for third-order
data modelling APARAFAC was used.

b SEN: sensitivity; SEL: selectivity; LOD: limit of detection and LOQ: limit of
quantitation calculated according to Ref [1] and Ref [5] for MCR-ALS and APARAFAC,
respectively. LOD and LOQ are given in ng mL~".

sample reproducibility, which can be overcome with MCR-ALS but
not with PARAFAC.

The main basis of the aforementioned observations belongs in
the assumption that third-order data modelled with APARAFAC
shows several advantages over MCR-ALS, stressing the possibility of
processing the data in its original three-dimensional structure,
instead of unfolding the data to arrays of lower dimensions, and the
feasibility to overcome the lack of quadrilinearity, leading to an
improvement in the figures of merit and prediction capability of the
analytical method. Additionally, APARAFAC exploits the second-
order advantage even in presence of lack of sample-to-sample
reproducibility, similar to MCR-ALS. In consequence, APARAFAC is
presented as an appropriate alternative for third-order LC—EEM
data analysis achieving acceptable results in the analysis of multi-
component samples in presence of uncalibrated components.

5. Conclusion

In the present review, three analytical methodologies for the
generation of third-order LC—EEM data are reviewed. Methodology
I, based on the collection of discrete fractions at the end of the

Figures of merit obtained for third-order data modelling, applying MCR-ALS and APARAFAC chemometric models. Reprinted with permission of the authors of Ref. [20].

Copyright 2015 Springer.

Figure of merit® OFL CPF DNF
MCR-ALS APARAFAC MCR-ALS APARAFAC MCR-ALS APARAFAC
SEN 104 21.0 2.7 20.0 229 83.0
SEL 0.68 0.65 0.21 0.29 0.88 0.30
LOD 0.25 0.20 0.99 0.15 0.12 0.02
LoQ 0.75 0.60 297 0.47 0.36 0.08

2 SEN: sensitivity; SEL: selectivity; LOD: limit of detection and LOQ: limit of quantitation calculated according to Ref[1] and Ref[5] for MCR-ALS and APARAFAC, respectively.

LOD and LOQ are given in ng mL~".
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chromatographic procedure, requires low complexity equipment,
needing a device that enables the fraction collection in multi-well
plates. The time of analysis is limited by the detection procedure
that strictly depends on the instrumental parameters and the
characteristics of the used instrument. Generated data have shown
perfect trilinearity as consequence of the independence between
instrumental modes and the particular bilinearity/trilinearity
properties of the EEM. The results obtained from trilinear decom-
position were highly satisfactory, obtaining time and spectral pro-
files with strong similarities with the experimental chromatogram
and the pure excitation and emission spectra, respectively.

Methodology II, although only one instrument is required, de-
mands a chromatograph equipped with an auto-sampler and fast-
scanning fluorescence detector. Besides, due to the fact a high
number of injections is needed for each sample, the analysis is
time-consuming, and it can only be improved in spite of a detri-
ment of the spectral information. Moreover, the high consumption
of reagents and sample, as consequence of the multi-injections,
involves a high environmental impact as well as an important
increment in the total costs. On the other hand, regarding data
properties, it has been shown that slight differences in the reten-
tion times among runs leads to modifications in the excitation
spectra features. This fact indicates a direct dependence between
time and excitation wavelength modes, which means a loss of tri-
linearity in the third-order LC—EEM data. Even though lack of tri-
linearity in the third-order data is a drawback to overcome to
obtain reliable results, in the literature, it has not been evaluated
the effects introduced in the results due to lack of trilinearity,
whereas they report loss of quadrilinearity as a consequence of the
same phenomena, i.e., lack of run-to-run reproducibility [24,26].
Finally, different alternatives to turn data into trilinear were here
reported, including peak alignment algorithms.

The third methodology studied is presented as a new proposal
for third-order LC—EEM data generation. It seems to be advanta-
geous due to the short time of the analysis, the low consumption of
solvents and sample and the low complexity of the required
equipment. However, the generated data show an extreme
complexity by virtue of the strong dependence between instru-
mental modes, leading to a severe loss of trilinearity. Unfortunately,
no chemometric procedures able to resolve this kind of data have
been developed yet. Also, no pre-processing procedures that would
permit to turn data into trilinear have been found. Thus, the
development of new chemometric algorithms to cope with this
kind of data is a worthwhile challenge for chemometricians and
analytical chemists.

In sum, on the basis of the above-mentioned observations, it can
be assumed that methodology I is the most feasible and efficient
current strategy for the generation of third-order LC—EEM data up
to the present, which becomes promissory for further
implementations.

Methodology I was then used for the determination of several
analytes in drinking water samples. It has been demonstrated that
in multi-set analysis, four-way arrays show loss of quadrilinearity
due to differences in the retention times of the analytes among
samples. However, APARAFAC and MCR-ALS models proved to be
able to bear non-quadrilinear data, and satisfactory results were
achieved. Further, it was demonstrated that the so-called “third-
order advantage” is successfully achieved when third-order data
are analysed, representing an improvement of sensitivity and
selectivity as well as the possibility to resolve a complex problem
with a unique data array, without needing additional information.

At last, it becomes crucial to remark the importance of doing an
in-depth analysis of the system under study considering all the
possible edges, from chemical to mathematical standpoints, in or-
der to obtain the most reliable and satisfactory results.

Acknowledgements

The authors express their gratitude to CONICET (Consejo
Nacional de Investigaciones Cientificas y Técnicas) Project PIP-2014
N| 0111 and ANPCyT (Agencia Nacional de Promocién Cientifica y
Tecnolégica) Project PICT 2014-0347 for financially supporting this
work. M.R.A and M.M gratefully acknowledge the postdoc and Ph.D.
financial support, respectively, provided by CONICET.

References

[1] M.C. Bauza, G.A. Ibanez, R. Tauler, A.C. Olivieri, Sensitivity equation for
quantitative analysis with multivariate curve resolution-alternating least-
squares: theoretical and experimental approach, Anal. Chem. 84 (2012)
8697—-8706.

[2] A.C. Olivieri, G.M. Escandar, Practical Three-way Calibration, Elsevier, Wal-
tham, USA, 2014.

[3] G.M. Escandar, H.C. Goicoechea, A. Munoz de la Pena, A.C. Olivieri, Second-

and higher-order data generation and calibration: a tutorial, Anal. Chim. Acta

806 (2014) 8—26.

K.S. Booksh, B.R. Kowalski, Theory of analytical chemistry, Anal. Chem. 66

(1994) 782A—791A.

[5] A.C. Olivieri, N.M. Faber, New developments for the sensitivity estimation in
four-way calibration with the quadrilinear parallel factor model, Anal. Chem.
84 (2012) 186—193.

[6] A.C. Olivieri, J.A. Arancibia, A. Munoz de la Pena, I. Durdan-Merads, A. Espinosa

Mansilla, Second-order advantage achieved with four-way fluorescence

excitation—emission—kinetic data processed by parallel factor analysis and

trilinear least-squares. Determination of methotrexate and leucovorin in hu-

man urine, Anal. Chem. 76 (2004) 5657—5666.

C. Kang, H.-L. Wu, L.-X. Xie, S.-X. Xiang, R.-Q. Yu, Direct quantitative analysis of

aromatic amino acids in human plasma by four-way calibration using intrinsic

fluorescence: exploration of third-order advantages, Talanta 122 (2014)

293-301.

C. Kang, H.-L. Wu, Y.-]. Yu, Y.-J. Liu, S.-R. Zhang, X.-H. Zhang, R.-Q. Yu, An

alternative quadrilinear decomposition algorithm for four-way calibration

with application to analysis of four-way fluorescence excita-

tion—emission—pH data array, Anal. Chim. Acta 758 (2013) 45—57.

[9] A.C. Olivieri, Analytical advantages of multivariate data processing. One, two,
three, infinity? Anal. Chem. 80 (2008) 5713—5720.

[10] H.-L. Wu, C. Kang, Y. Li, R.-Q. Yu, Practical analytical applications of multiway
calibration methods based on alternating multilinear decomposition (Chapter
4), in: A. Munoz de la Pena, H.C. Goicoechea, G.M. Escandar, A.C. Olivieri
(Editors), Data Handling in Science and Technology, Elsevier, 2015,
pp. 167—-246.

[11] A. de Juan, R. Tauler, Comparison of three-way resolution methods for non-
trilinear chemical data sets, J. Chemom. 15 (2001) 749—771.

[12] J.M. Amigo, F. Marini, Multiway methods (Chapter 7), in: M. Federico (Editor),
Data Handling in Science and Technology, Elsevier, 2013, pp. 265—313.

[13] A.C. Olivieri, Recent advances in analytical calibration with multi-way data,
Anal. Methods 4 (2012) 1876—1886.

[14] A.C. Olivieri, G.M. Escandar, Third-order/Four-way Calibration and Beyond,
Practical Three-way Calibration (Chapter 11), Elsevier, Boston, 2014,
pp. 217-232.

[15] R. Bro, PARAFAC. Tutorial and applications, Chemom. Intell. Lab. Syst. 38
(1997) 149-171.

[16] R. Tauler, Multivariate curve resolution applied to second order data, Che-
mom. Intell. Lab. Syst. 30 (1995) 133—146.

[17] S. Wold, P. Geladi, K. Esbensen, J. Ohman, Multi-way principal components-
and PLS-analysis, J. Chemom. 1 (1987) 41—-56.

[18] R. Bro, Multiway calibration. Multilinear PLS, J. Chemom. 10 (1996) 47—61.

[19] A.C. Olivieri, On a versatile second-order multivariate calibration method
based on partial least-squares and residual bilinearization: second-order
advantage and precision properties, J. Chemom. 19 (2005) 253—265.

[20] H.-L. Wu, M. Shibukawa, K. Oguma, An alternating trilinear decomposition
algorithm with application to calibration of HPLC—DAD for simultaneous
determination of overlapped chlorinated aromatic hydrocarbons, J. Chemom.

12 (1998) 1-26.

[21] M.R. Alcardz, G.G. Siano, M.J. Culzoni, A. Munoz de la Pena, H.C. Goicoechea,
Modeling four and three-way fast high-performance liquid chromatography
with fluorescence detection data for quantitation of fluoroquinolones in water
samples, Anal. Chim. Acta 809 (2014) 37—46.

[22] M.R. Alcardz, S. Bortolalo, H.C. Goicoechea, A.C. Olivieri, A new modeling
strategy for third-order fast high-performance liquid chromatographic data
with fluorescence detection. Quantitation of fluoroquinolones in water sam-
ples, Anal. Bioanal. Chem. 407 (2015) 1999—2011.

[23] R. Bro, Multi-way Analysis in the Food Industry, Chemometrics Group, Food
Technology Department of Dairy and Food Science, Royal Veterinary and
Agricultural University, Copenhagen, Denmark, 1997, p. 290.

[24] V.A. Lozano, A. Munoz de la Pena, I. Durdn-Merds, A. Espinosa Mansilla,
G.M. Escandar, Four-way multivariate calibration using ultra-fast high-

[4

[7

[8


http://refhub.elsevier.com/S0165-9936(17)30120-6/sref1
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref1
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref1
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref1
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref1
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref1
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref2
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref2
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref3
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref3
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref3
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref3
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref3
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref4
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref4
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref4
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref5
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref5
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref5
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref5
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref6
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref6
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref6
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref6
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref6
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref6
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref6
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref6
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref6
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref6
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref6
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref6
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref7
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref7
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref7
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref7
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref7
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref8
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref8
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref8
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref8
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref8
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref8
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref8
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref9
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref9
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref9
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref10
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref10
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref10
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref10
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref10
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref10
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref10
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref10
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref11
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref11
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref11
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref12
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref12
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref12
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref13
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref13
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref13
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref14
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref14
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref14
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref14
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref15
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref15
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref15
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref16
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref16
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref16
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref17
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref17
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref17
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref17
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref18
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref18
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref19
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref19
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref19
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref19
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref20
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref20
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref20
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref20
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref20
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref20
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref21
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref21
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref21
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref21
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref21
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref21
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref22
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref22
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref22
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref22
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref22
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref22
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref23
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref23
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref23
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref24
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref24
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref24
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref24
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref24
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref24

[25]

[26]

[27]

M. Montemurro et al. / Trends in Analytical Chemistry 93 (2017) 119—133

performance liquid chromatography with fluorescence excitation—emission
detection. Application to the direct analysis of chlorophylls a and b and
pheophytins a and b in olive oils, Chemom. Intell. Lab. Syst. 125 (2013)
121-131.

S.A. Bortolato, V.A. Lozano, A.M. de la Pena, A.C. Olivieri, Novel augmented
parallel factor model for four-way calibration of high-performance liquid
chromatography—fluorescence excitation—emission data, Chemom. Intell.
Lab. Syst. 141 (2015) 1-11.

M. Montemurro, L. Pinto, G. Véras, A. de Aratjo Gomes, M]. Culzoni,
M.C. Ugulino de Aradjo, H.C. Goicoechea, Highly sensitive quantitation of
pesticides in fruit juice samples by modeling four-way data gathered with
high-performance liquid chromatography with fluorescence excitation-
emission detection, Talanta 154 (2016) 208—218.

P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford Uni-
versity Press, 1998.

[28] J.A. Arancibia, P.C. Damiani, G.M. Escandar, G.A. Ibanez, A.C. Olivieri, A review

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

on second- and third-order multivariate calibration applied to chromato-
graphic data, J. Chromatogr. B 910 (2012) 22—30.

H.-L. Wu, Y. Li, C. Kang, R.-Q. Yu, Multiway calibration based on alternating
multilinear decomposition (Chapter 3), in: A. Munoz de la Pena,
H.C. Goicoechea, G.M. Escandar, A.C. Olivieri (Editors), Data Handling in Sci-
ence and Technology, Elsevier, 2015, pp. 83—165.

R. Boqué Marti, J. Ferré Baldrich, Fundamentals of PARAFAC (Chapter 1), in:
A. Munoz de la Pena, H.C. Goicoechea, G.M. Escandar, A.C. Olivieri (Editors),
Data Handling in Science and Technology, Elsevier, 2015, pp. 7—35.

R. Bro, H.A.L. Kiers, A new efficient method for determining the number of
components in PARAFAC models, . Chemom. 17 (2003) 274—286.

G. Tomasi, F. Savorani, S.B. Engelsen, icoshift: an effective tool for the align-
ment of chromatographic data, J. Chromatogr. A 1218 (2011) 7832—-7840.
N.-P.V. Nielsen, ].M. Carstensen, J. Smedsgaard, Aligning of single and multiple
wavelength chromatographic profiles for chemometric data analysis using
correlation optimised warping, J. Chromatogr. A 805 (1998) 17—35.

A.C. Olivieri, G.M. Escandar, Parallel Factor Analysis: Nontrilinear Data of Type
1, Practical Three-way Calibration (Chapter 7), Elsevier, Boston, 2014,
pp. 109—125.

A.C. Olivieri, G.M. Escandar, Application Example: MCR—ALS, Practical Three-
way Calibration (Chapter 13), Elsevier, Boston, 2014, pp. 251-271.

H. Parastar, N. Akvan, Multivariate curve resolution based chromatographic
peak alignment combined with parallel factor analysis to exploit second-
order advantage in complex chromatographic measurements, Anal. Chim.
Acta 816 (2014) 18—-27.

Y.-C. Kim, ].A. Jordan, M.L. Nahorniak, K.S. Booksh, Photocatalytic degradation-
excitation—emission matrix fluorescence for increasing the selectivity of
polycyclic aromatic hydrocarbon analyses, Anal. Chem. 77 (2005) 7679—7686.
S.-H. Zhu, H.-L. Wu, A.L. Xia, ].-F. Nie, Y.-C. Bian, C.-B. Cai, R.-Q. Yu, Excitation-
emission-kinetic fluorescence coupled with third-order -calibration for

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

133

quantifying carbaryl and investigating the hydrolysis in effluent water,
Talanta 77 (2009) 1640—1646.

M.D. Carabajal, J.A. Arancibia, GM. Escandar, Excitation-emission
fluorescence-kinetic data obtained by Fenton degradation. Determination of
heavy-polycyclic aromatic hydrocarbons by four-way parallel factor analysis,
Talanta 165 (2017) 52—63.

A.P. Pagani, G.A. Ibanez, Four-way calibration applied to the processing of pH-
modulated fluorescence excitation-emission matrices. Analysis of fluo-
roquinolones in the presence of significant spectral overlapping, Microchem. J.
132 (2017) 211-218.

R.M. Maggio, P.C. Damiani, A.C. Olivieri, Four-way kinetic-excitation-emission
fluorescence data processed by multi-way algorithms. Determination of
carbaryl and 1-naphthol in water samples in the presence of fluorescent
interferents, Anal. Chim. Acta 677 (2010) 97—107.

M. Montemurro, G.G. Siano, M.J. Culzoni, H.C. Goicoechea, Automatic gener-
ation of photochemically induced excitation-emission-kinetic four-way data
for the highly selective determination of azinphos-methyl in fruit juices, Sens.
Actuators B Chem. 239 (2017) 397—404.

D.W. Cook, M.L. Burnham, D.C. Harmes, D.R. Stoll, S.C. Rutan, Comparison of
multivariate curve resolution strategies in quantitative LCXLC: application to
the quantification of furanocoumarins in apiaceous vegetables, Anal. Chim.
Acta 961 (2017) 49-58.

A. de Juan, S.C. Rutan, R. Tauler, 2.19-Two-way data analysis: multivariate
curve resolution — iterative resolution methods, in: S.D. Brown, R. Tauler,
B. Walczak (Editors), Comprehensive Chemometrics, Elsevier, Oxford, 2009,
pp. 325—344.

C. Ruckebusch, L. Blanchet, Multivariate curve resolution: a review of
advanced and tailored applications and challenges, Anal. Chim. Acta 765
(2013) 28—36.

R. Tauler, M. Maeder, 2.20-Two-way data analysis: multivariate curve reso-
lution — error in curve resolution, in: S.D. Brown, R. Tauler, B. Walczak (Edi-
tors), Comprehensive Chemometrics, Elsevier, Oxford, 2009, pp. 345—363.

R. Tauler, A. de Juan, Multivariate curve resolution for quantitative analysis
(Chapter 5), in: A. Munoz de la Pena, H.C. Goicoechea, G.M. Escandar,
A.C. Olivieri (Editors), Data Handling in Science and Technology, Elsevier,
2015, pp. 247—292.

A. Malik, R. Tauler, Performance and validation of MCR-ALS with quadrilinear
constraint in the analysis of noisy datasets, Chemom. Intell. Lab. Syst. 135
(2014) 223-234.

A. Malik, R. Tauler, Extension and application of multivariate curve resolution-
alternating least squares to four-way quadrilinear data-obtained in the
investigation of pollution patterns on Yamuna River, India—a case study,
Anal. Chim. Acta 794 (2013) 20—-28.

A.C. Olivieri, Analytical figures of merit: from univariate to multiway cali-
bration, Chem. Rev. 114 (2014) 5358—5378.


http://refhub.elsevier.com/S0165-9936(17)30120-6/sref24
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref24
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref24
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref24
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref24
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref24
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref25
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref25
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref25
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref25
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref25
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref25
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref25
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref25
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref26
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref26
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref26
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref26
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref26
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref26
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref26
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref27
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref27
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref28
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref28
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref28
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref28
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref28
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref29
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref29
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref29
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref29
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref29
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref29
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref29
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref30
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref30
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref30
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref30
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref30
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref30
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref30
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref30
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref31
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref31
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref31
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref32
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref32
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref32
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref33
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref33
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref33
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref33
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref34
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref34
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref34
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref34
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref35
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref35
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref35
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref35
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref36
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref36
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref36
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref36
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref36
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref37
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref37
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref37
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref37
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref37
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref38
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref38
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref38
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref38
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref38
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref39
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref39
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref39
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref39
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref39
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref40
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref40
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref40
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref40
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref40
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref40
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref41
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref41
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref41
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref41
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref41
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref42
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref42
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref42
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref42
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref42
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref43
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref43
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref43
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref43
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref43
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref44
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref44
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref44
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref44
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref44
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref44
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref45
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref45
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref45
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref45
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref46
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref46
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref46
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref46
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref46
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref47
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref47
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref47
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref47
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref47
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref47
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref47
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref48
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref48
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref48
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref48
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref49
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref49
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref49
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref49
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref49
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref49
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref50
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref50
http://refhub.elsevier.com/S0165-9936(17)30120-6/sref50

	Third order chromatographic-excitation–emission fluorescence data: Advances, challenges and prospects in analytical applica ...
	1. Introduction
	2. Analytical procedures
	2.1. Methodology I – fraction collection
	2.2. Methodology II – multiple chromatographic runs
	2.3. Methodology III – online excitation–emission matrices

	3. Descriptive evaluation: requirements, properties and data modelling
	3.1. Instrumental requirements
	3.1.1. Methodology I
	3.1.2. Methodology II
	3.1.3. Methodology III

	3.2. Data properties
	3.2.1. Methodology I
	3.2.2. Methodology II
	3.2.3. Methodology III

	3.3. Data analysis
	3.3.1. Methodology I
	3.3.2. Methodology II
	3.3.3. Methodology III


	4. Analytical application
	4.1. MCR-ALS modelling
	4.1.1. Data structure

	4.2. APARAFAC modelling
	4.2.1. Data structure

	4.3. Quantitative analysis and figures of merit

	5. Conclusion
	Acknowledgements
	References


