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Weighted projections into closed subspaces

by

G. Corach, G. Fongi and A. Maestripieri (Buenos Aires)

Abstract. We study A-projections, i.e. operators on a Hilbert space H which act as
projections when a seminorm is considered in H. The A-projections were introduced by
Mitra and Rao (1974) for finite-dimensional spaces. We relate this concept to the theory
of compatibility between positive operators and closed subspaces of H. We also study the
relationship between weighted least squares problems and compatibility.

1. Introduction. In 1974, S. K. Mitra and C. R. Rao [21] introduced
the notion of projection into a subspace with respect to a seminorm. More
precisely, given a positive (semidefinite) matrix A ∈ Cn×n and a subspace S
of Cn, a matrix T ∈ Cn×n is called an A-projection into S if R(T ) ⊆ S and

‖y − Ty‖A ≤ ‖y − s‖A for all y ∈ Cn, s ∈ S,

where ‖z‖A := 〈Az, z〉1/2 =: 〈z, z〉1/2A . Notice that an A-projection T need
not be an idempotent, but AT 2 = AT . This notion is related to very general
least squares problems and Mitra and Rao have found several applications
in statistics, in particular in linear models (see also [24, 28, 29]).

In 1994, S. Hassi and K. Nordström [19] started the study of projections
onto closed subspaces in Hilbert spaces, which are orthogonal with respect to
an indefinite seminorm. Their paper suggested the notion of compatibility,
proposed by G. Corach, A. Maestripieri and D. Stojanoff [8, 9, 10]. A closed
subspace S of a Hilbert space H is said to be compatible with a positive
(semidefinite bounded linear) operator A on H if there exists a (bounded
linear) projection Q acting on H such that S is the image of Q and AQ =
Q∗A. This equality means that Q is selfadjoint with respect to the semi-inner
product defined by A. The notion has several applications in generalized
contractions [5, 26, 27], Krein space operators [19, 20], frame theory [2],
least squares problems [7], signal processing [14, 15] and so on. It should
be noticed that noncompatible pairs exist only if H has infinite dimension
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[10, 6.2]. Therefore, in order to study the relationship between Mitra–Rao’s
theory with the compatibility results, which is the main goal of this paper,
it is necessary to extend that theory to the infinite-dimensional case.

Section 2 contains notations and preliminary results, in particular the
well-known Douglas factorization theorem [13, 17]. Section 3 contains a short
résumé of definitions and the main results of compatibility theory with no
proof. In particular, if (A,S) is compatible then a description of the set

P(A,S) = {Q ∈ L(H) : Q2 = Q, R(Q) = S, AQ = Q∗A}
is presented. Section 4 is devoted to developing the theory of A-projections
in the context of infinite-dimensional Hilbert spaces. We only include proofs
if they are not similar to those for finite-dimensional spaces provided by
Mitra and Rao [21, 24]. The set Π(A,S) = {T ∈ L(H) : T is an A-
projection into S} is described and the precise relationship between P(A,S)
and Π(A,S) is presented, in the main result of the section, together with
some minimality properties.

Section 5 deals with least squares problems. An operator G ∈ L(H) is
called an A-inverse of a closed range operator B if for each y ∈ H, Gy is an
A-LSS of Bx = y, i.e.

‖BGy − y‖A ≤ ‖Bx− y‖A, x ∈ H.
We show that the existence of an A-inverse of an operator B is equivalent to
the compatibility of the pair (A,R(B)). Moreover the set of all A-inverses
of B is described. The second part of this section deals with restricted A-
inverses of an operator B: G ∈ L(H) is called an A-inverse of B restricted
toM if R(G) ⊆M and

‖BGy − y‖A ≤ ‖Bx− y‖A, ∀x ∈M.

This notion, also due to Rao and Mitra [24], is completely described in terms
of some compatibility conditions. In particular, there exists such a G if and
only if (A,B(M)) is compatible. The final part deals with the least squares
solution of an equation like

Bx = y

where the vectors x are measured with the seminorm ‖ ‖A1 defined by A1 ∈
L(H)+ and the vectors y are measured with ‖ ‖A2 for another A2 ∈ L(H)+.
Again, the situation is completely described by using certain compatibil-
ity conditions. Analogous problems have been considered in [7] and [18].
It should also be mentioned that L. Eldén [16] was the first to study this
problem in finite dimensions.

2. Preliminaries. Throughout, (H, 〈 , 〉) denotes a separable complex
Hilbert space, L(H) the algebra of bounded linear operators ofH, and L(H)+
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the cone of (semidefinite) positive operators, i.e. bounded linear operators
satisfying 〈Ax, x〉 ≥ 0 for all x ∈ H. Also, Q denotes the subset of L(H)
of oblique projections, i.e. Q = {Q ∈ L(H) : Q2 = Q}, and P the set of
orthogonal projections, i.e. P = {P ∈ L(H) : P 2 = P = P ∗}.

For every A ∈ L(H), R(A) denotes the range of A andN(A) its nullspace.
Given two closed subspacesM and N of H,M +̇N denotes the direct sum
ofM and N ,M⊕N the orthogonal sum andM	N =M∩ (M∩N )⊥.
IfM +̇N = H, denote by PM//N the oblique projection with rangeM and
nullspace N ; we write PM = PM//M⊥ .

Given a closed range operator A, A† denotes the Moore–Penrose inverse
of A, i.e. A† is the unique solution of the system

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

Given a closed subspace S of H, the projection PS induces a matrix
decomposition for each A ∈ L(H) as follows: if P = PS then A ∈ L(H) can
be written as

A =

(
a11 a12

a21 a22

)
,

where a11 = PAP |S ∈ L(S), a12 = PA(I − P )|S⊥ ∈ L(S⊥,S), a21 =
(I − P )AP |S ∈ L(S,S⊥) and a22 = (I − P )A(I − P )|S⊥ ∈ L(S⊥). If
A ∈ L(H)+, then

(1) A =

(
a b

b∗ c

)
with R(b) ⊆ R(a1/2) (see [1]). Throughout this work, we will use the matrix
representation of A given by (1).

Given A ∈ L(H)+, consider the following semi-inner product on H:
〈x, y〉A = 〈Ax, y〉, x, y ∈ H.

The associated seminorm is given by

‖x‖A = 〈x, x〉1/2A = ‖A1/2x‖, x ∈ H.
An operator C ∈ L(H) is called A-selfadjoint if 〈Cx, y〉A = 〈x,Cy〉A for all
x, y ∈ H, or equivalently AC = C∗A.

The following result, due to R. G. Douglas, characterizes the operator
range inclusion (see [13, Theorem 1] and [17, Theorem 2.1] for the proof).

Theorem 2.1 (Douglas). Consider Hilbert spaces H, K, G and operators
A ∈ L(H,G) and B ∈ L(K,G). The following conditions are equivalent:

(i) R(B) ⊆ R(A),
(ii) BB∗ ≤ λAA∗ for some λ > 0,
(iii) the equation AX = B has a solution in L(K,H).
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In this case, there exists a unique D ∈ L(K,H) such that AD = B and
R(D) ⊆ R(A∗); moreover, ‖D‖2 = inf{λ > 0 : BB∗ ≤ λAA∗} and N(D) =
N(B). This solution is called the reduced solution of AX = B.

3. Compatibility. Given A ∈ L(H)+ and a closed subspace S of H,
consider the set

P(A,S) = {Q ∈ Q : R(Q) = S, AQ = Q∗A}.
The pair (A,S) is called compatible if P(A,S) is not empty, or equivalently,
if there exists a projection Q ∈ Q with range S such that AQ = Q∗A.

The following proposition collects some results about compatibility that
can be found in [9, 12].

Proposition 3.1. Consider A ∈ L(H)+ with matrix form given by equa-
tion (1), and a closed subspace S of H.

(i) If the pair (A,S) is compatible, then S +N(A) is closed.
(ii) If A ∈ L(H)+ has closed range and S +N(A) is closed, then (A,S)

is compatible.
(iii) The pair (A,S) is compatible if and only if H = S +A(S)⊥.
(iv) The pair (A,S) is compatible if and only if R(b) ⊆ R(a).
As a consequence of Douglas’ theorem and item (iv) of the above propo-

sition, we obtain the following characterization of the set P(A,S) (see [8] for
details).

Corollary 3.2. If (A,S) is compatible, then

P(A,S) =
{(

1 x

0 0

)
: x ∈ L(S⊥,S) and ax = b

}
.

If the pair (A,S) is compatible, there is a distinguished element PA,S ∈
P(A,S), namely the unique projection onto S with kernel A(S)⊥	N , where
N = A(S)⊥ ∩ S = N(A) ∩ S. By [10, Proposition 4.1], PA,S = PA,S	N
+ PN and PA,S	N = PS	N//A(S)⊥ . Then the matrix decomposition of PA,S
induced by PS is given by

PA,S =

(
1 d

0 0

)
,

where d ∈ L(S⊥,S) is the reduced solution of ax = b.
It is easy to see that the pair (A,S) is compatible if and only if the pair

(A,S 	N ) is compatible.

4. Weighted projections. Along this work A is a positive bounded
operator, i.e. A ∈ L(H)+, and S is a closed subspace of H.
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The following definition is due to Mitra and Rao [21] for operators acting
on finite-dimensional Hilbert spaces.

Definition 4.1. An operator T ∈ L(H) is called an A-projection into S
if R(T ) ⊆ S and

(2) ‖y − Ty‖A ≤ ‖y − s‖A for all y ∈ H and all s ∈ S.
T is called an A-projection if T is an A-projection into R(T ).

An A-projection into S is also called an A-weighted least squares process
(see [6, 25]).

Remark 4.2. It is not difficult to see that inequality (2) alone does not
imply the boundedness of T . Indeed, if A has infinite-dimensional nullspace
then it is enought to consider T = T1PN(A)+PR(A)

, with T1 : N(A)→ N(A)

unbounded. Similarly, it can be proved that the range of an A-projection is
not necessarily closed.

Definition 4.3. The operator T ∈ L(H) is an A-idempotent if AT 2

= AT .

Observe that the definition of A-idempotent only depends on N(A) in
the sense that if A,B ∈ L(H) are such that N(A) = N(B) then T is A-
idempotent if and only if T is B-idempotent.

The next two propositions generalize some of the results in [21]. The
proofs for infinite-dimensional Hilbert spaces follow essentially the same
steps.

Proposition 4.4. Let T ∈ L(H). The following statements are equiva-
lent:

(i) T is an A-projection,
(ii) T ∗AT = AT ,
(iii) AT = T ∗A and AT 2 = AT ; or equivalently, T is A-selfadjoint and

also A-idempotent.

Proof. See [21, Lemmas 2.1 and 2.2].

Proposition 4.5. Consider T ∈ L(H) such that R(T ) ⊆ S. The follow-
ing conditions are equivalent:

(i) T is an A-projection into S,
(ii) AT = T ∗A and ATPS = APS ,
(iii) PSAT = PSA.

Proof. (i)⇒(ii): Let T be an A-projection into S. In particular T is an
A-projection. Then by Proposition 4.4, AT = T ∗A. On the other hand, for
each y ∈ H we have ‖y−Ty‖A = ‖A1/2y−A1/2Ty‖ ≤ ‖y−s‖A for all s ∈ S.
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In particular, if x ∈ H then ‖A1/2PSx − A1/2TPSx‖ ≤ ‖PSx − s‖A for all
s ∈ S. Therefore, A1/2PS = A1/2TPS , so that APS = ATPS .

(ii)⇒(iii): If AT = T ∗A and ATPS = APS then PSA = PST
∗A =

PSAT , so that PSA = PSAT .
(iii)⇒(i): Since PSAT = PSA, we see that T ∗APS = APS and so T ∗AT

= AT = T ∗A because R(T ) ⊆ S. Therefore, by Proposition 4.4, T is an
A-projection into R(T ), therefore ‖y − Ty‖A ≤ ‖y − Tx‖A for all x, y ∈ H.
It remains to prove that ‖y − Ty‖A ≤ ‖y − PSx‖A for all x, y ∈ H. Since
ATPS = APS , we have A1/2TPS = A1/2PS , so ‖y−Ty‖A ≤ ‖y−TPSx‖A =
‖y − PSx‖A for all x, y ∈ H.

Remark 4.6. By Propositions 4.4 and 4.5, given T ∈ L(H) such that
R(T ) ⊆ S we can see that T is an A-projection into S if and only if T is an
A-projection and ATPS = APS .

Lemma 4.7. If T ∈ L(H) is an A-idempotent (resp. A-projection) then
I − T is an A-idempotent (resp. A-projection).

Proof. If T ∈ L(H) is an A-idempotent, then A(I−T )2 = A(I−2T+T 2)
= A(I − T ), i.e. I − T is an A-idempotent. If T is an A-projection then, by
Proposition 4.4, T is A-idempotent and A-selfadjoint. Hence I − T is A-
idempotent and A(I − T ) = A − T ∗A = (I − T )∗A. Again by Proposition
4.4, I − T is an A-projection.

The following result characterizes A-projections in terms of oblique pro-
jections.

Lemma 4.8. Let T ∈ L(H). Then T is an A-projection if and only if
P
R(A)

T ∈ Q and it is A-selfadjoint.

Proof. Let T be an A-projection and denote P = P
R(A)

. By Proposi-
tion 4.4, we find that AT = T ∗A and AT = AT 2, hence (PT )2 = A†ATPT
= A†T ∗APT = A†T ∗AT = A†AT = PT and (PT )∗A = T ∗PA = T ∗A =
AT = APT . Conversely, if PT ∈ Q and it is A-selfadjoint then AT =
APT = (PT )∗A = T ∗A so that T is A-selfadjoint. Also, AT 2 = APT 2 =
(PT )∗AT = (PT )∗APT = A(PT )2 = APT = AT so that T is A-idem-
potent. By Proposition 4.4, T is an A-projection.

The next result shows that A-projections behave like orthogonal pro-
jections, under the seminorm induced by A, in the sense that for an A-
idempotent, the condition of being A-selfadjoint is equivalent to being an
A-contraction, or A-positive. For A-contractions see for example [5] and [26].

Proposition 4.9. Let T ∈ L(H) be an A-idempotent. Then the following
statements are equivalent:
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(i) T is A-selfadjoint (so that T is an A-projection),
(ii) R(I − T ) ⊆ R(AT )⊥,
(iii) T is an A-contraction, i.e. T ∗AT ≤ A.
Proof. (i)⇒(ii): Suppose that AT = T ∗A. Consider y ∈ R(I − T ) and

z ∈ H such that y = z − Tz. Then, for x ∈ H,
〈ATx, y〉 = 〈x,ATy〉 = 〈x,AT (z − Tz)〉 = 0,

because AT 2 = AT . Therefore, y ∈ R(AT )⊥.
(ii)⇒(iii): For x, y ∈ H,
〈ATx, y〉 = 〈ATx, Ty + (I − T )y〉 = 〈ATx, Ty〉 = 〈T ∗ATx, y〉

because R(I − T ) ⊆ R(AT )⊥. Therefore, AT = T ∗AT = T ∗A and T is
A-selfadjoint. Then T is an A-projection. Also, by Lemma 4.7, E = I − T
is an A-projection so that AE = AE2 = E∗AE ∈ L(H)+. Therefore, A =
A(T + E) = T ∗AT + E∗AE ≥ T ∗AT .

(iii)⇒(i): Since T ∗AT ≤ A, by Douglas’ theorem, the equation A1/2X =
T ∗A1/2 admits a solution. LetD be the reduced solution of A1/2X = T ∗A1/2,
i.e. D satisfies A1/2D = T ∗A1/2 and R(D) ⊆ R(A). Then observe that

A1/2D2 = (T ∗)2A1/2 = T ∗A1/2,

because T is an A-idempotent. Also, R(D2) ⊆ R(D) ⊆ R(A). Therefore
D2 is a reduced solution of A1/2X = T ∗A1/2 as well so that D2 = D by the
uniqueness of the reduced solution. On the other hand, by Douglas’ theorem,
‖D‖2 = inf{λ : T ∗AT ≤ λA} ≤ 1, because T ∗AT ≤ A. Since D2 = D and
‖D‖ ≤ 1, automatically D∗ = D, so that T ∗A = A1/2DA1/2 is selfadjoint,
i.e. T ∗A = AT .

Corollary 4.10. Let T ∈ L(H) be an A-idempotent. The following
statements are equivalent:

(i) T is an A-projection,
(ii) ‖T‖A = 1,
(iii) 〈Tx, x〉A ≥ 0 for all x ∈ H, i.e. T is A-positive.

Proof. (i)⇒(ii): Since A is an A-projection, by Proposition 4.9, we have
T ∗AT ≤ A. Then, for x ∈ H,

‖Tx‖2A = 〈ATx, Tx〉 = 〈T ∗ATx, x〉 ≤ 〈Ax, x〉 = ‖x‖2A,
so that ‖T‖A ≤ 1. Also,

‖T (Tx)‖A = ‖A1/2T 2x‖ = ‖A1/2Tx‖ = ‖Tx‖A,
because T is A-idempotent. Therefore ‖T‖A = 1.

(ii)⇒(iii): Consider T ∈ L(H) such that AT = AT 2 and ‖T‖A = 1.
Observe that

〈T ∗ATx, x〉 = 〈ATx, Tx〉 = ‖Tx‖2A ≤ ‖x‖2A = 〈Ax, x〉,
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so that T ∗AT ≤ A, and by Proposition 4.9, T is an A-projection. By Propo-
sition 4.4, it follows that AT = T ∗AT ∈ L(H)+.

(iii)⇒(i): Since AT ∈ L(H)+, we have AT = T ∗A. Also, T is A-idem-
potent so that, by Proposition 4.4, T is an A-projection.

In the following paragraphs we study conditions for the existence of A-
projections into S and we characterize the set of these projections.

Define

Π(A,S) = {T ∈ L(H) : T is an A-projection into S},
Π(A) = {T ∈ L(H) : T is an A-projection}.

By Proposition 4.5, it follows that

(3) Π(A,S) = {T ∈ L(H) : R(T ) ⊆ S, AT = T ∗A, ATPS = APS}
and

Π(A) = {T ∈ L(H) : AT = T ∗A, AT 2 = AT}.
In particular if A = I, then Π(I,S) = {PS} and Π(I) = P.

The next result gives a characterization of A-projections into S in terms
of the matrix decomposition induced by PS . Recall that A =

(
a b
b∗ c

)
is the

matrix representation of A, as in (1).

Proposition 4.11. Π(A,S) =
{
T ∈ L(H) : T =

( x y
0 0

)
, ax = a,

ay = b
}
.

Proof. By equation (3), T ∈ Π(A,S) if and only if R(T ) ⊆ S, T ∗A =
AT and ATPS = APS . Observe that R(T ) ⊆ S if and only if the matrix
representation of T induced by PS is T =

( x y
0 0

)
. In this case, AT = T ∗A

if and only if ax = x∗a, ay = x∗b and b∗y = y∗b. Also, ATPS = APS is
equivalent to ax = a and b∗x = b∗. Then T ∈ Π(A,S) if and only if

(4) ax = x∗a, ay = x∗b, b∗y = y∗b, ax = a, b∗x = b∗.

It is not difficult to see that (4) is equivalent to ax = a and ay = b.

Corollary 4.12. If the pair (A,S) is compatible, then

P(A,S) ⊆ Π(A,S).
Proof. This follows from Corollary 3.2 and Proposition 4.11.

Applying item (iii) of Proposition 4.5, we obtain the following

Corollary 4.13. Π(A,S) = {T ∈ L(H) : R(T ) ⊆ S and T is a solu-
tion of the equation PSAX = PSA}.

The next result shows the relationship between the compatibility of the
pair (A,S) and the existence of A-projections into S.

Proposition 4.14. The pair (A,S) is compatible if and only if there
exists an A-projection into S.
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Proof. By Proposition 4.11, the set Π(A,S) is not empty if and only if
the equation ay = b admits a solution (observe that ax = a always admits
a solution). By Douglas’ theorem this is equivalent to the condition R(b) ⊆
R(a), or equivalently by Proposition 3.1, the pair (A,S) is compatible.

Remark 4.15. By the above proposition, Π(A,S) 6= ∅ if and only if
P(A,S) 6= ∅.

Recall that N = S ∩A(S)⊥ = S ∩N(A).

Proposition 4.16. Let T ∈ L(H) with R(T ) ⊆ S. Then T is an A-
projection into S if and only if (A,S) is compatible and PS	NT = PA,S	N .

Proof. Suppose T is an A-projection into S. Let Q = PS	NT . Then
R(Q) ⊆ S and AT = AQ. Since T is an A-projection, AQ = AT = T ∗A =
Q∗A, so Q is A-selfadjoint. Moreover AQPS = ATPS = APS , hence Q
is an A-projection into S. Therefore AQ2 = AQ so that R(Q2 − Q) ⊆
N(A)∩ (S 	N ) = N ∩N⊥ = {0}, or equivalently Q2 = Q. Moreover, from
AQPS = APS and AQ = Q∗A it follows that AQPS	N = Q∗APS	N =
Q∗APS = AQPS = APS = APS	N . Therefore A(QPS	N − PS	N ) = 0.
Also R(QPS	N − PS	N ) ⊆ S 	 N . Hence R(QPS	N − PS	N ) ⊆ N(A) ∩
(S	N ) = {0}, so that QPS	N = PS	N and then S	N ⊆ R(Q). Therefore
R(Q) = S	N . Since AQ = Q∗A, Q2 = Q and R(Q) = S	N , it follows that
Q = PA,S	N . Then (A,S 	 N ) is compatible, so that (A,S) is compatible
(see Section 3).

Conversely, if (A,S) is compatible and PS	NT = PA,S	N , then T =
PA,S	N + PNT , so that AT = T ∗A and ATPS = APA,S	NPS = APS	N =
APS . Then T is an A-projection into S.

The following result shows that Π(A,S) is an affine manifold.

Proposition 4.17. If the pair (A,S) is compatible, then

Π(A,S) = PA,S + L(H,N ).

Proof. Let T ∈ Π(A,S). Then by Proposition 4.16, it follows that T =
PA,S	N + PNT = PA,S + PN (T − I) ∈ PA,S + L(H,N ) (see Section 3).

Conversely, if T = PA,S+W withW ∈ L(H,N ), then PS	NT = PA,S	N .
By Proposition 4.16, T is an A-projection into S.

Remark 4.18. Given T ∈ Π(A,S), observe that AT = APA,S since
N ⊆ N(A). Hence A(R(T )) = R(AT ) = A(S).

A natural question is whether P(A,S) equals Π(A,S). We prove now
that this happens if and only if P(A,S) and/or Π(A,S) has cardinal 1.

Theorem 4.19. Suppose that the pair (A,S) is compatible. Then the
following statements are equivalent:
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(i) P(A,S) = Π(A,S),
(ii) N = {0},
(iii) card(Π(A,S)) = 1,
(iv) card(P(A,S)) = 1.

Proof. (i)⇒(ii): Suppose N 6= {0} and consider T = PA,S + PN . Then,
by the previous theorem, T ∈ Π(A,S). But it is not difficult to see that
T 2 6= T , whence T /∈ P(A,S).

(ii)⇒(iii): If N = {0}, by the previous theorem Π(A,S) = {PA,S}.
(iii)⇒(iv): Apply Corollary 4.12 and Remark 4.15.
(iv)⇒(i): If card(P(A,S)) = 1, then by [8, Theorem 3.5], N = {0} and

P(A,S) = {PA,S}. Hence, by the previous result, Π(A,S) = {PA,S} =
P(A,S).

Corollary 4.20. If A is invertible, then Π(A,S) = P(A,S) = {PA,S}.
Remark 4.21. Under the hypothesis of the above corollary, PA,S can be

computed as
PA,S = A−1/2P

A1/2(S)A
1/2

(see [29, Section 3] or, more generally, [11, Proposition 3.3]).
Some minimality properties of PA,S with respect to P(A,S) are proved

in [8, Theorem 3.5] and [9, Theorem 3.2]. The next result extends these
properties to the set Π(A,S).

Proposition 4.22. Suppose that the pair (A,S) is compatible. Then
(i) ‖PA,S‖ = min{‖T‖ : T ∈ Π(A,S)}.
(ii) ‖(I − PA,S)x‖ ≤ ‖(I − T )x‖ for all x ∈ H and every T ∈ Π(A,S).
Proof. (i) Consider T ∈ Π(A,S). Then, by Proposition 4.16, T =

PA,S	N +W for some W ∈ L(H,N ). So
‖Tx‖2 = ‖PA,S	Nx‖2 + ‖Wx‖2 ≥ ‖PA,S	Nx‖2 for all x ∈ H.

Therefore, ‖T‖ ≥ ‖PA,S	N ‖. Finally, observe that
‖PA,S‖2 = ‖PA,S(PA,S)∗‖ = ‖PN + PA,S	N (PA,S	N )

∗‖
= max{‖PN ‖, ‖PA,S	N ‖} = ‖PA,S	N ‖2,

because PA,S = PA,S	N + PN , PA,S	NPN = 0 = PN (PA,S	N )
∗ and

PNPA,S	N = 0 = (PA,S	N )
∗PN .

(ii) Consider T ∈ Π(A,S). By Proposition 4.17, T = PA,S +W for some
W ∈ L(H,N ). Observe that
‖(I − T )x‖2 = ‖(I − PA,S)x‖2 + ‖Wx‖2 ≤ ‖(I − PA,S)x‖2 for all x ∈ H,
because R(I − PA,S) = N(PA,S) = A(S)⊥ 	N ⊆ N⊥.

As an application, we characterize the abstract splines in terms of weighted
projections. The theory of abstract splines is due to Atteia [3]. The reader
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is referred to [10] for some relationships between the notion of compatibility
and abstract splines in Hilbert spaces.

Given C ∈ L(H), a closed subspace S of H and x ∈ H, an abstract spline
or a (C,S)-spline interpolant to x is any element of the set

sp(C,S, x) =
{
y ∈ x+ S : ‖Cy‖ = min

s∈S
‖C(x+ s)‖

}
.

If A = C∗C ∈ L(H)+, observe that ‖y‖A = ‖Cy‖ for y ∈ H. Then
sp(C,S, x) = {y ∈ x+ S : ‖y‖A = dA(x,S)},

where dA(x,S) = infs∈S ‖x+ s‖A.
The next proposition contains some results on splines, the proofs can be

found in [10].

Proposition 4.23. Given C ∈ L(H), set A = C∗C. Then

(i) sp(C,S, x) = (x+ S) ∩A(S)⊥ for x ∈ H.
(ii) sp(C,S, x) 6= 0 for every x ∈ H if and only if the pair (A,S) is

compatible.
(iii) If (A,S) is compatible and x ∈ H\S, then sp(C,S, x) = {(I−Q)x :

Q ∈ P(A,S)}.

Proposition 4.24. Consider C ∈ L(H) and suppose that (A,S) is com-
patible, where A = C∗C. For every nonzero x ∈ H,

sp(C,S, x) = {(I − T )x : T ∈ Π(A,S)}.

Proof. Consider y ∈ sp(C,S, x). By Proposition 4.23(i) there exists s ∈ S
such that x = s+y and y = x− s ∈ A(S)⊥. We are looking for T ∈ Π(A,S)
such that (I−T )x = y, or equivalently Tx = s. Note that y1 = (I−PA,S)x ∈
N(PA,S) ⊆ A(S)⊥. Then

y1 − y = (I − PA,S)x− (x− s) = s− PA,Sx ∈ S ∩A(S)⊥ = N .
Therefore, since x 6= 0, we can consider W ∈ L(H,N ) sucht that Wx =
s − PA,Sx. By Proposition 4.17 it follows that T = PA,S +W ∈ Π(A,S);
moreover Tx = s.

Conversely, let T ∈ Π(A,S). Then (I−T )x ∈ (x+S)∩R(I−T ). But, by
Proposition 4.9 and Remark 4.18, R(I − T ) ⊆ R(AT )⊥ = A(S)⊥. Therefore

(I − T )x ∈ (x+ S) ∩A(S)⊥ = sp(C,S, x),
by the above proposition.

Observe that, by Proposition 4.23(i), sp(C,S, 0) = N .

5. Weighted inverses. Throughout this section, A ∈ L(H)+ and B ∈
L(H) is a closed range operator.
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Definition 5.1. Given y ∈ H, x0 ∈ H is an A-least squares solution or
an A-LSS of Bx = y if

(5) ‖y −Bx0‖A ≤ ‖y −Bx‖A, x ∈ H.
Remark 5.2. Given y ∈ H, an element x0 satisfies (5) if and only if

‖A1/2(y − Bx0)‖ ≤ ‖A1/2(y − Bx)‖ = ‖A1/2(y − Bx0) + A1/2B(x0 − x)‖
for all x ∈ H, or equivalently 〈A1/2y − A1/2Bx0, A

1/2Bz〉 = 0 for all z ∈ H
(recall that given a, b ∈ H, we have ‖a‖ ≤ ‖a+ tb‖ for all t ∈ C if and only if
〈a, b〉 = 0). Then x0 is an A-LSS of Bx = y if and only if x0 is a solution of

(6) B∗ABx = B∗Ay.

Equation (6) is the normal equation associated to (5).

The next two results generalize [7, Proposition 4.4] and [7, Lemma 4.6].

Proposition 5.3. Suppose (A,R(B)) is compatible and consider y ∈ H,
y 6= 0. Then u ∈ H is an A-LSS of Bx = y if and only if there exists
T ∈ Π(A,R(B)) such that Bu = Ty.

Proof. Observe that u ∈ H is an A-LSS of Bx = y if and only if
‖Bu− y‖A = infσ∈R(B) ‖σ + y‖A, or y −Bu ∈ sp(A1/2, R(B), y); or equiva-
lently, by Proposition 4.24, Bu = Ty for some T ∈ Π(A,R(B)).

Corollary 5.4. Let (A,N(B)) be compatible and consider x0∈N(B)⊥,
x0 6= 0 and u ∈ x0+N(B). Then ‖u‖A ≤ ‖x‖A for all x ∈ x0+N(B) if and
only if there exists T ∈ Π(A,N(B)) such that u = (I − T )x0.

Proof. Since x0 ∈ N(B)⊥ and u ∈ x0+N(B), we have u = x0+PN(B)u.
Consider T ∈ Π(A,N(B)) such that u = (I−T )x0, so that PN(B)u = −Tx0.
Since x0 6= 0, by the previous proposition u is an A-LSS of PN(B)x = −x0;
hence ‖PN(B)u + x0‖A ≤ ‖PN(B)x + x0‖A for all x ∈ H, or equivalently
‖u‖A ≤ ‖x‖A for all x ∈ x0 + N(B). The converse follows by [7, Lemma
4.6].

The following concept was introduced by Rao and Mitra [24] for finite-
dimensional spaces.

Definition 5.5. An operator G ∈ L(H) is called an A-inverse of B if
for each y ∈ H, Gy is an A-LSS of Bx = y, i.e.

‖y −BGy‖A ≤ ‖y −Bx‖A, x ∈ H.
Remark 5.6. If G is an A-inverse of B then R(G) is not necessar-

ily closed. In fact, if A has infinite-dimensional nullspace, consider G1 ∈
L(N(A)) such that R(G1) is not closed. It is easy to see that G = G1PN(A)+
PN(A)⊥ is an A-inverse of I.

The following result gives a necessary and sufficient condition for an
operator B with closed range to admit an A-inverse.
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Proposition 5.7. The operator B admits an A-inverse if and only if
(A,R(B)) is compatible.

Proof. Let G ∈ L(H) be an A-inverse of B and consider T = BG. Then
R(T ) ⊆ R(B) and ‖y − Ty‖A = ‖y − BGy‖A ≤ ‖y − Bx‖A for all x ∈ H,
so that T is an A-projection into R(B). Then (A,R(B)) is compatible by
Proposition 4.14.

Conversely, if (A,R(B)) is compatible, using again Proposition 4.14, let
T be an A-projection into R(B). Since R(T ) ⊆ R(B), by Douglas’ theorem
there exists G ∈ L(H) such that T = BG. Therefore,

‖y −BGy‖A = ‖y − Ty‖A ≤ ‖y −Bx‖A for x ∈ H,
so that G is an A-inverse of B.

Remark 5.8. It follows from the above proof that, if G is an A-inverse
of B then T = BG is an A-projection into R(B). Conversely, given T an
A-projection into R(B), the solutions of BX = T are A-inverses of B.

The next result gives necessary and sufficient conditions for an operator
G ∈ L(H) to be an A-inverse of B.

Proposition 5.9. An operator G ∈ L(H) is an A-inverse of B if and
only if B∗ABG = B∗A.

Proof. Let G ∈ L(H) be an A-inverse of B. By Remark 5.8, T = BG
is an A-projection into R(B). Hence, by Proposition 4.5, it follows that
PR(B)AT = PR(B)A so that B∗ABG = B∗A.

Conversely, consider T = BG; then B∗AT = B∗A, or equivalently,
PR(B)AT = PR(B)A. Therefore, by Proposition 4.5, T = BG is an A-
projection into R(B). Finally, by Remark 5.8, G is an A-inverse of B.

Corollary 5.10. If (A,R(B)) is compatible, then the set of A-inverses
of B is

(B∗AB)†B∗A+ L(H, N(B∗AB)).

5.1. Restricted weighted inverses. Throughout this section,M is a
closed subspace of H such that B(M) is closed, or equivalently, since B has
closed range,M+N(B) is a closed subspace of H.

Definition 5.11. An operator G ∈ L(H) is called an A-inverse of B
restricted toM if R(G) ⊆M and for each y ∈ H,

‖y −BGy‖A ≤ ‖y −Bx‖A, ∀x ∈M.

The concept of A-inverses restricted to M was introduced by Rao and
Mitra [24] for finite-dimensional spaces.

In what follows we show that the existence of an A-inverse of B restricted
toM is equivalent to the compatibility of the pair (A,B(M)).
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Lemma 5.12. An operator G ∈ L(H) is an A-inverse of B restricted to
M if and only if R(G) ⊆M and G is an A-inverse of BPM.

Proof. Straightforward.

Remark 5.13. By the previous lemma and Proposition 5.9 applied to
BPM, we know that G is an A-inverse of B restricted to M if and only if
R(G) ⊆M and PM(B∗ABG−B∗A) = 0.

Proposition 5.14. Suppose (A,B(M)) is compatible and consider T ∈
Π(A,B(M)). Then the reduced solution of

BPMX = T

is an A-inverse of B restricted toM.

Proof. Let G0 be the reduced solution of BPMX = T . Then R(G0) ⊆
N(BPM)⊥. By Remark 5.8, G0 is an A-inverse of BPM. Since N(BPM) =
(M∩ N(B)) ⊕M⊥, we see that R(G0) ⊆ M. Therefore, by Lemma 5.12,
G0 is an A-inverse of B restricted toM.

Corollary 5.15. The operator B admits an A-inverse restricted toM
if and only if (A,B(M)) is compatible.

Proof. If G is an A-inverse of B restricted toM, then by Remark 5.12,
G is an A-inverse of BPM, so that (A,B(M)) is compatible (see Proposition
5.7). The converse follows by Proposition 5.14.

5.2. A1A2-inverses and weak weighted inverses. Throughout this
section, B ∈ L(H) is a closed range operator and A1, A2 ∈ L(H)+.

Definition 5.16. An operator G ∈ L(H) is called an A1A2-inverse of B
ifG is an A1-inverse of B and, for each y ∈ H,Gy has minimum A2-seminorm
among the A1-LSS of Bx = y.

In [21, 24],A1A2-inverses are called minimum seminorm semileast squares
inverses in the context of finite-dimensional spaces.

The next two results are proved in [21], for finite-dimensional Hilbert
spaces. Our proofs, which follow the same ideas, are included for the sake of
completeness.

Proposition 5.17. An operator G ∈ L(H) is an A1A2-inverse of B if
and only if

(i) B∗A1BG = B∗A1,
(ii) R(A2G) ⊆ N(A1B)⊥.

Proof. By Proposition 5.9, G is an A1-inverse of B if and only if B∗A1BG
= B∗A1. Let G be an A1-inverse of B. It remains to prove that Gy has
minimum A2-seminorm among the A1-LSS of Bx = y for each y ∈ H if and
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only if R(A2G) ⊆ R(B∗A
1/2
1 ). Observe that given y ∈ H, by Remark 5.2,

any A1-LSS of Bx = y can be written as

x0 = x̃+ PN(B∗A1B)z,

where x̃ = Gy is a solution of (6) (i.e. B∗A1Bx̃ = B∗A1y) and z ∈ H. Then

‖Gy‖A2 ≤ ‖Gy + PN(B∗A1B)z‖A2 for all z ∈ H

if and only if

‖A1/2
2 Gy‖ ≤ ‖A1/2

2 Gy +A
1/2
2 PN(B∗A1B)z‖ for all z ∈ H,

or equivalently 〈A2Gy, PN(B∗A1B)z〉 = 0 for all z ∈ H, or PN(B∗A1B)A2G =
0. Therefore, G is an A1A2-inverse of B if and only if B∗A1BG = B∗A1 and
R(A2G) ⊆ N(B∗A1B)⊥ = N(A1B)⊥.

Proposition 5.18. If G is an A1A2-inverse of B, then

(i) A1BGB = A1B, A1BG = (BG)∗A1,
(ii) A2GBG = A2G, A2GB = (GB)∗A2.

Proof. If G is an A1A2-inverse of B then G is an A1-inverse of B. There-
fore, by Proposition 5.9, B∗A1BG = B∗A1, hence A1BG = (BG)∗A1BG
≥ 0, so that BG is A1-selfadjoint. Also, A1B = (BG)∗A1B = A1BGB
and (i) holds. To prove (ii) observe that R(I − GB) ⊆ N(B∗A1B) because
B∗A1BGB = B∗A1B. Therefore for each y ∈ H, by Remark 5.2, it follows
that

x = Gy + (I −GB)z, z ∈ H,

is a solution of the normal equation (6) and then it is an A1-LSS of Bx = y.
Since G is an A1A2-inverse of B, we have ‖Gy‖A2 ≤ ‖Gy + (I − GB)z‖A2

for all z ∈ H, or equivalently ‖A1/2
2 Gy‖ ≤ ‖A1/2

2 Gy+A
1/2
2 (I−GB)z‖ for all

z ∈ H, hence 〈A2Gy, (I −GB)z〉 = 0 for all z ∈ H, or G∗A2(I −GB) = 0.
Finally, in the same way as we did in (i), G∗A2 = G∗A2GB implies (ii)
(actually, both conditions are equivalent).

Corollary 5.19. Suppose the pairs (A1, R(B)) and (A2, N(A1B)) are
compatible. Then

G = (I − T2)B†T1
is an A1A2-inverse of B for every T1 ∈ Π(A1, R(B)) and for every T2 ∈
Π(A2, N(A1B)).

Proof. For G as in the statement, we have

A1BGB = A1BB
†T1B −A1BT2B

†T1B = A1T1B = A1B,

because R(T1) ⊆ R(B), R(T2) ⊆ N(A1B) and A1T1PR(B) = A1PR(B). Also,
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observe that
(BG)∗A1 = (BB†T1 −BT2B†T1)∗A1 = T ∗1A1 − (A1BT2B

†T1)
∗

= A1T1 = A1BG.

Finally, by Proposition 4.9 and Remark 4.18,
R(A2G) ⊆ A2R(I − T2) ⊆ A2[R(A2T2)

⊥] = A2[(A2N(A1B))⊥]

= A2[A
−1
2 (N(A1B)⊥)] ⊆ N(A1B)⊥.

Therefore, Proposition 5.17 implies that G is an A1A2-inverse of B.

Proposition 5.20. The operator B admits an A1A2-inverse if and only
if the pairs (A1, R(B)) and (A2, N(A1B)) are compatible.

Proof. Suppose B admits an A1A2-inverse. Then, by Proposition 5.7,
the pair (A1R(B)) is compatible. The pair (A2, N(A1B)) turns out to be
compatible by [18, Proposition 3.9]. The converse follows by the previous
result.

Definition 5.21. An operator G ∈ L(H) is called a weak A1A2-inverse
of B if

(7)
{
A1BGB = A1B, A1BG = (BG)∗A1,
A2GBG = A2G, A2GB = (GB)∗A2.

If A1 = A2 = I and G is a weak A1A2-inverse of B, then G = B†.
Observe that if G ∈ L(H) is an A1A2-inverse of B then, by Proposition

5.18, G is a weak A1A2-inverse of B.

Remark 5.22. Observe that (7) is equivalent to B∗A1BG = B∗A1 and
G∗A2GB = G∗A2.

Lemma 5.23. An operator G ∈ L(H) is a weak A1A2-inverse of B if and
only if G is an A1-inverse of B and B is an A2-inverse of G.

Proof. Apply Remark 5.22 and Proposition 5.9.

In [7], the authors defined a weighted generalized inverse of B to be any
operator C ∈ L(H) such that

(8) BCB = B, CBC = C, A1BC = (BC)∗A1, A2CB = (CB)∗A2.

In [7, Theorem 3.1], it is proved that the pairs (A1, R(B)) and (A2, N(B)) are
compatible if and only if B admits a weighted generalized inverse. Observe
that in this case, C is a weak A1A2-inverse of B.

Also, C is a weighted generalized inverse of B if and only if BC ∈
P(A,R(B)) and I − CB ∈ P(A,N(B)). In order to generalize this, we now
consider the solutions of the system

(9)
{
BG ∈ Π(A1, R(B)),

I −GB ∈ Π(A2, N(B)).
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Proposition 5.24. An operator G ∈ L(H) is a solution of (9) if and
only if

(10) BGB = B, A1BG = (BG)∗A1, A2GB = (GB)∗A2.

Proof. Note that G is a solution of (9) if and only if A1BG = (BG)∗A1,
A1BGPR(B) = A1PR(B), R(I −GB) ⊆ N(B), A2(I −GB) = (I −GB)∗A2

and A2(I−GB)PN(B)=A2PN(B). Equivalently, A1BG=(BG)∗A1, A1BGB
= A1B, B(I − GB) = 0, A2GB = (GB)∗A2, or BGB = B, A1BG =
(BG)∗A1 and A2GB = (GB)∗A2.

Corollary 5.25. The following statements are equivalent:

(i) system (9) admits a solution,
(ii) the pairs (A1, R(B)) and (A2, N(B)) are compatible,
(iii) B admits a weighted generalized inverse.

Proof. (i)⇒(ii) is straightforward; (ii)⇒(iii) follows by [7, Theorem 3.1];
and (iii)⇒(i) is a consequence of the previous proposition.

By Proposition 5.24 and Corollary 5.25 it follows that (8) has a solution
if and only if (10) has a solution.
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