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Abstract In this work we present a thermomechanical multiscale constitutive model for
materials with microstructure. In these materials thermal effects at microscale have an im-
pact on the effective macroscopic stress. As a result, it turns out that the homogenized stress
depends upon the macroscopic temperature and its gradient. In order to allow this inter-
play to be thermodynamically valid, we resort to a macroscopic extended thermodynamics
whose elements are derived from the microscopic behavior using homogenization concepts.
Hence, the thermodynamics implications of this new class of multiscale models are dis-
cussed. A variational approach based on the Hill–Mandel Principle of Macro-homogeneity,
and which makes use of the volume averaging concept over a local representative volume el-
ement (RVE), is employed to derive the thermal and mechanical equilibrium problems at the
RVE level and the corresponding homogenization expressions for the effective heat flux and
stress. The material behavior at the RVE level is described through standard phenomeno-
logical constitutive models. To sum up, the novel contribution of the model presented here
is that it allows to include the microscopic temperature fluctuation field, obtained from the
multiscale thermal analysis, in the micro-mechanical problem at the RVE level while keep-
ing thermodynamic consistency.
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1 Introduction

The constitutive modeling of solids based on multiscale theories has become the subject of
intensive research in applied and computational mechanical sciences. The growing interest
in constitutive modeling by multiscale techniques has two important motivations, the first is
the current need for more accurate constitutive models, and the second is related to the limit
of the descriptive/predictive capability of conventional phenomenological continuum mod-
els. One important example of these facts is the mathematical modeling of biological tissue.
The typical microstructure of biological material can be extremely elaborated, resulting in a
macroscopic constitutive response of difficult representation by means of conventional phe-
nomenological constitutive models [5, 35]. Often, the modeling of such phenomena through
a single—macroscopic—scale approach results in important discrepancies between the pre-
dicted and observed constitutive responses.

Classical multiscale models have been derived from the analysis of partial differential
equations [1, 33]. These models are based on the construction of the solution of the system
of PDEs by means of an asymptotic expansion in terms of a small parameter ε, which is the
ratio between the characteristic lengths of both scales. Then, the problems associated to each
power of ε of this expansion are derived. Each one of these problems are referred to a scale
of the multiscale formulation. The key of the method relies in the proof of the convergence
of the asymptotic expansion when the system of PDEs at the different scales is identified.
Particularly, the thermomechanical multiscale problem has been studied using this classical
approach in [7, 11, 12, 34]. In these works it is shown that the mechanical problem at the
microscopic scale depends exclusively on the macroscopic strain and on the macroscopic
temperature field. This means that the fluctuations of the microscopic temperature field,
which are obtained after solving the thermal problem at the RVE level, do not have effect
neither in the problem for the microscopic mechanical problem nor in the obtained effective
stress. This is a consequence of the specific technique—asymptotic analysis—used in the
derivation of this class of multiscale models. Thus, the scales-separation concept has been
employed as an argument in the derivation of variational multiscale techniques that proposed
thermomechanical constitutive models in order to disregard the effect of the microscopic
temperature fluctuations in the micro-mechanical problem. For instance, in [7, 36, 37], the
homogenized thermal expansion tensor depends on the solution of a micro-mechanical prob-
lem which is, in turn, related to the macroscopic strain and just to the macroscopic temper-
ature.

On the other hand, in thermomechanical problems, materials with inner structure pose
the difficulty of accommodating the complex interplay between mechanical and thermal
microstructural phenomena within the same framework. To address this problem, several
approaches have been proposed: from micromorphic materials with thermal effects [3, 15,
23, 28, 29, 31, 32] to second-grade continua [4, 8–10] and models based on extended ther-
modynamics [17, 24, 25] as well as other alternatives accounting for microstructure features
at the macroscale [30]. In all these approaches, constitutive models are able to account for
the effects of temperature gradients in the stress state. This is possible since the thermody-
namics is somehow consistently generalized to take into account this dependence. Using a
different approach, the effect of microtemperatures in the two-dimensional plane thermoe-
lasticity problem has been recently addressed in [2].

In the context of constitutive multiscale analysis, as stated in [36], the fact of sticking
to the classical thermodynamics at the macroscale has strong consequences in the way in
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which thermal effects can be accounted for in a micro-mechanical equilibrium problem. As
an example of this fact, we refer to the problem of the microscopic thermal fluctuation in
a multiscale thermal analysis. According to [36] (see also [26, 38]), the thermomechani-
cal problem at the microscale cannot incorporate the thermal fluctuations obtained from a
multiscale thermal analysis. Therefore, the mean value of the macroscopic temperature is
exclusively responsible for introducing the thermal contribution in the microscopic mechan-
ical problem. Hence, the classical thermodynamics still holds at the macroscopic problem
and all the classical constitutive dependencies of free energy, heat flux and stress state upon
temperature, temperature gradient and strain are valid.

The contribution of this work is the development of a multiscale variational framework
that permits to incorporate the microscopic thermal fluctuations in the micro-mechanical
analysis. As a consequence, this yields a dependence of the macroscopic stress state upon the
macroscopic temperature gradient. We assume that the classical thermodynamics holds at
the microscale (classical Clausius–Duhem inequality), from which classical thermomechan-
ical constitutive models are proposed at the RVE level. The present model is then formulated
using just two basic concepts: (i) homogenization (volume averaging) of microscopic tem-
perature, microscopic temperature gradient and microscopic strain; and (ii) the Hill–Mandel
Principle of Macro-homogeneity (multiscale virtual power balance). Then, the thermome-
chanical coupling between the micro-strain and micro-temperature fields naturally leads
to a dependence of the macroscopic stress upon the three macroscopic quantities: strain,
temperature and temperature gradient. Since this functional dependence with respect to the
temperature gradient is not allowed in the classical thermodynamics setting, an extended
macroscopic thermodynamics is mandatory to accommodate this more complex material
behavior (non-classical Clausius–Duhem inequality). Therefore, definitions of the macro-
scopic internal energy, entropy and entropy vector are introduced, following [24]. Notice
that material modeling considered this way leads to a sort of second grade continua which
accounts for temperature gradient effects on the macroscopic stress state. In the present
model the temperature fluctuations considered in the micro-thermal problem are the same
temperature fluctuations considered in the micro-mechanical problem. In this sense, the mi-
croscopic temperature field is unique within the entire analysis. This is different from [36],
where the authors resort to the argument of scales separation in order to neglect the temper-
ature fluctuations in the micro-mechanical problem.

The paper is organized as follows: in Sect. 2 we introduce some preliminary concepts
in the multiscale analysis. Section 3 recalls the formulation of the macroscopic thermome-
chanical problem. The multiscale thermal analysis is introduced in Sect. 4. The constitutive
multiscale framework for the thermomechanical analysis is presented in Sect. 5. In Sect. 6
we present the extended macroscopic thermodynamics derived from the developed multi-
scale model. Finally, some concluding remarks are outlined in Sect. 7.

2 Preliminaries in the Multiscale Analysis

As stated in the Introduction Section we follow a purely variational approach to derive
the thermomechanical constitutive multiscale model. The Hill–Mandel Macro-homogeneity
principle is the underlying variational principle that provides the multiscale virtual power
balance. This variational problem is closed by providing kinematical restrictions which are
derived from the concept of volume averaging in the Representative Volume Element (RVE)
[18]. See Sect. 4 for the constitutive thermal analysis and Sect. 5 for the constitutive mechan-
ical analysis. This constitutive modeling approach follows closely the strategy presented in
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Fig. 1 Macroscopic continuum
with a locally attached
microstructure featuring thermal
and mechanical effects

[13, 20, 21], whose variational structure is described in detail in [6, 27]. In this context,
the main concept is the assumption that any point x of the macroscopic continuum (refer to
Fig. 1) is associated to a local RVE, with domain Ωμ and boundary ∂Ωμ, which has a char-
acteristic length Lμ, much smaller than the characteristic length L of the macro-continuum
domain, Ω ⊂ R

n for n = 2 or 3. For simplicity, we consider that the RVE domain con-
sists of a matrix Ωm

μ , containing inclusions of different materials occupying a domain Ωi
μ

(see Fig. 1), but the formulation is completely analogous to the one presented here if the
RVE contains voids instead. Hereafter, symbols (·)μ denote quantities associated to the mi-
croscale.

In order to not obscure the underlying concepts, in the next two sections we work with the
mechanical multiscale model under the hypothesis of infinitesimal strains. Also, the classical
thermomechanical analysis is considered, recalling that this entails a one-way coupling, i.e.,
the temperature has an effect on the stress state, but strain rates do not affect the thermal
state of the body.

As in any thermomechanical problem, the primal variables that define the thermodynami-
cal state of the body at the macroscopic scale are the temperature θ , the temperature gradient
g = ∇θ , and the strain tensor ε. Therefore, proper homogenization formulas for these three
quantities are mandatory for the well-posedness of the problem. The idea of the variational
formulation presented in the following sections lies on top of this fundamental concept. As
an outcome, the dual thermodynamical variables will be the heat flux q and the stress tensor
σ , as shown in the corresponding sections.

Since it will be clear from the context, in what follows we will not differentiate between
the gradient with respect to macroscopic coordinates x and the gradient with respect to
microscopic coordinates y. Both will be simply denoted by the symbol ∇ .

3 Macroscopic Thermomechanical Problem

At the macroscale, we consider the thermomechanical analysis in the steady state setting.
Therefore, the problem entails obtaining the temperature and displacement fields over Ω .
The thermomechanical equilibrium problem is formulated in a variational context. The first
step consists of introducing the affine spaces of kinematically admissible temperature and
displacement fields at the macroscale. These sets are, respectively,

Θ := {
θ ∈ H 1(Ω) : + essential thermal b.c.

}
,

U := {
u ∈ H1(Ω) : + essential mechanical b.c.

}
.

(1)
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Therefore, the spaces of admissible temperature and displacement variations are defined,
respectively, as

Θ̂ := {
θ ∈ H 1(Ω) : + homogeneous essential thermal b.c.

}
,

̂U := {
u ∈ H1(Ω) : + homogeneous essential mechanical b.c.

}
.

(2)

Hence, the macroscopic thermal variational problem reads: given the thermal source f and
proper natural thermal boundary conditions, find θ ∈ Θ such that the heat flux q is such that

∫

Ω

q · ∇ θ̂ dV =
∫

Ω

f θ̂ dV + natural thermal b.c., ∀θ̂ ∈ Θ̂. (3)

In the same manner, the macroscopic mechanical variational problem is: given the tempera-
ture field θ satisfying (3), the loading f and proper natural mechanical boundary conditions,
find u ∈ U such that the stress state σ is such that

∫

Ω

σ · ∇s ûdV =
∫

Ω

f · ûdV + natural mechanical b.c., ∀û ∈ ̂U . (4)

Variational problems (3) and (4) are closed once the functional dependencies of the heat
flux q and the stress state σ are given in terms of the macroscopic temperature field θ ,
macroscopic temperature gradient g, and of the macroscopic strain field ε. These functional
dependencies will be obtained exploiting the multiscale analysis in the following sections.
Specifically, an effective heat flux will be obtained from the thermal multiscale analysis (see
Sect. 4) and an effective stress will be computed from the mechanical multiscale analysis
with thermal effects (see Sect. 5).

4 Multiscale Thermal Analysis

In order to make the work self-contained, and to work with a unified notation, in this section
we present the basic ideas behind the multiscale thermal problem.

4.1 Kinematical Admissibility

In the context of the previous section we consider that at any arbitrary point x ∈ Ω , the
macroscopic temperature gradient g is the volume average of the microscopic temperature
gradient ∇θμ:

g = 1

Vμ

∫

Ωμ

∇θμ dV, (5)

where θμ denotes the microscopic absolute temperature field and Vμ is the total volume of
the RVE. As stated before, since we are in a thermomechanics setting in which the tem-
perature itself has a physical relevance for the mechanical problem, we also consider the
following homogenization formula for the temperature

θ = 1

Vμ

∫

Ωμ

θμ dV . (6)
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By making use of Green’s theorem, we can promptly establish that the averaging relation
(5) is equivalent to the following constraint on the temperature field of the RVE:

∫

∂Ωμ

θμndS = Vμg, (7)

where n is the unit outward vector to ∂Ωμ.
Now, without loss of generality, the microscopic temperature field θμ can be split into a

sum of the macroscopic temperature field θ , the contribution of the macroscopic temperature
gradient field g, and a microscopic temperature fluctuation field, θ̃μ(y)

θμ(y) = θ + g · (y − yo) + θ̃μ(y), (8)

where yo is

yo = 1

Vμ

∫

Ωμ

ydV . (9)

Introducing the above splitting in (6) we obtain the following constraint for the micro-
scopic temperature fluctuation field:

∫

Ωμ

θ̃μ dV = 0. (10)

In view of the splitting (8), and taking into account constraints (5) and (6) we define the
minimally constrained space of admissible microscopic temperature fluctuation fields at the
RVE

Θμ :=
{
θμ ∈ H 1(Ωμ) :

∫

Ωμ

θμ dV = 0,

∫

∂Ωμ

θμndS = 0
}
. (11)

Therefore, the resulting space of admissible variations of the microscopic temperature
field at the RVE is also Θμ.

Remark 1 Note that other multiscale models could be obtained by considering any other
space of admissible functions, say ΘX

μ . It is just necessary that ΘX
μ ⊂ Θμ. An instance of

an alternative is the classical model with periodic boundary conditions. For a more detailed
description on this topic, we refer the reader to [6, 27].

Taking the gradient with respect to the microscopic coordinates y in (8), yields the mi-
croscopic temperature gradient

∇θμ = g + ∇ θ̃μ, (12)

which is the sum of a homogeneous gradient (uniform over the RVE) coinciding with the
macroscopic temperature gradient and the field ∇ θ̃μ corresponding to a fluctuation of the
microscopic temperature gradient around the homogenized value.

4.2 The Hill–Mandel principle and its variational consequences

Another fundamental concept underlying multiscale models of the present type is the Hill–
Mandel Principle of Macro-homogeneity. Here, we shall assume the analogous relation for
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the thermal case [13, 14]

q · ĝ = 1

Vμ

∫

Ωμ

qμ(θμ) · ∇ θ̂μ dV ∀(θ̂μ, ĝ) kinematically admissible, (13)

where qμ(θμ) denotes the microscopic heat flux associated to the microscopic tempera-
ture θμ. Exploiting relation (8) in (13), leads to the following variational problem: given the
macroscopic temperature θ and the macroscopic temperature gradient g, find q and θ̃μ ∈ Θμ

such that

q · ĝ = 1

Vμ

∫

Ωμ

qμ

(
θ + g · (y − yo) + θ̃μ

) · (ĝ + ∇ ˆ̃
θμ) dV, ∀ ˆ̃

θμ ∈ Θμ and ∀ĝ. (14)

Equation (13) plays a crucial role in the formulation of heat conduction constitutive models
within the present framework since it provides the variational principle that governs the scale
bridging for the thermal problem.

Now we derive the consequences using standard variational arguments. Basically they
stand for the homogenization formula for the heat flux and the microscopic thermal equilib-
rium problem.

Micro-thermal equilibrium problem: Considering ĝ = 0 in (14) leads to the microscopic
thermal equilibrium problem: given the macroscopic temperature θ and the macroscopic
temperature gradient g, find the temperature fluctuation field θ̃μ ∈ Θμ such that

∫

Ωμ

qμ

(
θ + g · (y − yo) + θ̃μ

) · ∇ ˆ̃
θμ dV = 0, ∀ ˆ̃

θμ ∈ Θμ. (15)

Characterization of the macroscopic heat flux: Considering now ˆ̃
θμ = 0 in (14) results the

characterization of the macroscopic heat flux vector q: given the macroscopic temperature
θ , its gradient g, and θ̃μ—the solution of problem (15)—, compute q as

q = 1

Vμ

∫

Ωμ

qμ

(
θ + g · (y − yo) + θ̃μ

)
dV . (16)

In the present analysis, we shall assume that the materials of the RVE matrix and inclusions
satisfy the classical Fourier constitutive law:

qμ(ξ) = −Kμ∇ξ, (17)

where Kμ is the second order thermal conductivity tensor of the RVE (which is admitted
to be positive definite, i.e. Kμv · v > 0 ∀v �= 0 and Kμv · v = 0 if and only if v is the null
vector field). The above linear relation together with the additive decomposition (8) allows
the microscopic thermal flux field to be split as

qμ(θμ) = −Kμg − Kμ∇ θ̃μ. (18)

By introducing decomposition (18) into the thermal equilibrium equation (15), we obtain
the closed form of the microscopic thermal equilibrium problem: given g, find θ̃μ ∈ Θμ

such that
∫

Ωμ

Kμ∇ θ̃μ · ∇ ˆ̃
θμ dV = −

∫

Ωμ

Kμg · ∇ ˆ̃
θμ dV, ∀ ˆ̃

θμ ∈ Θμ, (19)
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and the homogenization formula for the macroscopic heat flux results

q = −
(

1

Vμ

∫

Ωμ

Kμ dV

)
g − 1

Vμ

∫

Ωμ

Kμ∇ θ̃μ dV . (20)

From (20) and (19) it is clear that q depends linearly on g and the characterization of this
linear operator (homogenized macro thermal conductivity tensor) is described next.

4.3 The Homogenized Thermal Conductivity Tensor

Crucial to the developments of the multiscale model for the macroscopic thermal problem
is the derivation of formulae for the macroscopic heat conductivity tensor. This is addressed
in the following.

To obtain the tangent operator from (20) we derive (19) with respect to g. Calling dg :=
∂θ̃μ

∂g (a vector field), and denoting [dg]i = dg · ei (a scalar field)—being ei the unit Cartesian
vectors—the variational equation for the tangent field is written as: find [dg]i ∈ Θμ, such
that

∫

Ωμ

Kμ∇[dg]i · ∇ ˆ̃
θμ dV = −

∫

Ωμ

Kμei · ∇ ˆ̃
θμ dV, ∀ ˆ̃

θμ ∈ Θμ, (21)

for i = 1, . . . , n.
Now, from the additive splitting of the microscopic temperature field (8), the homoge-

nization procedure for the heat flux (16) and by using the solution of (21), we have that the
macroscopic conductivity tensor can be obtained as the sum

−∂q
∂g

:= K = K + K̃, (22)

of a homogenized (volume average) macroscopic conductivity tensor K, given by,

K = 1

Vμ

∫

Ωμ

Kμ dV, (23)

and a contribution K̃ associated to the microscopic temperature fluctuation field defined,
from (21), as

K̃ =
[

1

Vμ

∫

Ωμ

(
Kμ∇[dg]j

)
i
dV

]
(ei ⊗ ej ). (24)

For a more detailed description on the derivation of the above expressions, we refer the
reader to [14, 20].

Although it is not needed in the thermal analysis, we are interested in checking that the
tangent operator with respect to the macroscopic temperature is zero. That is, by deriving

(19) with respect to θ and calling dθ := ∂θ̃μ

∂θ
(a scalar field), we obtain the variational equation

for this tangent field as: find dθ ∈ Θμ such that
∫

Ωμ

Kμ∇dθ · ∇ ˆ̃
θμ dV = 0, ∀ ˆ̃

θμ ∈ Θμ. (25)

From the property of Kμ, clearly, this implies that

dθ = 0, (26)
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which is expected from the microscopic thermal analysis. From this, we obtain that θ̃μ solely
depends on the macroscopic datum g. That is, the macroscopic heat flux q is expressed in
terms of the homogenized temperature gradient as

q = −Kg. (27)

5 Multiscale Mechanical Analysis with Thermal Effects

5.1 Kinematical Admissibility

As in the previous section, we define in this case the macroscopic mechanical strain ten-
sor ε at the point x of the macroscopic continuum, and link this strain to its microscopic
counterpart εμ defined over the domain of the RVE. The microscopic strain field εμ is given
by the symmetric part of the gradient of the microscopic displacement field uμ. Then, the
kinematical homogenization principle reads:

ε := 1

Vμ

∫

Ωμ

∇suμ dV . (28)

Taking into account the Green’s formula in (28) we obtain the following equivalent ex-
pression for the homogenized (macroscopic) strain tensor ε

ε = 1

Vμ

∫

∂Ωμ

uμ ⊗s ndS, (29)

where, as before, n is the outward unit normal to the boundary ∂Ωμ and ⊗s denotes the
symmetric tensor product of vectors. Note that, the above expression imposes a kinematical
constraint over the admissible displacement fields over the RVE such that the kinematical
homogenization principle (28) is satisfied. Now, without loss of generality, as done in the
thermal case, it is possible split uμ into a sum of the macroscopic displacement field u, the
contribution provided by the macroscopic strain ε and a fluctuation displacement field ũμ(y)

(see Fig. 2)

uμ(y) = u + ε(y − yo) + ũμ(y). (30)

With the above splitting, the microscopic strain field can be written as a sum

∇suμ = ε + ∇s ũμ, (31)

of a homogeneous strain (uniform over the RVE) coinciding with the macroscopic strain and
a field ∇s ũμ corresponding to the contribution of the fluctuation of the microscopic strain
around the homogenized (average) value. In order to remove rigid modes, and to proceed
similarly to the thermal case seen in Sect. 4, we also assume the following constraint on the
microscopic displacement field uμ

u = 1

Vμ

∫

Ωμ

uμ dV . (32)
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Fig. 2 Additive splitting of the microscopic displacement field

By introducing the additive splitting for the microscopic displacement field uμ into the
above constraint, we obtain the following expression for the microscopic displacement fluc-
tuation field

∫

Ωμ

ũμ dV = 0. (33)

In this sense, the kinematical homogenization procedure introduced in (28) induces the
minimally constrained space of admissible microscopic displacement fluctuation fields at
the RVE

Uμ :=
{

u ∈ H1(Ωμ) :
∫

Ωμ

udV = 0,

∫

∂Ωμ

u ⊗s ndS = 0
}
. (34)

Hence, the space of kinematically admissible variations of the microscopic displacement
field at the RVE is Uμ as well.

Remark 2 As in Remark 1, other multiscale models could be obtained by considering any
other space of admissible functions, say UX

μ . It is just necessary that UX
μ ⊂ Uμ. Examples of

alternatives are the classical model with null boundary conditions or the one with periodic
boundary conditions [6, 27].

5.2 The Hill–Mandel Principle and Its Variational Consequences

As in the thermal case, the physical bridging between macro and micro scales is provided
by the Hill–Mandel Principle of Macro-homogeneity [16, 19], which is

σ · ε̂ = 1

Vμ

∫

Ωμ

σμ(uμ, θμ) · ∇s ûμ dV, ∀(ûμ, ε̂) kinematically admissible. (35)

Introducing the decomposition (30) into (35), and recalling (8), leads to the following
variational problem: given the macroscopic temperature θ , the macroscopic temperature
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gradient g, the microscopic temperature fluctuation field θ̃μ (solution of (15)) and the macro-
scopic strain ε, find σ and ũμ ∈ Uμ such that

σ · ε̂ = 1

Vμ

∫

Ωμ

σμ

(
u + ε(y − yo) + ũμ, θ + g · (y − yo) + θ̃μ

) · (ε̂ + ∇s ˆ̃uμ

)
dV,

∀ ˆ̃uμ ∈ Uμ and ∀ε̂. (36)

As before, using standard variational arguments, the Hill–Mandel principle provides two
consequences: the microscopic mechanical equilibrium problem and the homogenization
formula for the Cauchy stress.

Micro-mechanical equilibrium problem: Considering ε̂ = 0 in (36) yields the microscopic
mechanical equilibrium problem: given the macroscopic temperature θ , the macroscopic
temperature gradient g, the microscopic temperature fluctuation field θ̃μ (solution of (15))
and the macroscopic strain ε, find the microscopic displacement fluctuation field ũμ ∈ Uμ

such that
∫

Ωμ

σμ

(
u + ε(y − yo) + ũμ, θ + g · (y − yo) + θ̃μ

) · ∇s ˆ̃uμ dV = 0, ∀ ˆ̃uμ ∈ Uμ. (37)

Characterization of the macroscopic stress: Considering ˆ̃uμ = 0 in (36) results the charac-
terization of the macroscopic stress state σ : given the macroscopic temperature θ , its gradi-
ent g, the field θ̃μ solution of problem (15), the macroscopic strain ε, and ũμ—the solution
of problem (37)—, compute σ as

σ = 1

Vμ

∫

Ωμ

σμ

(
u + ε(y − yo) + ũμ, θ + g · (y − yo) + θ̃μ

)
dV . (38)

Notice that since the microscopic temperature field is being considered in the micro-
scopic stress state, naturally, the formulation provides a macroscopic stress state which,
in addition, depends upon the temperature gradient, which is an intrinsic feature of mate-
rials with microstructure. In Sect. 6 we will provide an account of the elements that are
necessary to accommodate this material behavior in a thermodynamically consistent frame-
work.

In this work, materials at the microscale follow the simplest constitutive thermoelastic
model, which is

σμ(v, ξ) = Cμ

(∇sv
) − Bμξ, (39)

being Cμ the fourth order elasticity tensor and Bμ the second order thermomechanical ex-
pansion tensor. Assuming that the microstructural behavior of the materials is isotropic and
homogeneous, we have

Cμ = Eμ

1 − ν2
μ

[
(1 − νμ)I + νμ(I ⊗ I)

]
,

Bμ = αμEμ

1 − ν2
μ

(
1 + νμ(trI − 1)

)
I,

(40)

with Eμ, νμ and αμ denoting, respectively, the Young’s modulus, the Poisson’s ratio and
the thermal expansion coefficient at the RVE. In (40) we use I and I to denote the second
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and fourth order identity tensors, respectively, while tr(·) is used to denote the trace operator
applied to tensor (·).

Remark 3 Observe that the microscopic stress σμ given in (39) is derived from a micro-
scopic free energy function which is quadratic in the variables (∇sv, ξ), that is

ψμ

(∇sv, ξ
) = 1

2
Cμ

(∇sv
) · (∇sv

) − Bμ · (∇sv
)
ξ − 1

2
aμξ 2, (41)

from which

σμ = ∂ψμ

∂(∇sv)
= Cμ

(∇sv
) − Bμξ, (42)

while the microscopic entropy is given by

sμ = −∂ψμ

∂ξ
= aμξ + Bμ · (∇sv

)
. (43)

At this point, we assume that all the material parameters involved in (41) are such that
at the microscopic level the constitutive model holds convexity properties as in classical
thermodynamics. In Sect. 6 we will expand the discussion about the bridging between the
microscopic and the macroscopic thermodynamic settings.

Now we split the microscopic stress state using (8) and (30) as follows

σμ(uμ, θμ) = Cμε + Cμ

(∇s ũμ

) − Bμθ − Bμ

(
g · (y − yo)

) − Bμθ̃μ, (44)

and then, the closed form of the microscopic mechanical equilibrium problem reads: given
ε, θ , g and θ̃μ, find ũμ ∈ Uμ such that

∫

Ωμ

Cμ

(∇s ũμ

) · ∇s ˆ̃uμ dV

= −
∫

Ωμ

(
Cμε − Bμθ − Bμ

(
g · (y − yo)

) − Bμθ̃μ

) · ∇s ˆ̃uμ dV, ∀ ˆ̃uμ ∈ Uμ, (45)

and the corresponding homogenization formula for the macroscopic stress is

σ =
(

1

Vμ

∫

Ωμ

Cμ dV

)
ε −

(
1

Vμ

∫

Ωμ

Bμ dV

)
θ −

(
1

Vμ

∫

Ωμ

Bμ ⊗ (y − yo) dV

)
g

+ 1

Vμ

∫

Ωμ

Cμ

(∇s ũμ

)
dV − 1

Vμ

∫

Ωμ

Bμθ̃μ dV . (46)

5.3 The Homogenized Elastic and Thermal Expansion Tensors

In the constitutive multiscale model recently introduced, it has been presented how to use
the macroscopic information (mechanical strain tensor ε, temperature θ and temperature
gradient g) to obtain the microscopic temperature and displacement fields fully defined
through the microscopic fluctuations of temperature and displacement, that is θ̃μ and ũμ,
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respectively. The basic idea now is to retrieve a closed form of the tangent macroscopic
constitutive response from (46) in terms of the triple (ε, θ,g). In the first place we compute
the tangent problem from (45) with respect to the strain ε. Proceeding analogously to the
thermal case, we derive (45) with respect to ε and put Dε := ∂ũμ

∂ε
(a third order tensor field),

noting that [Dε]ij = ∂ũμ

∂[ε]ij (a vector field). This procedure leads us to the problem of finding

[Dε]ij ∈ Uμ such that

∫

Ωμ

Cμ

(∇s[Dε]ij
) · ∇s ˆ̃uμ dV = −

∫

Ωμ

Cμ(ei ⊗s ej ) · ∇s ˆ̃uμ dV, ∀ ˆ̃uμ ∈ Uμ, (47)

for i, j = 1, . . . , n.
Thus, the macroscopic mechanical tangent operator is given by

∂σ

∂ε
:= C = C + C̃, (48)

where

C = 1

Vμ

∫

Ωμ

Cμ dV, (49)

and

C̃ =
[

1

Vμ

∫

Ωμ

(
Cμ

(∇s[Dε]kl

))
ij

dV

]
(ei ⊗ ej ⊗ ek ⊗ el ). (50)

In the second place we compute the tangent problem from (45) with respect to the tem-
perature θ . Using the same procedure, we derive (45) with respect to θ , call dθ := ∂ũμ

∂θ
(a

vector field) and recall that the microscopic temperature fluctuation field θ̃μ does not de-
pend on the macroscopic temperature, according to (26). Therefore, we obtain the following
problem: find dθ ∈ Uμ such that

∫

Ωμ

Cμ

(∇sdθ

) · ∇s ˆ̃uμ dV =
∫

Ωμ

Bμ · ∇s ˆ̃uμ dV, ∀ ˆ̃uμ ∈ Uμ. (51)

In this manner, the first-order thermal contribution to the macroscopic stress is governed by
the following tensor

−∂σ

∂θ
:= B = B + B̃, (52)

where

B = 1

Vμ

∫

Ωμ

Bμ dV, (53)

and

B̃ = − 1

Vμ

∫

Ωμ

Cμ

(∇sdθ

)
dV . (54)

In an analogous way, we obtain the tangent problem of (45) with respect to the temper-
ature gradient g. By deriving (45) with respect to g and calling Dg := ∂ũμ

∂g (a second order
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tensor field), which means [Dg]i = ∂ũμ

∂[g]i (a vector field), yields the variational problem for
this tangent field: find [Dg]i ∈ Uμ such that

∫

Ωμ

Cμ

(∇s[Dg]i
) · ∇s ˆ̃uμ dV =

∫

Ωμ

Bμ

([y − yo]i + [dg]i
) · ∇s ˆ̃uμ dV, ∀ ˆ̃uμ ∈ Uμ, (55)

for i = 1, . . . , n. Above, recall that dg expresses the sensitivity of the microscopic temper-
ature fluctuation field θ̃μ with respect to the macroscopic temperature gradient g, which is
obtained by solving (21).

Hence, a second-order thermal contribution to the macroscopic stress state is given
through the following tensor

−∂σ

∂g
:= G = G + ˜G, (56)

where

G = 1

Vμ

∫

Ωμ

Bμ ⊗ (y − yo) dV, (57)

and

˜G = −
[

1

Vμ

∫

Ωμ

(
Cμ

(∇s[Dg]k
))

ij
dV − 1

Vμ

∫

Ωμ

(Bμ)ij [dg]k dV

]
(ei ⊗ ej ⊗ ek). (58)

Finally, the macroscopic stress σ can be written in terms of the above homogenized
quantities as

σ = Cε − Bθ − Gg. (59)

Here, the tensor G represents explicitly the constitutive property responsible for the stress
generation at macroscopic level due to the gradient of the temperature field at the same level.

6 Multiscale Thermodynamic Setting

As commented in Remark 3, the microscopic thermodynamics is the classical one, in the
sense of the relation between internal energy and entropy, which leads to the classical
Clausius–Duhem inequality. Being eμ, sμ and ψμ the microscopic internal energy, micro-
scopic entropy and microscopic free energy function, respectively, this implies that these
quantities are related through

eμ = sμθμ + ψμ(θμ,εμ), (60)

with sμ and θμ being dual variables in the sense of the Legendre transform. Then we have

sμ = −∂ψμ

∂θμ

and θμ = ∂eμ

∂sμ

. (61)

Nevertheless, the existence of a macroscopic temperature gradient g poses the problem
of considering microscopic temperature fields θμ which make the macroscopic stress state
σ sensitive to this temperature gradient g. In a classical thermodynamic setting it is well
known that σ cannot depend on g. Hence, the aim of this section is to provide the extended
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macroscopic thermodynamic context in which the multiscale constitutive model developed
in Sects. 4 and 5 has to be considered.

The theoretical foundations employed here are based on the developments presented in
[24, 25]. For a thorough discussion of the underlying elements in this framework the reader
is referred to [25]. The basic modification to the classical thermodynamics foundations is
introduced by writing the macroscopic internal energy as follows

e = sθ + r · g + ψ(θ,g,ε), (62)

where, now, (s, r) and (θ,g) are dual pairs in the sense of the Legendre transform. Analo-
gously, it is possible to obtain the following relations

s = −∂ψ

∂θ
, r = −∂ψ

∂g
,

θ = ∂e

∂s
and g = ∂e

∂r
.

(63)

With these considerations, the functional form ψ(θ,g,ε) is allowed.
Indeed, in the multiscale context consider that

ψ = 1

Vμ

∫

Ωμ

ψμ dV. (64)

The macroscopic entropy is given by deriving with respect to θ , that is

s = −∂ψ

∂θ
= − 1

Vμ

∫

Ωμ

∂ψμ

∂θ
dV = − 1

Vμ

∫

Ωμ

∂ψμ

∂θμ

dV = 1

Vμ

∫

Ωμ

sμ dV, (65)

where we have used the fact that ∂θμ

∂θ
= 1 in view of (26). In turn, we have

r = −∂ψ

∂g
= − 1

Vμ

∫

Ωμ

∂ψμ

∂g
dV

= − 1

Vμ

∫

Ωμ

∂ψμ

∂θμ

(y − yo + dg) dV = 1

Vμ

∫

Ωμ

sμ(y − yo + dg) dV, (66)

for which we have taken into account that ∂θμ

∂g = y − yo + dg, which stems from θμ = θ +
g · (y − yo) + g · dg. Then, we observe that

1

Vμ

∫

Ωμ

eμ dV = 1

Vμ

∫

Ωμ

(sμθμ + ψμ)dV

= 1

Vμ

∫

Ωμ

(
sμ

(
θ + g · (y − yo) + θ̃μ

) + ψμ

)
dV

= 1

Vμ

∫

Ωμ

sμθ dV + 1

Vμ

∫

Ωμ

sμ

(
g · (y − yo) + g · dg

)
dV + 1

Vμ

∫

Ωμ

ψμ dV

= sθ + r · g + ψ = e. (67)

With this extended macroscopic thermodynamics it can be shown (see [25]) that the
macroscopic steady state equation for the energy balance remains the classical one. The
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impact of the introduction of r, called the entropy vector, and the dependence of ψ with
respect to g is manifested in the transient problem, which in turn gives rise to governing
equations that allow thermal waves to occur [24, 39]. This is consistent with the foundations
of the extended thermodynamics as presented in [22].

Making use of this extended thermodynamics at the macroscopic scale is necessary in
order to accommodate the natural dependence of the stress state with respect to the tem-
perature gradient when employing this class of multiscale thermomechanical constitutive
modeling. The multiscale constitutive model constructed this way is consistent in the sense
that the temperature fluctuations that arise at the microscopic problem when performing the
multiscale thermal analysis are equally considered in the multiscale mechanical analysis
with thermal effects. Clearly, this is one of the fundamental objectives of a multiscale the-
ory, that is, to use simple microscopic relations in order to retrieve complex macroscopic
material behavior.

Remark 4 Regarding the convexity of the macroscopic model let us look into the convexity
of −ψ with respect to the variables θ and g, as in [24, 25]. Firstly, for the temperature we
have that

−∂2ψ

∂θ2
= − 1

Vμ

∫

Ωμ

∂2ψμ

∂θ2
dV

= − 1

Vμ

∫

Ωμ

∂2ψμ

∂θ2
μ

dV = 1

Vμ

∫

Ωμ

aμ dV . (68)

Then, if aμ > 0 it turns out that − ∂2ψ

∂θ2 > 0. In addition, for the temperature gradient, it results

−∂2ψ

∂g2
= − 1

Vμ

∫

Ωμ

∂2ψμ

∂g2
dV

= − 1

Vμ

∫

Ωμ

∂2ψμ

∂θ2
μ

[
(y − yo + dg) ⊗ (y − yo + dg)

]
dV

= 1

Vμ

∫

Ωμ

aμ

[
(y − yo + dg) ⊗ (y − yo + dg)

]
dV . (69)

Then, if aμ > 0 we have that − ∂2ψ

∂g2 is a positive definite second order tensor. Therefore,
we conclude that the convexity of the model follows from the convexity of the constitutive
model at the microstructure.

7 Concluding Remarks

In this work a general variational formulation for multiscale constitutive models in the ther-
momechanical setting has been presented. The multiscale analysis was based on the volume
averaging concept over a local representative volume element (RVE) and the Hill–Mandel
Principle of Macro-homogeneity for the scale transition. The contribution of the present
work has been the consistent formulation of the multiscale constitutive model in the ther-
momechanical setting taking into account the microscopic temperature fluctuations within
the micro-mechanical problem. Even making use of classical thermodynamics and material
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behavior at the microscopic level, it has been shown that this approach yields a macro-
scopic material behavior in which the stress state depends upon the temperature gradient.
This is possible in view of having considered an extended thermodynamics ruling at the
macroscopic level, whose ingredients are related to the microscopic scale in a fully closed
form.

The coupling term at macroscopic level between the mechanical stress and the temper-
ature gradient arises in several engineering applications. To illustrate this fact, one appli-
cation where this term can be of paramount importance is in the solidification and phase
transition of metal-based materials. During the early stage of the solidification (liquid state),
the cooling rate is the most important property that governs the microstructure evolution.
This means that different microstructures may evolve from the same base materials if we
change the cooling rate during this stage. However, when the base material became solid,
residual stresses appear as consequence of the cooling phenomena. During this stage, ther-
mal stresses are induced because of the thermal expansion constitutive properties. In the
same way, if some part of the piece has higher temperatures than another, during the cool-
ing phenomena, gradients of temperature occur, which are also responsible for this residual
stress. These residual stresses are very important in the manufacture industry because they
are responsible for the damage initialization and initial geometrical distortions in the pieces
made by metal materials, among others.

In order to summarize the obtained results, in the following boxes we presents the ingre-
dients of the model developed here

Box 1: Multiscale Thermal Model

(1a) Micro-thermal equilibrium problem: given g, find θ̃μ ∈ Θμ such that
∫

Ωμ

Kμ∇ θ̃μ · ∇ ˆ̃
θμ dV = −

∫

Ωμ

Kμg · ∇ ˆ̃
θμ dV, ∀ ˆ̃

θμ ∈ Θμ,

where

Θμ :=
{
v ∈ H 1(Ωμ) :

∫

Ωμ

v dV = 0,

∫

∂Ωμ

vndS = 0

}
.

(1b) Macroscopic heat flux

q = −
(

1

Vμ

∫

Ωμ

Kμ dV

)
g − 1

Vμ

∫

Ωμ

Kμ∇ θ̃μ dV .

(1c) Macroscopic thermal tangent operator

− ∂q
∂g

:= K = K + K̃,

where

K = 1

Vμ

∫

Ωμ

Kμ dV and K̃ =
[

1

Vμ

∫

Ωμ

(
Kμ∇[dg]j

)
i
dV

]
(ei ⊗ ej ),

being [dg]i the solutions of the set of variational equations: find [dg]i ∈ Θμ, such that
∫

Ωμ

Kμ∇[dg]i · ∇ ˆ̃
θμ dV = −

∫

Ωμ

Kμei · ∇ ˆ̃
θμ dV, ∀ ˆ̃

θμ ∈ Θμ,

for i = 1, . . . , n.
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Box 2: Multiscale Mechanical Model with Thermal Effects

(2a) Micro-mechanical equilibrium problem: given ε, θ , g and θ̃μ, find ũμ ∈ Uμ such that
∫

Ωμ

Cμ

(∇s ũμ

) · ∇s ˆ̃uμ dV

= −
∫

Ωμ

(
Cμε − Bμθ − Bμ

(
g · (y − yo)

) − Bμθ̃μ

) · ∇s ˆ̃uμ dV, ∀ ˆ̃uμ ∈ Uμ, where

Uμ :=
{

v ∈ H1(Ωμ) :
∫

Ωμ

vdV = 0,

∫

∂Ωμ

v ⊗s ndS = 0

}
.

(2b) Macroscopic stress

σ =
(

1

Vμ

∫

Ωμ

Cμ dV

)
ε −

(
1

Vμ

∫

Ωμ

Bμ dV

)
θ −

(
1

Vμ

∫

Ωμ

Bμ ⊗ (y − yo) dV

)
g

+ 1

Vμ

∫

Ωμ

Cμ

(∇s ũμ

)
dV − 1

Vμ

∫

Ωμ

Bμθ̃μ dV .

(2ci) Macroscopic mechanical tangent operator

∂σ

∂ε
:= C = C + C̃, where

C = 1

Vμ

∫

Ωμ

Cμ dV and C̃ =
[

1

Vμ

∫

Ωμ

(
Cμ

(∇s [Dε]kl

))
ij

dV

]
(ei ⊗ ej ⊗ ek ⊗ el ),

being [Dε]ij the solutions of the set of variational equations: find [Dε]ij ∈ Uμ, such that
∫

Ωμ

Cμ

(∇s [Dε]ij
) · ∇s ˆ̃uμ dV = −

∫

Ωμ

Cμ(ei ⊗s ej ) · ∇s ˆ̃uμ dV, ∀ ˆ̃uμ ∈ Uμ,

for i, j = 1, . . . , n.
(2cii) Macroscopic first-order thermal tangent operator

− ∂σ

∂θ
:= B = B + B̃, where

B = 1

Vμ

∫

Ωμ

Bμ dV and B̃ = − 1

Vμ

∫

Ωμ

Cμ

(∇sdθ

)
dV,

being dθ the solution of the variational problem: find dθ ∈ Uμ such that
∫

Ωμ

Cμ

(∇sdθ

) · ∇s ˆ̃uμ dV =
∫

Ωμ

Bμ · ∇s ˆ̃uμ dV, ∀ ˆ̃uμ ∈ Uμ.

(2ciii) Macroscopic second-order thermal tangent operator

− ∂σ

∂g
:= G = G + ˜G, where

G = 1

Vμ

∫

Ωμ

Bμ ⊗ (y − yo) dV, and

˜G = −
[

1

Vμ

∫

Ωμ

(
Cμ

(∇s [Dg]k
))

ij
dV − 1

Vμ

∫

Ωμ

(Bμ)ij [dg]k dV

]
(ei ⊗ ej ⊗ ek).

Being [Dg]i the solutions of the variational problem: find [Dg]i ∈ Uμ such that
∫

Ωμ

Cμ

(∇s [Dg]i
) · ∇s ˆ̃uμ dV =

∫

Ωμ

Bμ

([y − yo]i + [dg]i
) · ∇s ˆ̃uμ dV, ∀ ˆ̃uμ ∈ Uμ,

for i = 1, . . . , n.
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Box 3: Multiscale Thermodynamic Setting

(3a) Microscopic free energy function

eμ = sμθμ + ψμ(θμ,εμ),

with

sμ = − ∂ψμ

∂θμ
and θμ = ∂eμ

∂sμ
.

(3b) Macroscopic free energy function

e = sθ + r · g + ψ(θ,g,ε),

with

s = − ∂ψ

∂θ
= 1

Vμ

∫

Ωμ

sμ dV, r = − ∂ψ

∂g
= 1

Vμ

∫

Ωμ

sμ(y − yo + dg) dV,

θ = ∂e

∂s
and g = ∂e

∂r
.

Almost as a corollary, it has been shown that there are just two basic ingredients in this
class of multiscale models: (i) the homogenization principles (temperature, temperature gra-
dient and strain in the present problem) and (ii) the Hill–Mandel—variational—Principle of
Macro-homogeneity. From these two pillars, the characterization of dual variables (heat flux
and stress in the present problem), microscopic thermal and mechanical equilibrium prob-
lems and tangent operators arise as a consequence of the virtual power principle bridging
the two scales.
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