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• A new methodology to investigate the noise effect on type-I intermittency is presented.
• The methodology is an extension of other that we recently established for the three classical types of intermittency.
• We consider relatively large noise strengths applied on the reinjection mechanism.
• We show the strong influence of noise in the statistical properties.
• The results are confirmed by numerical simulations.
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a b s t r a c t

In this work we analyze the noise effect on type-I intermittency, for which we develop
a methodology based on a recently proposed technique used to model the reinjection
probability density (RPD). This newmethodology allows us to study the noise effect on the
intermittency statistical properties for relatively large noise strengths in a quadratic map
with different reinjection mechanisms. We show that this procedure allows to predict the
behavior of the noisy and noiseless system using the results of the M(x) function which is
implemented to obtain the RPD function. We also derive an analytical approximation for
the probability density of the laminar lengths andwe obtain results for the average laminar
length. All analytical approaches show a good agreement with the numerical results even
though the statistical properties are calculated using either the noisy or noiseless data,
however in some cases the description of the noiseless system using the noisy data can
be inaccurate. In addition, we show that occasionally the presence of noise could be not
detected due to the results behave as they would be corresponding to a noiseless system.
This aspectmay have important consequences especiallywhenworkingwith experimental
data.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Intermittency is a particular route to deterministic chaos, where a transition between regular or laminar and chaotic
phases occurs. Pomeau and Manneville introduced the concept of intermittency [1,2]. In the intermittency phenomenon,
when a control parameter exceeds a threshold value, the system behavior changes abruptly to a larger attractor by means
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of an explosive bifurcation [3]. This phenomenon has been observed in several physical topics such as Lorenz system,
Rayleigh–Bénard convection, forced nonlinear oscillators, plasma physics, and turbulence [4–7]. Intermittency has been
also found in subjects of economical and medical sciences [8,9]. Traditionally, intermittency has been classified into three
different types called I, II and III according to the Floquet multipliers or eigenvalue in the local Poincaré map [3,10].
Subsequent studies extended the classification to type X, V, on–off, eyelet and ring intermittencies [11–16].

To generate intermittency, it is necessary to have a reinjection mechanism that maps back the trajectories from the
chaotic zone into the local regular or laminar region. This mechanism is described by the reinjection probability density
function (RPD), which is defined by the nonlinear dynamics of the system itself. The RPD depends on the global reinjection
mechanism.

There are several significant statistical parameters for the intermittent phenomenon description, such as: the probabil-
ity density of the laminar lengths, the average laminar length and the characteristic relation. In order to calculate these
properties, it is necessary to know previously the RPD which determines the reinjection points distribution inside the lam-
inar region. Therefore, the accurate evaluation of the RPD function is very important to correctly describe the intermittency
phenomenon. Different approaches to describe the RPD function have been used. The most popular utilized approach is to
consider the RPD as a constant function [4,5,10,17,18]. However, this assumption is not applicable for many problems. Also,
different approaches have been implemented using a characteristic of the particular nonlinear processes, but these RPD
functions cannot be applied for other systems. Recently a more general estimate of the RPD has been introduced [19,20],
which includes the uniform reinjection as a particular case.

Since the noise is always present in nature, it is very important to know the effect of noise on the intermittency
phenomenon. Many researches devoted to the noise effect on the local Poincaré map have been published for type-I
intermittency [17,21–24]. However, there are no studies focused on the noise effect on the RPD function as far as the authors
know. It is clear that noise affects the complete zone where the system dynamics takes place. Therefore, the noise effect
would modify the RPD. In this paper we present an analytical approach to the noisy reinjection probability density (NRPD)
for type-I intermittency. To do this, we extend a recently developed methodology to calculate the NRPD for type-II and III
intermittencies [25].

2. Description of the methodology

In this work, we consider a quadratic map to represent the local Poincaré map for type-I intermittency:

xn+1 = f (x) = a x2n + xn + ε, (1)

where ε is the control parameter which represents the channel width in the laminar region, i.e. the distance between the
local Poincaré map and the bisector. The parameter a specifies the position of the point with zero-derivative (we use a = 1).
In the last equation, for ε < 0 there are two fixed points, one of them stable and the other one unstable. For ε = 0 the two
fixed points coalesce in one fixed point x0 = 0 and for ε > 0 there are no fixed points. Furthermore, if there is a reinjection
mechanism that maps back the trajectory from the chaotic zone into the local one, type-I intermittency can exist.

In this paper the map implemented in Ref. [26] is used. For that map the nonlinear reinjection mechanism is given by
g(x) = x̂ + h (x − xr)γ , where the coefficient h is obtained from the conditions g(xr) = x̂ and g (1) = 1, where x̂ is the
lower boundary of reinjection (LBR) which is here considered to be placed inside the laminar interval [−c, c]. The point
xr is obtained from f (xr) = 1. The exponent γ permits to obtain different RPD functions. For γ > 1 the trajectories are
concentrated around the LBR point, therefore the RPD has a decreasing structure. On the other hand, for 0 < γ < 1 the
trajectoriesmove away from the LBR point and the RPD function has an increasing form. For γ = 1, the RPD is approximately
uniform since the reinjection function g(x) is linear.

Then, the global map can be written as:

F(x) =


f (x) = a x2 + x + ε + σlξn, if x < xr ,

g(x) = x̂ +
1 − x̂

(1 − xr)γ
(x − xr)γ + σrξn if x > xr .

(2)

The last terms in Eq. (2) models the noise effect on the system. The variable ξn is a random variable which has a uniform
probability distribution (‘‘white noise’’). We consider that the noise strength is different in each region: σl in the local map
and σr for the reinjection mechanism.

With this configuration we can model a high level noise applied on the reinjection mechanism, where σr can be much
larger than the control parameter ε, while for the laminar region the condition σl < ε is preserved. This is done in order to
focus the analysis on the noise effect on the global reinjection, since the condition σl < ε ensures that the dynamics of the
system at the laminar region is governed by the dynamics of the map. At the end of the paper we change the configuration
to show how the presence of high level noise on the local map modifies the results of the probability density of the laminar
lengths and produces the saturation phenomenon in the characteristic relation.

Fig. 1 shows the map (2) for three different values of the exponent γ . Also, the noise effect and the LBR point x̂ are
indicated in this figure.
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Fig. 1. Map F(x) given by Eq. (2) for different values of exponent γ . The displacement of the LBR point produced by the noise effect is also indicated.

2.1. Analytical approach of the RPD

The RPD function, here denoted by φ(x), indicates the statistical behavior of the intermittent phenomenon. The
calculation of this function is not a simple task. In this work we used the theoretical methodology developed in Refs. [19,20,
25,27] to obtain the RPD, which is extended in the following sections to consider the noise effect in type-I intermittency.

In the cited methodology the key point is to use an auxiliary function M(x) to evaluate the RPD instead of directly using
the numerical data. Thus, the RPD is evaluated from the M(x) function which is obtained from numerical or experimental
data. The functionM(x) is defined inside the laminar interval [−c, c] as:

M(x) =


 x
−c τ φ(τ) dτ x
−c φ(τ) dτ

, if
 x

−c
φ(τ) dτ ≠ 0,

0, if
 x

−c
φ(τ) dτ = 0.

(3)

Since M(x) is obtained by means of two integrals, this function smooths the experimental or numerical data series and
its numerical estimation is more robust than the direct evaluation of the function φ(x). As M(x) is an average over the
reinjection points in the laminar interval, its evaluation is easier than the direct RPD calculation:

M(xq) =
1
q

q
j=1

xj (4)

where the reinjection points {xj}Nj=1 must be previously sorted from the lowest to the highest, i.e. xj ≤ xj+1.
For awide class ofmaps exhibiting type-I intermittencywithout noise, the functionM(x) satisfies a linear approximation

when the LBR point is placed inside the laminar interval (−c ≤ x̂ < c) [26]:

M(x) = m

x − x̂


+ x̂, (5)

where the slope of the straight line is 0 < m < 1. Then, the RPD function can be written as [19]:

φ(x) = b

x − x̂

α
, (6)

where b is a normalization parameter, and

α =
2m − 1
1 − m

(7)

being α > −1 because 0 < m ≤ 1.
The LBR limit (x̂) is a critical point of the RPD function, where φ(x̂) → ∞ for α < 0, and φ(x̂) → 0 if α > 0. The specific

case verifying α = 0 (m = 1/2) corresponds to the uniform reinjection φ(x) = const.
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(a) x̂ > 0, α > 0. (b) x̂ < 0, α > 0. (c) x̂ > 0, α < 0.

(d) x̂ < 0, α < 0. (e) x̂ < 0, α = 0. (f) x̂ > 0, α = 0.

Fig. 2. Probability density of the laminar lengths φl(l) for several parameters x̂ and α.

2.2. The probability density of the laminar lengths

The laminar length counts the number of iterations spent by a trajectory inside the laminar interval. In the noiseless case
it depends only on the local map. However, to take in consideration the reinjection mechanism it is used the probability
density of the laminar lengths φl(l). This function defines the probability of finding a given laminar length.

The local Poincarémap given by Eq. (1)withσl = 0 is used to evaluate the noiseless laminar length. Under the assumption
ε → 0, the discrete equation xn+1 − xn can be approximated by the following differential equation [10]:

dx
dl

= a x2 + ε. (8)

The solution of the last equation inside the interval [−c, c] results:

l(x, c) =

 c

x

1
a x2 + ε

dx =
1

√
aε


tan−1


a
ε
c


− tan−1


a
ε
x


. (9)

Then, for type-I intermittency, the probability of finding a laminar length between l and l + dl is [10]:

φl(l) = φ[X(l, c)]
dX(l, c)

dl

 = φ[X(l, c)]
a [X(l, c)]2 + ε

 , (10)

where X(l, c) is the inverse function of l(x, c) given by Eq. (9), which can be written as:

X(l, c) =


ε

a
tan


tan−1


a
ε
c


−
√
aε l


. (11)

Note that the features of the function φl(l) depend on the parameters x̂ and α (see Eq. (6)). Fig. 2 shows the different form
for the probability density of the laminar lengths in type-I intermittency [26].

Fig. 2(b) shows that for some values of the parameters x̂ and α, the function φl(l) can have a local maximum. This fact can
be used in an experimental case to identify the unknown parameters of the system from the shape of φl(l). Note, however,
that in experiments the noise is always present, therefore in the next section we study the noise effect showing that the
referred maximum still appears in presence of noise but for shifted parameters values.

The results for φl(l) obtained in this section can be extended for the noisy case only when the condition σl < ε is verified,
because for σl ≫ ε the differential approximation carried out in Eq. (8) cannot be performed.
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(a) x̂ = 0.005, γ = 2. (b) x̂ = −0.03, γ = 0.75.

Fig. 3. Comparison between the noisy and noiseless M(x) functions with ε = 10−4, c = 0.05 and the indicated values. Dashed lines show the slope of
the linear regions of functions M(x). The slopes are m = 0.320 (α = −0.529) and m1 = 0.595 (α1 = 0.469) for (a), and m = 0.570 (α = 0.326) and
m1 = 0.698 (α1 = 1.311) for (b). In both cases α1 ≈ α+1. Also, note that for the largest values of x the slopes are quite similar. The slope of the dashed-dot
line is 1/2 indicating the slope of uniform reinjection.

3. Noise effect in type-I intermittency

We have seen that when the noiseless model is considered and the x̂ limit belongs to the laminar interval, we have a
continuous RPD function whose form depends on the value of exponent γ in the return function g(x) (see Eq. (2)). In this
case the RPD is obtained using theM(x) function following the previous work [26].

In the following sections we present the noise effect on type-I intermittency considering map (2) for ε > σl → 0. This
condition does not affect the results relating to the function M(x) and the RPD, since they only depend on the global rein-
jection mechanism. However, as we will see later, this has significant consequences on φl(l) and the characteristic relation.

The noise presence not only produces changes in the RPD due to the redistribution of reinjection points, but also it
generates the displacement of the x̂ point, which is located in the new position x̂−σr (see Fig. 1). This displacementmodifies
the associated φl(l) functionwith respect to the noiseless results shown in Fig. 2 for different values of x̂ and α. In addition, if
this displacement is such that x̂−σr < −c , a discontinuity in the RPD function appears and consequently theM(x) function
will not be linear. A detailed analysis of this situation ismade in a paperwherewe extend the previously presented approach
to consider the case of arbitrary shapes ofM(x) [28].

Following Ref. [25] it can be observed that the associated power law to the RPD for the noiselessmap appears to be robust
against noise, hence the noiseless density φ(x) should be transformed into a new density Φ(x) according to the convolution

Φ(x) =


∞

−∞

φ(z)G(x − z, σr) dz, (12)

where G(x − z, σr) is the probability density of the noise term σrξn in Eq. (2).
As noise source we use a random variable ξn in the interval [−1, 1], hence the probability density G in Eq. (12) results:

G(x, σr) =
Θ(x + σr) − Θ(x − σr)

2σr
, (13)

where Θ is the well known Heaviside step function. Finally, after integrating Eq. (12), we get the NRPD as

Φ(x) =
b

2σr (α + 1)


x −


x̂ − σr

α+1
− Θ


x −


x̂ + σr

 
x −


x̂ + σr

α+1


. (14)

Note that in Eq. (14) the position of the LBR is shifted to a new position given by

x̂ − σr


. In view of this, we split our analysis

in two cases according to x̂ − σr > −c or x̂ − σr < −c.
In the first case, x̂ − σr > −c , the function g(x) reinjects all trajectories directly into the laminar zone and the function

M(x) can be approximated by a piecewise linear function as Fig. 3 shows. This shape is a consequence of expression (14).
Note that for x < x̂ + σr the Heaviside function is zero and we recover for Φ(x) the same power law that for φ(x) but the
parameters are shifted from x̂ to x̂ − σr and from α to α + 1, consequently, Eq. (5) now can be written as

M(x) = m1

x − x̂1


+ x̂1, x < x̂ + σr , (15)

where x̂1 = x̂ − σr > −c . By fitting the data plotted in Fig. 3(a) in the region x < x̂ + σr = 0.03 we get x̂1 ≈ −0.01997,
very close to the exact value used in the numerical simulation x̂ − σr = −0.02.

On the other hand, for x > x̂ + σr , and for small values of σr we can approximate Φ(x) in Eq. (14) by

Φ(x) ≈
d
dx

b

x − x̂

α+1
, (16)
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hence in that region the exponent of Φ(x) approximates to the exponent of the noiseless density given by Eq. (6). Note
that according to Eq. (7), the two slopes of M(x),m1 and m2, corresponding to the regions with exponents α + 1 and α
respectively, are related by

m1 =
1

2 − m2
. (17)

To check the last expression, we evaluate in Fig. 3(a)m1 andm2 by fitting the data in two regions on each side of x = 0.03.
To obtainm1 all points x < 0.03 are used, but form2 it must be considered that the transition between the slopes is smooth
rather than sharp, hence we use points x → c where the slope of the functionM(x) is more similar to the noiseless one. The
value obtained for m2 is m2 ≈ 0.3327, then Eq. (17) provides the value m1 ≈ 0.599772 very close to 0.5954 obtained by
fitting the numerical data.

Furthermore, it is possible to estimate not only x̂1 but also its components x̂ and σr . That is, we can separate the noise
component from the noiseless parameters. To do thiswe approximate C2 ≈ x̂+σ , where C2 is the intersection point between
the two straight lines fitting the piecelinear functionM(x). With this approximation we have

x̂ =
C2 + x̂1

2
and σr =

C2 − x̂1
2

. (18)

In the case of Fig. 3(a) we have from Eq. (18) x̂ ≈ 0.00731974 and σr ≈ 0.0272901. Note that in this case, the approxima-
tion overestimates the real values (x̂ = 0.005 and σr = 0.025). This is due to the smooth transition from slope m1 to m2
aforementioned, which is produced by the memory effect provided by the integrals in the definition ofM(x).

The previously detailed behavior was verified by several simulations for different values of the parameters (ε, x̂, γ , σr ).
This implies that the slope of the noisy region of M(x) does not depend on the noise strength, but is defined by the form
of the return function (exponent γ ) which governs the behavior of the noiseless M(x). In this manner, we can obtain the
exponent α when the noiseless data is not available, either using the expression α = α1 − 1 where α1 is calculated from
the slopem1, or via the slopem2 ofM(x) at the end of the laminar interval.

Eq. (14) models the noise effect on the reinjection points distribution for x̂ − σr > −c . When the displacement of the
LBR limit goes beyond the left end of the laminar interval (x̂ − σr < −c) a jump discontinuity appears in the NRPD, which
is located in the point xc = F(−c). This occurs because the displacement x̂ − σr , below −c , generates that the trajectories
going through points x < −c always reinject in the region x < xc , which produces a concentration of reinjection points
in the sub-interval


x̂2, xc


, where the point x̂2 is the lowest reinjection point of orbits passing through x < −c. A more

detailed discussion about this discontinuity is made in Ref. [28].
The limit x̂2 of the sub-interval where the concentration of reinjection points is produced depends on the noise strength:

for F

x̂ − σr


< −c, x̂2 ≡ −c , on the contrary for F


x̂ − σr


> −c, x̂2 ≡ F


x̂ − σr


.

Considering only points x̂2 ≤ x < xc , an approximately linear noisy function M(x) is always observed in that region.
Hence, we can assume a solution of the form:

φk(x) = bk

x − x̂2

αk , x̂2 ≤ x < xc, (19)

where b is the normalization parameter and the exponent α is calculated with Eq. (7) using the slope of M(x) for points
x̂2 ≤ x < xc . The coefficient k weighs the difference of proportion between the reinjection points coming from x < −c and
those coming from g(x).

The function φk(x) is defined in the sub-interval

x̂2, xc


. It is added to the solution (14) in that region in order to

incorporate both effects in the NRPD, namely, the effect of re-distribution of the reinjection points due to noise and the
effect of concentration in the left end of the laminar interval. For x̂ − σr > −c there is no concentration, therefore k = 0
and then φk(x) = 0.

Finally, the NRPD function Φ(x) results:

Φ(x) =


b

2σr (α + 1)


x −


x̂ − σr

α+1
− Θ


x −


x̂ + σr

 
x −


x̂ + σr

α+1


+ bk

x − x̂2

αk , if x̂2 ≤ x < xc,
b

2σr (α + 1)


x −


x̂ − σr

α+1
− Θ


x −


x̂ + σr

 
x −


x̂ + σr

α+1


, otherwise,

(20)

where the normalization parameter b is obtained such that
 c
xjmin

Φ(x) dx = 1, being xjmin the lowest reinjection point given
by the greater of x̂ − σr and −c. The calculation of the coefficient k is performed using the definition of function M(x) as
described below.

From Eqs. (3) and (20), for points x > xc the function M(x) is:

M(x) =

1
2σr (α+1)

 x
xjmin

τ


τ − x̂ + σr
α+1

− Θ

τ − x̂ − σr

 
τ − x̂ − σr

α+1


dτ + k
 xc
x̂2

τ

τ − x̂2

αk dτ

1
2σr (α+1)

 x
xjmin


τ − x̂ + σr

α+1
− Θ


τ − x̂ − σr

 
τ − x̂ − σr

α+1


dτ + k
 xc
x̂2


τ − x̂2

αk dτ
,
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which gives

M(x) =

1
2σr (α+1)(α+2)(α+3)


x − x̂ + σr

α+2 
x (α + 2) + x̂ − σr


−


xjmin − x̂ + σr

α+2 
xjmin (α + 2) + x̂ − σr


− Θ


x − x̂ − σr

 
x − x̂ − σr

α+2 
x (α + 2) + x̂ + σr


+

k
(αk+1)(αk+2)


xc − x̂2

αk+1 
xc (αk + 1) + x̂2


(x−x̂+σr )

α+2
−(xjmin−x̂+σr )

α+2
−Θ(x−x̂−σr )(x−x̂−σr )

α+2

2σr (α+1)(α+2) +
k

(αk+1)


xc − x̂2

αk+1
. (21)

The numerical values of M(x) are known, therefore the k coefficient can be evaluated in terms of the other parameters,
which are also known. Then, considering points x > xc results:

k =


x − x̂ + σr

α+2

M(x) −

x(α+2)+x̂−σr
(α+3)


+


xjmin − x̂ + σr

α+2


x̂(α+3)−σr
(α+3)


+ Θ


x − x̂ − σr

 
x − x̂ − σr

α+2


x(α+2)+x̂+σr
(α+3) − M(x)


2σr (α+1)(α+2)
(αk+1)(αk+2)


xc − x̂2

αk+1 
xc (αk + 1) + x̂2 − M(x) (αk + 2)

 . (22)

Finally the normalization parameter is obtained to complete all required values.

b =


c − x̂ + σr

α+2
−


xjmin − x̂ + σr

α+2
− Θ


c − x̂ − σr

 
c − x̂ − σr

α+2

2σr (α + 1) (α + 2)
+

k
(αk + 1)


xc − x̂2

αk+1

−1

. (23)

4. Numerical results and comparison with the proposed theory

For the analytical approach of the noisy probability density of laminar lengths Φl(l), under the assumption ε > σl → 0,
we can use Eq. (10) where φ [X(l, c)] is replaced by its noisy version Φ [X(l, c)] and, taking into account that the noise effect
is included in the NRPD, X(l, c) is evaluated using Eq. (11).

In the next figures we show the results for different values of ε, x̂, γ and σr with c = 0.05. In these figures the numerical
data (blue points) and the analytical approximation (red lines) are compared. We also show the corresponding noiseless
results in order to clearly observe the effect of noise.

In Figs. 4 and 5 a very good agreement between the numerical data and the analytical approach can be observed for both,
the NRPD and the probability density of the laminar lengthsΦl(l). It can also be seen that the strong influence of noise in the
form of the functions Φ(x), Φl(l) and in the leak of linearity ofM(x). In the case of Fig. 4, the feature φ(x̂) → ∞ is replaced
by φ(x̂ − σr) → 0 due to the noise presence, which also affects the density Φl that behaves as if would be α > 0 with
x̂ < 0 in the noiseless case (see Fig. 2(b)). On the other hand, functions Φ(x) and Φl(l) in Fig. 5 exhibit the discontinuity
described in the previous section because x̂− σr < −c. The jump in the probability density of the laminar lengths occurs at
point corresponding to the maximum laminar length l(−c, c) since all points going through interval [−c, xc ] need the same
number of iterations to leave the laminar region.

In addition, we can see in Fig. 4 that the relationm1 ≈ 1/(2−m) between the slopes of the noisy and noiseless functions
M(x) is verified. This relation have significant implications because the combination of the displacement of the LBRwith the
increasing of the α by one unity can produce that the exponent changes from negative to positive values due to noise. This
indicates that one could confuse a noisy linearM(x) function with a noiseless one, whose true noiseless exponent α is α −1
instead. This situation is shown in Fig. 6, where we can see that the noisy and noiseless cases produce very similar results
although their parameters are very different.

4.1. Characteristic relations

In this section we carry out the analysis of the noise influence on the noiseless characteristic relation ⟨l⟩ ∝ εβ , which
relates the average laminar length ⟨l⟩ to the control parameter ε through the critical exponent β .

The average laminar length depends on the laminar length and the reinjection probability density Φ(x):

⟨l⟩ =

 c

−c
Φ(x) l(x, c) dx. (24)

Fromprevious results and knowing that inside the sub-interval [−c, xc) the laminar length is equal to themaximum laminar
length l(−c, c) when ε > σl → 0, we can write:

⟨l⟩ ≈

 c

−c
Φ ′(x) l(x, c) dx + l(−c, c)

 xc

−c
φk(x) dx, (25)

where Φ ′(x) is the NRPD function of Eq. (14) considering only the effect of re-distribution points by noise. For x̂ − σr > −c
is φk(x) = 0 and the lower limit of the first integral of Eq. (25) is x̂ − σr , because Φ ′(x) = 0 for x < x̂ − σr . On the contrary
the last equation results:

⟨l⟩ =
b

2σr (α + 1)

 c

−c


x − x̂ + σr

α+1
− Θ


x − x̂ − σr

 
x − x̂ − σr

α+1

l(x, c) dx

+
bk

(αk + 1)


xc − x̂2

αk+1 l(−c, c) (26)

where the first integral does not have an analytical solution and then must be numerically solved.



G. Krause et al. / Physica A 402 (2014) 318–329 325

(a) σr = 0.025. (b) σr = 0.

Fig. 4. M(x), NRPD and probability density of laminar lengths for map (2) with ε = 10−4, x̂ = 0, γ = 2, c = 0.05 and the indicated noise levels. The
slopes are m = 0.320 (α = −0.529) for the noiseless case, m1 = 0.596 (α1 = 0.479) and m2 = 0.331 (α2 = −0.505) for the noisy M(x) in each linear
region. Because x̂ − σr > −c in this case the concentration coefficient is k = 0.

Fig. 7 shows log–log plots of the characteristic relation ⟨l⟩ ∝ εβ for different noise levels σr and different combinations
of values x̂ and γ . In the figure the blue circles represent the numerical data and the red crosses the analytical approach of
Eq. (26). The solid lines indicate the slope β of the characteristic relation. In addition, dashed lines are placed to show the
variation of the maximum laminar length l(−c, c).

According to Kim et al. [18], the value of the exponent β for ε → 0 depends on the position of point x̂: for x̂ ≈ −c the
exponent β → −1/2, while for x̂ > 0 is β = 0, with a transition of the critical exponent from −1/2 to 0 via β = −1/4
for x̂ = 0. In Fig. 7(a) and (b) it is observed that the noise influence on the characteristic relation is mainly due to the dis-
placement of the LBR point, which produces the change of the critical exponent β , modifying the shape of the characteristic
relation. On the other hand, for x̂ ≈ −c , noise produces a displacement of the curve ⟨l⟩ which does not change its shape.
The displacement is in the direction of the maximum laminar length l(−c, c), keeping β ≈ 1/2, as observed in Fig. 7(c) and
(d). It must be highlighted that the described changes are independent on the NRPD form and they are only defined by the
position of the point LBR and the noise strength.

The previously presented results are valid for the condition ε > σl → 0. If we relax this restriction the results are the
same forM(x) and the RPD since they only depend on the global reinjectionmechanism nomatter what happens in the local
map. However, the influence of the noise strength in the laminar region is mandatory, as explained below.

When σl > ε the dynamics of the system in the laminar region is governed by noise because the movement of the
orbits is driven by the action of noise. This can produce that newly reinjected trajectories rapidly leave the laminar interval
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(a) σr = 0.04. (b) σr = 0.

Fig. 5. As Fig. 4 with ε = 10−3, x̂ = −0.05, γ = 1 and c = 0.05. In this case is α = −0.011 (approximately uniform RPD for the noiseless case). The
relations between α and α1 cannot be made becauseM(x) is not linear due to the discontinuity in the NRPD. The concentration coefficient is k = 7.885.

regardless where they have reinjected. On the other hand, a sequence of positive and negative deviations caused by high
level noise could produce that an orbit indefinitely remains inside the laminar region. Consequently the function Φl(l) does
not depend on the parameters of themapwhenσl ≫ ε, but it has always the same exponentially decreasing shape generated
by the high probability that a laminar phase rapidly leaves the laminar region due to the strong noise and the almost zero
possibility that an orbit infinitely remains in that region. In Fig. 8 we show the results of Φl(l) for different noise levels
applied on the whole map for the cases of Figs. 4 and 5. We can observe that there is a transition between the noiseless
result and the exponentially decreasing Φl(l) in which a local maximum is registered. In case of Fig. 8(a) this maximum is
due to the displacement of the LBR as happened in Fig. 4, while for Fig. 8(b) the local maximum is a consequence of the noise
in the local map that smooths the discontinuity which should appear similarly to Fig. 5 if σl ≪ ε. Beyond the behavior of
the transition in each case, we can observe that the results for σl ≫ ε are very similar in spite of the parameters that are
used.

With respect to the characteristic relation, we can see that when a high level of noise is considered in the laminar region,
we obtain similar results to those obtained in the analysis of noise effect for types II and III intermittencies, carried out in
Ref. [25]. In that case the presence of noise generates a saturation for ε → 0, which is produced because the time escape
due to the dynamics of the map is greater than the time random escape when σl > ε. As a consequence of saturation, the
average laminar length reaches a constant limit value which depends on the noise strength σl. The characteristic relations
in log–log plots are shown in Fig. 9 for different values of noise strength and exponents γ , which produces different shapes
of the NRPD functions. In this figure only numerical data is shown because the analytical expressions (9) and (11) involved
in the calculation of ⟨l⟩ are not valid due to the noise presence in the laminar region.
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(a) γ = 0.60, x̂ = 0 and σr = 0.05. (b) γ = 1.50, x̂ = −0.05 and σr = 0.

Fig. 6. M(x), NRPD and probability density of laminar lengths for map (2) with ε = 10−4, c = 0.05 and the indicated values. The results are very similar
for both cases: the slope of the noisyM(x) ism1 = 0.623 (α1 = 643) and for the noiseless casem = 0.624 (α = 665).

It can be observed in the figure that the saturation is produced in the sameway as described in Ref. [25], but unlike those
results for type-II and III intermittencies, in this case the characteristic relation only depends on the noise strength and is
not affected by the form of the NRPD, in according to Refs. [21,24].

An important result of this analysis is that, similarly to the results with σl < ε, the presence of noise strongly modifies
the expected forms for both, the probability density of the laminar lengths and the characteristic relation. As a result, the
shapes of Φl(l) and ⟨l⟩ does not depend on the parameters x̂ and α in according to Fig. 2 and the conclusions of Ref. [18], but
they have always the same form which would suggest that the parameters of the system are x̂ > 0 and α ≤ 0.

5. Conclusions

In thisworkwe have extended a recently proposedmethodology [19,20] used to analyze the intermittency phenomenon,
in order to study the noise effect on type-I intermittency. Although there are certainly many papers devoted to the analysis
of noise effect on the laminar region, to our knowledge, the noise effect on the reinjection probability density has not been
fully considered.

In this paper we obtained an analytical approach to the noisy reinjection probability density (NRPD). The employed
methodology is based on the M(x) function, whose results showed that in type-I intermittency, contrary to the type-II and
III cases [25], we can predict the behavior of the noisy and noiseless RPD only using the results of this function. Furthermore,
when the strength of the noise applied on the laminar region is smaller than the control parameter, the analytical description
of the NRPD allowed to model the noise effect on the probability density of the laminar lengths and the average laminar
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(a) x̂ = 0.005, γ = 2. (b) x̂ = 0.01, γ = 0.5.

(c) x̂ = −0.04, γ = 0.4. (d) x̂ = −0.05, γ = 1.

Fig. 7. Characteristic relation ⟨l⟩ ∝ εβ for the map (2) with c = 0.05 and the indicated values. The noisy critical exponent of case (b) is β ≈ −0.32
showing the transition that takes place for x̂ − σr ≈ 0.

(a) ε = 10−4, γ = 2, x̂ = 0, σl = σr = σ . (b) ε = 10−3, γ = 1, x̂ = −0.05, σl = σr = σ .

Fig. 8. Probability density of laminar lengths for map (2) with a = 1, c = 0.05 and the indicated values.

length with a good agreement with the numerical data. In these cases, the presence of noise modifies the shape of the
probability density of the laminar lengths with respect to the expected form corresponding to the noiseless case. This
behavior is also registered on the characteristic relation, which does not behave according to the position of the lower
bound of reinjection, but its form depends on the LBR displaced by noise.

These results showed that although sometimes we can obtain analytical approaches for the statistical properties either
for the noisy or noiseless system only using the noisy data, in some cases the presence of noise produces results that could
bemisinterpreted as theywould be corresponding to a noiseless system, which could be particularly troublesome especially
in case of handling experimental data.

On the other hand, when the noise is strong in the complete map, the results are approximately independent on the
parameters of the map, the probability density of the laminar lengths always have the same shape and the saturation
phenomenon is presented in the characteristic relation, i.e., the average laminar lengths reach a saturation value despite
the position of the LBR point.
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(a) x̂ = −0.05, γ = 0.5. (b) x̂ = −0.05, γ = 2.

Fig. 9. Characteristic relation ⟨l⟩ ∝ εβ for the map (2) with a = 1, c = 0.05 and the indicated values with σl = σr = σ . Squares indicate numerical data
and the dashed line join the data reaching the corresponding saturation label for small values of ε.
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