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1. Introduction

Given two classes of operators M and B in £(#H) (# a Hilbert space), a problem which naturally
arises is that of characterizing the set M - B of all products AB, A € M, B € B. These problems are
as old as matrix theory and they form now an interesting part of factorization theory for matrices
and operators. In 1958 Chandler Davis [8, Theorem 6.3] proved that, if Z denotes the set of Hermitian
involutions (i.e, T =T*=T~!) then Z-Z coincides with all unitaries T such that T is similar to T,
H. Radjavi and J.P. Williams [21] proved later that Z - £", where £" denotes the set of Hermitian
operators on H, is the set of all T € £(#) such that T is unitarily equivalent to T~!. Their paper
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also contains a characterization of P - P due to T. Crimmins and a characterization of P - £" (here,
‘P denotes the set of all orthogonal projectors of £(#)). Other characterizations of P - P have been
found by S. Nelson and M. Neumann [17], A. Arias and S. Gudder [1], T. Oikhberg [18] and the second
author and A. Maestripieri [6]. In a series of papers, J.R. Holub [14-16] (see also Fujii and Furuta [12])
studied, as an approach to general Wiener-Hopf or Toeplitz operators, some properties of the class
P-GT={PA: PcP and A € L7 is invertible}, where £* denotes the cone of positive semidefinite
operators in £(H). They observed that the set @ of oblique (i.e., not necessarily orthogonal) projec-
tions in £(H) is contained in P - G™.

In this paper, we characterize operators in 7 :=P - L1. We extend several results on P - P and
Holub’s theorem that Q is contained in P - G™. It should be noticed that Q is not contained in P - P,
but it is contained in (P-P)T, the set of all Moore-Penrose inverses of products PQ, P, Q € P. This is
an old result by Penrose [20] and Greville [13] which has been extended to the infinite dimensional
case in [5] and [4]. The paper [21] by H. Radjavi and ]. Williams and the survey [25] by PY. Wu
contain many characterizations of classes of the type M - B.

One of the main features of the class 77 - £ is that their elements admit a particular polar decom-
position where the partial isometry is an orthogonal projection. In fact, for T € 7, any factorization
T =PA, with P € P and A € L provides one such polar decomposition. Among all these expressions,
we find one (the optimal factorization) with some relevant minimal properties. The main characteri-
zation of T is based on a result of Z. Sebestyén [22]. We include a proof, which is completely different
from the original one, because it illustrates how the classical majorization theorem of R.G. Douglas
[10,11] can be used to provide special solutions of some operator equations. In fact, if T € 7 and P
is the orthogonal projection onto the closure of the image of T, then the positive solutions of the
equation PX =T play a natural role in this paper.

The contents of the paper are the following. Section 2 contains notations and the statements of
some theorems by Crimmins [11, Theorem 2.2], Douglas [10, Theorem 1] and Sebestyén [22]. We
include a proof of the last one based on Douglas’ theorem. Section 3 is devoted to several properties
of the set 7 and different characterizations of its elements. Just to mention two of them, T € L(H)
belongs to 7 if and only if there exists A > 0 such that (T*T)%? < AT*T? (Theorem 3.2). If R(T) is
closed then T € 7 if and only if R(T) + N(T) =% and TP € £, where P = Pg(ry (Theorem 3.3).
A formula for the oblique projection onto R(T) with nullspace N(T) is exhibited at Section 4, where
a particular factorization of T € T is shown to have several optimal properties. For instance, if T € T
then there exist Pt € P and At € £t such that T = PrAr and Pt < P and Ay < A for all P € P,
A e LT such that T = PA. The last result of Section 4 is the characterization of the fiber of T € T
by the map (P, A) — PA, ie., we find all pairs (P, A) € P x L+ such that PA =T. In Section 5 we
relate the different factorizations of T € 7 with the notions of compatibility and quasi-compatibility
between positive operators and closed subspaces. It turns out that, if T € 7 and T = PA for some
P=PseP and A e L7, then the pair (A, S) is compatible if and only if # = R(T) + N(T). The last
section studies some properties of the standard polar decomposition of T € 7.

2. Preliminaries

Throughout F, ‘H and K denote separable complex Hilbert spaces. By L£(#, ) we denote the
space of all bounded linear operators from A to K. The algebra £L(#, #H) is abbreviated by £(#). By
L(H)* we denote the cone of positive (semidefinite) operators of £L(#H) i.e., T € L(H)T if and only
if (Tx,x) >0 for all x € H. Furthermore, G(#) denotes the group of invertible operators on # and
CR(H) the set of closed range operators on . When no confusion can arise, we omit the Hilbert
space and we write it simply £*,G and CR respectively. Moreover, we denote G+ =G N L*. Given
T € L(H,K), R(T) denotes the range or image of T, N(T) the nullspace of T, T* the adjoint of T and
TT the Moore-Penrose inverse of T. Recall that TT € £(IC, H) if and only if R(T) is closed. We shall
denote by Q ={Q € L(H): Q =Q?2}and P={P e Q: P = P*}. Moreover, fixed a closed subspace S,
Ps stands for the orthogonal projection onto S. In the sequel we denote by S + W the direct sum
of the subspaces S and W. In particular, if S € W' we denote S @ W.

We end this section by stating three important results that we will frequently use along this
article.
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Theorem 2.1. (See [11, Theorem 2.2].) If A, B € L(H) then R(A) + R(B) = R((AA* 4+ BB*)1/2),

Theorem 2.2. (See Douglas, [10].) Let A € L(H, K) and B € L(F, K). The following conditions are equiva-
lent:

1. R(B) C R(A).
2. There is a positive number A such that BB* < LAA*.
3. There exists C € L(F,H) such that AC = B.

If one of these conditions holds then there is a unique operator D € L(F, H) such that AD = B and R(D) C
N(A)L. We shall call D the reduced solution of AX = B. Moreover, N(D) = N(B).

The following result due to Sebestyén will be crucial along this article. Here, we present a different
proof by means of Douglas’ theorem.

Theorem 2.3. (See [22].) Let A, B € L(H, K). The equation AX = B has a positive solution if and only if
BB* < AAB* for some A > 0.

Proof. Let Y be a positive solution of AX = B. Since R(AY) C R(AY!/2) we obtain, by Douglas’ theo-
rem, that BB* = AYYA* < AAY/2Y1/2A* = JAY A* = LAB* for some A > 0.

Conversely, if BB* < AAB* for some A > 0 then, by Douglas’ theorem, there exists D € L(H) such
that (AB*)!/2D = B, R(D) € N((AB*)'/2)L and N(D) = N(B). Then,

(AB*)?DA* = BA* = (AB*)'/*(AB*)'2. (1)

Therefore, DA* and (AB*)'/2 are both the reduced solution of (AB*)'/2X = BA*. Thus, by the
uniqueness of the reduced solution, we get that DA* = (AB*)1/2. So AD*D = (AB*)!/2D =B, i.,,
Y =D*D e L7 is solution of AX = B and the result is obtained. O

Corollary 2.4. If the operator equation AX = B has a positive solution then there exists Y € L(H)™" such that
AY =B and N(Y) = N(B).

Proof. Let D be the reduced solution of (AB*)!/2X = B. Then, by the proof of Theorem 2.3, Y = D*D
is a positive solution of AX =B with N(Y) =N(B). O

3. Theset T~

This section is devoted to the study of the set defined as

T:=P-L'={TeL(H): T=PAwithPePandAc Lt}

As we mentioned, the subclass P - P has been studied in [6] where several properties of this set have
been provided. However, it must be noted that many properties of 7 - P are not longer valid in 7. For
instance, given T € P - P, it holds that T € CR if and only if { = R(T) + N(T) (see [6, Theorem 3.2]).
Now, this characterization is not true if T € 7. Indeed, consider T € £* with non-closed range then
T € T and H = R(T) + N(T). Moreover, both sets have different topological properties. For example,
P - P is closed but T is not. In fact, T, = [1(/)" (])] = [(1) 8][1{" ;] e T. However, limy_, o0 Tn = [g (1)] ¢T
(see Theorem 3.2).
In what follows, given T € 7 we denote

T :={AeL@)": AP € Psuch that T = PA}
and

7L :={PeP: 3A € L(H)" suchthat T = PA}.
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In the following lemma we collect some properties of 7.

Lemma 3.1. Let T € 7. Then, the following conditions hold:

. Pm € 'TTP.

. The spectrum of T, o (T), is positive.

.T"eT foralln e N.

.TeGifandonlyifT e GT.

ifTT*=T*T thenT € L.

. R(T) N N(T) = {0}, i.e., N(T*) + R(T*) is a dense subspace of .

. R(T*) N N(T*) = {0} but, in general, R(T*) N N(T*) # {0} (i.e., R(T) + N(T) is not dense, in general).
As a consequence, in general, T* ¢ T .

NV WN

Proof. 1. Since T € T, then T = PsA for some Ps € P and A € L*. Therefore, R(T) €S and as S is
a closed subspace, then R(T) € S. Hence, T = PrT = Pra PsA =Py A and so Py € Tr.

2.Let T=PA then o(T) =0 (PA) =0 (AV2PAV2) > 0.

3.Let T=PAe7T and k € N. Then, T2 = (PA)2k = P(AP)X(PA)* = P(T*)*Tk € T On the other
side, T2+1 = TT2k = pAP(T*)¥Tk = p(T*)k*+1Tk = p(T*)XAPT*K = P((T*)XAT¥) € T". Then the asser-
tion follows.

4.1f T €@ then, by item 1, I € 7;F and so T € G™.

5. Applying item 2, we have that T is a normal operator with o (T) >0, then T € L.

6. Let T=PA and x € R(T) N N(T). Since R(T) C R(P) then PAPx =0, i.e., AY/2Px=0 and so
APx=T*x=0. Thus, x € R(T) " N(T*) = {0} and the result is obtained.

7. Let T=PA and z € R(T*) N N(T*). Hence, z = APx for some x € H and APz = 0. Thus,
APAPx=0, and so PAPAPx=0. Hence, PAPx =0 and so A'/2Px = 0. Therefore, APx=z =0.

For the second part, consider A € £ with non-closed range and x € R(A) \ R(A). Define S =
span{x} and T = PsA. Clearly, T € 7 and N(T) = N(A). Thus, R(T*) = R(A) and {0} # span{x} =
StNRA)=SLNRTH S NTHNRT®. O

In [21], it is proven that T € P - £" if and only if T*T? is selfadjoint. In particular, this shows that
P-Lh is closed; recall that 7= - L% is not. It is natural to ask if a necessary and sufficient condition
for Te 7 =P - Lt is that T*T? be positive. The next result proves that the answer is negative, and
that a stronger condition is needed.

Theorem 3.2. et T € L(H) and P =P RO The following conditions are equivalent:

1.TeT;

2. TT* < ATP for some A > 0;

3. TP e £t and R(T(I — P)) C R(TP)'/?);
4. (T*T)2 < AT*T2 for some A > 0.

Proof. 1 = 2. If T € T then the equation T = PX has a positive solution and so, by Theorem 2.3,
TT* < ATP for some A > 0.

2=3.If TT* < ATP for some A >0 then TP € £T. In addition, T(I — P)T* =TT* — TPT* <
TT* < ATP. Therefore, by Douglas’ theorem, R(T(I — P)) € R((T P)1/?).

3 = 4. Suppose TP € £ and R(T(I—P)) € R((TP)'/2). Then, by Douglas’ theorem, TT* —TPT* <
o TP for some « > 0. As R(TP) C R((TP)/?), using again Douglas’ theorem, we get that (T P)2 < TP
for some B > 0. Hence TT* < (o + B)T P. Now, the assertion follows multiplying with T*, T

4 = 1. Assume that item 4 holds. By Theorem 2.3, there exists Xo € £ such that T*T = T*X,, and
so T*T =T*Xg=T*PXg. Thus, T and PXj are both solutions of the operator equation T*X = T*T.
Moreover, R(T), R(PXo) € N(T*)L = R(T), i.e, T and PXy are both the reduced solution of T*X =
T*T. Hence, by the uniqueness of this solution, we obtain that T=PXpandso T€7. O
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Theorem 3.3. Let T € CR and P = Pg(r). The following conditions are equivalent:

1.TeT;
2. there exists A € Gt such that T = PA;

3. R(T)+ N(T)=H and TP € L.

Proof. 1 => 2. Let T € 7. Hence, there exists B € £ such that PB = T. Therefore, R(B) + R(T)* = .
Define A := B+ Pgr.. Hence, R(A'/2) = R(B/?)+R(T)> DH and so A€ G'. Now, as PA=PB=T,
the result is obtained.

2 = 3. Suppose that T = PA with A € G*. Since A € G*, then (x, y)a := (Ax, y) defines a in-
ner product equivalent to {,). Now, since N(T) = A~1(R(T)*) = R(T)14 then R(T) + N(T) = . In
addition, TP = PAP € LT,

3 = 1. Assume that R(T) + N(T) = and TP € L*. Let us define A := T*(TP)'T. Note that
since R(TP) = R(T) (because R(T) + N(T) =H) then TP has closed range and so (TP) € £*. Thus,
AefLtand T=PA,ie, TeT. O

Observe that as an immediate consequence of Theorem 3.3 we obtain that Q@ C 7.

Remark 3.4. Taking into account Lemma 3.1 and Theorem 3.3, a natural question is if R(T) N N(T) =
{0} and TPW e L1 imply T € 7. However, this is false in general. In fact, consider a Hilbert space
decomposition H =S @ S+ and define T = [g g] with a a positive injective operator with non-closed
range and b such that R(b) ¢ R(a'/?). Then, R(T) = R(a) = S and so, by the injectivity of a, we have
that R(T) N N(T) = {0}. Moreover, TPre = [88] € L*. However, since R(b) ¢ R(al/?), then there
does not exist A € LT such that T = P,TT)A, i.e, T ¢ T (see[23] and [19]).

In the sequel, we abbreviate

'Tcr = T NCR.
Note that, by Theorem 3.3, 7o: =P - G*.

Proposition 3.5. It holds 7}1 =Ter.

Proof. Let T € 7 then by Theorem 3.3, T = PA with A € Gt and P = Pg(r). Now, define C =
Prap)A~". Observe that TC = P and R(C) = N(T)* then, by Theorem 3.1 in [2], TT = C = Pgiap)A~"
and so TT € 7. The converse follows from the fact that (T =T. 0O

4. Optimal factorization

In this section, given T € 7, we describe all factors A € 7_T+ and P e 7'T7D such that T = PA. In
particular we show that T admits an optimal factorization.

Proposition 4.1. Let T € T. Then, there exists A € 7}* with N(A) = N(T). Moreover, there exists a unique
Ae 7'T+ with N(A) = N(T) if and only if R(T*) N N(T*) = {0}.

Proof. Let P = Prey- As T €T then PX =T has a positive solution. Now, by Corollary 2.4, there
exists A e LT such that PA=T and N(A) = N(T).

On the other hand, suppose that S = R(T*) N N(T*) # {0} and let A € T;" with N(A) = N(T).
Define Y := A + Pg. Observe that Y € 7;" and so N(Y) € N(T). Now, let x € N(T) € S*. Then Yx =
Ax+ Psx=0. Thus, N(T) C N(Y), i.e,, N(T) = N(Y) and so the uniqueness does not hold. Conversely,
suppose that there exist A1, Ay € ’7';r with N(A1) = N(Az) = N(T). Then A1 — Ay is a selfadjoint
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solution of the equation PX = 0. Then, by Lemma 2.8 in [3], A1 — Ay = (I — P)(A1 — A2)(I — P).
Therefore R(A1 — Az) € R(T*) NR(T)* = R(T*) N N(T*) ={0}. So that A; =A,. O

Remark 4.2. In the sequel, given T € 7 we shall denote by

Ar = (((TPY'A)'T)*((TPy2)'T,

where P = PW' Note that:

1. Ar € 7?_.

2. N(A1) = N(T).

3. T = PAr.

4, If T € T then R(AT) = R(T™).

Indeed, as T € T, then the equation PX =T has a positive solution. Therefore, items 1 and 2 follow
by the proof of Corollary 2.4. Moreover, since At € 7'T+ then there exists Ps € P such that T = PsAr.
Then, as R(T) C S, it holds that T = PWPSAT = PmAT- On the other hand, if T € 74 then,

by Theorem 3.3, % = R(T) + N(T). Hence, R(TP) = R(T), and R(((TP)V/?)TT) = R((TP)/?)TTP) =
R((TP)1/2) = R(TP) = R(T). Then R(Ar) is closed and so, by item 2, R(A7) = R(T*).

Observe that, by Theorem 3.3, given T € Ter, it holds that = R(T) + N(T). Thus, the projection
Qr(ry//n(r) With range R(T) and nullspace N(T) is well-defined. In the next proposition we show
that this projection can also be factorized in terms of the factors of T € 7.

Proposition 4.3. Let T € T and P = Pg(r). Then,
Qrery/ /Ny = P(ATP) Ar.

Proof. It is easy to check that P(Ar P)fA7 is an idempotent operator with R(P(ATP)fAT) C R(T).
Thus, let us show that N(P(ATP)TAr) = N(T). Now, let x € N(P(ArP)TAr). Then (ArP)TArx €
R(T)L N N(ArP)t = R(T)* N R(T) = {0}. So that Arx € R(T*) N N((ArP)") = R(T*) N N(PAT) =
R(T*) N N(T) = {0}. Hence x € N(Ar) = N(T) and so N(P(ArP)'Ar) € N(T). The other inclusion
is trivial. In consequence P(Ar P)TAT = Qrmy/Nm)- O

Our next result fully describes the set 7'T+.
Proposition4.4. Let T € T and P = P Then
T ={Ar+(U—P)CU—-P): CeLT}.
In particular, 7}+ is a closed convex set.

Proof. Let us consider the orthogonal decomposition # = R(T) @ R(T)L. Then, under this decom-
position, T = [% fg] and P = [:}8]. Thus, if A€ 7;" then T = PA and so, by [23] (see also [19]),
A= [2 ey ] with d= @)ty and f € LR(T))*. Now, A = [2 AR 0]=Ar+U—-P)CU-P)
with C e LT,

The other inclusion follows from Remark 4.2. O

Corollary 4.5. Let T € T¢; and P = Pg(r). Then,

T NG={Ar+(I—P)CI-P): Cegt}.
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Proof. Let A e TT+ be an invertible operator. Then, by Proposition 4.4, A= At + (I — P)S(I — P) with
S e LT. Now, let us define C =S+ TT* € L*. Note that R(C) = H. In fact, by Theorem 2.1 and
Remark 4.2, H = R(A) = R(T*) + R((I — P)S/?). Now, by Theorem 3.3, R(I — P) + R(T*) = N(T*) +
R(T*) = H. Hence, R((I — P)SY/2) = R(I — P) and so H = R(5'/2) + R(T) = R(C). Thus, C € G(H)*
and A= A7+ — P)S(I— P)=Ar + (I — P)CU — P).

For the converse, it is sufficient to note that given C € G(H)™T then R((Ar + (I — P)C(I — P))1/2) =
R((AT)1/2) + R((I — P)CV/?) = R(T*) + N(T*) = H, where the last equality is consequence of Theo-
rem 3.3. Therefore, At + (I — P)C(I — P) € G* and the result is proved. O

In the next proposition we describe the elements of G that factorize CR™ and Q.

Proposition 4.6. Let A € G*. The following equivalence holds:

1. PA€CR™ for some P € P ifand only if A(S) = S for some closed subspace S.
2. PA € Q forsome P € P ifand only if A'/?|s is an isometry for some closed subspace S.

Proof. 1. If PA € CR™ for some P € P with R(P) =S then PA = AP and so AS = S. Conversely,
if AS=S then PsAPs = APs and so APs € CR™.
2. See Theorem 2 in [15]. O

In the next proposition we show that At is optimal in 7}+ in two senses.
Proposition 4.7. Let T € T Then, A = min7;". Moreover, | Ar|| = min{||All: A € T;7}.

Proof. If A € ’TT+ then, by Proposition 4.4, A= At + C with C € £+ and so At < A. Thus, the first
equality is proved. For the second equality, as 0 < At < A, then for all x € H with ||x|| =1, we have
that (Arx, x) < (Ax,x) <||A|l. Thus, |Ar|l = supy=1(Arx,x) < [All. O

We now study the set 7;”.

Proposition 4.8. Let T € 7. Then,

7§ ={Ps € P: S=R(T) ® M for some M C N(T)}.
Moreover, fixed A € T;" then

{Ps€P: T=PsA}={PseP: S=R(T) &M for some M S N(A)}.
On the other hand, fixed P € 7,

{[Aect: T=PA}={Ar+ (I —-P)CU-P): CeL}].

Proof. Let us prove the first equality. For this, if T = PsA with A€ £t then R(T) €S and so T =
P A Furthermore, M := S©R(T) is well-defined and S = R(T) & M. Therefore, P.s = P+ P
and PrmyA=T=PsA=PgmA+PMmA After cancellation, we get P(A =0, i.e., M € N(A). Now,
since N(A) C N(T) we obtain the desired inclusion.

Conversely, let S = R(T) & M with M C N(T). Since T € T, there exists A € £t with N(A) =
N(T) such that T = PWA. Now, as M C N(T) = N(A) we obtain that PsA = PWA +PpA=T.
The equality is proved.

The second equality can be proved similarly.

Now, given P € 77", we know that R(P) = R(T) & M with M C N(T). Thus, P = Pge + Pt
Note that as N(T) = N(Ar) then we get that PAr = T. Now, let A € £* such that PA = T. Hence,
by Proposition 4.4, A=At + (I — PW)C(I - P,TT)) for some C € LT. Hence, T = PA = PA1 +
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(P = PPre)C(I — Pgey) =T + (P — Pre)C(I — Pgep)- Thus, (P — Pr)C(I — Pis) =0 and so
(P = P)C(I = Pre) P = (P — Py )C(P — Piy) = 0 Now, as P — Py = Py, then PpgCPpq =0,
ie., R(C/?) C M. Finally, (I=Pgr)CU = Pres) = U= (P =PA))CU—=(P—Ppp) = (I—P)C(I—P)
and so A=At + (I — P)C(I — P). The other inclusion follows from PAr =T. O

As consequence of the previous results we obtain a characterization of the set {(P, A): PA =T}
for a given T € 7. Observe that Proposition 4.8 gives partial answers of this problem.

Theorem 4.9. Let T € T,P € Pand A € L. Then, T = PA if and only if there exists a closed subspace, M,
of H and C € L such that

1. R(P)=R(T) & M;
2. M S N(T);
3. A=Ar + (I — P)C(I — P).

Proof. It follows from Proposition 4.8. O
We prove now the minimality of ) in 'TTP.
Proposition 4.10. Let T € 7. Then, Py = min 7,7
Proof. Let Ps € 7. Then, R(T) S, i.e, Py < Ps. O
Definition 4.11. For T € 7 the identity T = Pm/‘\r is called the optimal factorization of T.

Remark 4.12. In [6] it is proven that, for T € P-P, the identity T = PreyPneryLs found by T. Crimmins
(see [21, Theorem 8]) has several minimality properties. We show now that it coincides with the
optimal factorization of T, i.e., for T € P-P it holds At = Pyqy.. In fact, Py(r)1 is a positive operator
with nullspace N(T), so, by Crimmins’ result, Pyr). € ’TT+. On the other hand, by [6, Theorem 3.2],
R(T*) N N(T*) = {0}. Then, by Proposition 4.1, we get Ay = Preryt-

5. Compatibility

The aim of this section is to relate the factors P, A of a given T € 7 with compatibility. The
notion of compatibility relates a closed subspace S of H and a positive operator A € L(#). More
precisely, the pair (A,S) is called compatible if there exists Q € Q with R(Q) = & such that
AQ = Q*A (this means that Q is Hermitian respect to the semi-inner product induced by A). This
notion can be also extended to unbounded projections, in which case the pair (A, S) is called quasi-
compatible if there exists a densely defined closed projection Q onto S such that AQ is symmetric.
The quasi-compatibility (resp., compatibility) of a pair (A, S) is equivalent to S + (AS)L = H (resp.
S+ (AS)* =H). In particular, the notion of compatibility is also equivalent to certain angle condition,
more precisely, the Dixmier angle between S and AS is non-zero. Recall that the Dixmier angle be-
tween two closed subspaces S1,S» is that whose cosine is ¢g(S1, S2) = sup{|{(x, y)|: x€ S1, y €S2,
x|, Iyl < 1}. Therefore, it holds that (A, S) is compatible if and only if cq(S+, AS) < 1. For more re-
sults on the theory of compatibility see [7] and references therein. For details on quasi-compatibility
see [4].

Given T € T, we study the quasi-compatibility (resp., compatibility) of the pairs (A, S) such that
T = PsA. We begin by showing that such compatibility is independent of the factors chosen, that is,
it depends only on T and not on the particular Pg, A.
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Proposition 5.1. Let T = PsA e T.

1. The following conditions are equivalent:
(a) (A,S) is quasi-compatible;
(b) R(T) + N(T) is a dense subspace of H;
(c) R(T*) N N(T*)={0}.

2. The following conditions are equivalent:
(a) (A, S) is compatible;

b) co(S*, AS) <1;

) R(T) + N(T) =H;

) R(T*) + N(T*) =H;

)

)

(
(c
(d
(e) co(R(T), N(T)) < 1;
(f) co(R(T*), N(T*)) < 1.

Proof. By Proposition 4.8, S = R(T) ® M with M C N(A). Then, (AS)+ = (AR(T))* = R(APW)J- =
N(PeryA) = N(T).

1. If (A,S) is quasi-compatible then H = S+ (AS)L = S+ N(T) € R(T)+ M+ N(T) =
R(T) + N(T) because M C N(A) C N(T). The converse is similar. (b) < (c) follows by taking or-
thogonal complements.

2. (@) < (b) follows from Theorem 2.15 in [7]. Now, if item (a) holds then # = S + (AS)~. That
is, H=38 + N(T) = R(T) ® M + N(T) = R(T) + N(T), where the last equality follows from M C
N(A) € N(T). Moreover, by Lemma 3.1, H = R(T) + N(T). Thus, (a) = (c). (c) < (d) is consequence
of Lemma 11 in [9]. (d) = (e) follows from Theorems 12 and 15 in [9]. (e) = (f) is also consequence
of Theorem 12 in [9].

Finally, if item (f) holds, as R(T*) = AS and S+ C N(T*), then co(AS, S*) < cg(R(T*), N(T*)).
Therefore, (f) = (a) because of Theorem 2.15 in [7]. O

In the next result, given a positive operator A and a closed subspace S, we characterize the quasi-
compatibility of (A, S) in terms of the existence of certain operator in 7.

Proposition 5.2. et Ae LT and S a closed subspace of H. The pair (A, S) is quasi-compatible if and only if
there exists T € T such that R(T) = AS and N(T) = (S © (AS)1)*.

Proof. If (A, S) is quasi-compatible then, by [4, Proposition 2.15] there exists T € £L(H) such that
TT*T = T2, R(T) = AS and N(T) = (S © (AS)1)L. Then, (T*T)?2 = T*T? and so, by Theorem 3.2,
T e T. Conversely, if there exists T € 7 such that R(T) = AS and N(T) = (S & (AS)1)L then, by
Lemma 3.1, ASN (S 6 (AS)1)L ={0}. So that S + (AS)™* is dense in . Therefore, (A,S) is quasi-

compatible. O

Given a quasi-compatible pair (A, S) there exists a distinguished element with optimal properties
among all densely defined idempotents Q with domain S + (AS)+, R(Q) =S and AQ symmetric,
namely, P4 s := Qs//a8)Les (see [4]). If the pair (A, S) is compatible then P4 s is bounded.

Proposition 5.3. Let T € T be such that R(T) + N(T) = H. Therefore, if T = Ps A then (A, S) is compatible
and

Pa.s = Qs nery + P

where S = R(T) @ M and M C N(A).

Proof. The compatibility of the pair (A,S) follows from Proposition 5.1. Moreover, by Proposi-
tion 4.8, S = R(T) ® M with M C N(A). Now, define E = QW//N(T) + P aq. Since M € N(T) and
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MLR(T) then E? = E. Furthermore, AE = E*A. Indeed, since N(T) = (AR(T))* then AQge Ny =

QW//N(T)A' Now, since AE = AQR(T)//N(T) we get that AE = E*A. In addition, it is clear that

R(E) C S. Hence, it remains to show that N(E) = N(P4_ s). Observe that N(P, s) = (AS)- N((AS)* N

8L = N(T) N (N(T) N (R(T) + M)+ = N(T) N (N(T) N M)+ = N(T) N ML. Now, we prove the

equality N(E) = N(T) N M=. Clearly, N(T) N M+ C N(E). For the other inclusion, if x € N(E) then

Qe nenX = —Pmx e R(T) N M = {0}. So that x € N(T) N M~*. Then N(E) = N(P4.s) and so
=Pps. O

Remark 5.4. Given T € T such that R(T) + N(T) is a dense subspace of H then, by Proposition 5.1,
the pair (A, S) is quasi-compatible for all A, S such that T = PgA. In this case,

Pa.s = Qray nery + PmIremencr)-
Corollary 5.5. Let T € T¢;. Then:

1. if T = PsA then (A, S) is compatible;
2. (A, R(T)) is compatible for all A € ’TT+ and Pa gty = P(Ar P)fAr where P = PRr(T).

Proof. It follows from Theorem 3.3 and Propositions 4.3 and 5.3. O

6. Polar decomposition

This section is devoted to the study of the polar decomposition of the operators in 7. For this,
given T € L(H) we shall denote by V1 the partial isometry of the polar decomposition of T, i.e., V1 €
J={VeLlH): VV*V =V} and T = V¢|T| with N(V7) = N(T) and |T| = (T*T)"/2. In addition,
given a class of operators M, we denote

Im ={V € J: thereexists T € M suchthat V = Vr}.

The sets Jg and Jp.p have been studied in [5] and [6], respectively. Our goal in this section is to
describe the set J7.

Proposition 6.1. The following relations hold:

1. Tﬂj:jg;
2. Jo S Ipp S IT.

Proof. 1. If follows from [5, Theorem 5.1].

2. The first inclusion can be deduced from [5,6]. In fact, if E € Q then ET = Pyt Preey by a result
of Penrose [20] (see also Greville [13] or Vidav [24]): the reader can easily check that X = Py Prek)
satisfies the four Penrose conditions EXE = E, XEX = X, (XE)* = XE, (EX)* = EX. This shows that
Qf € PP and, therefore, Jot € Ip.p. On the other side, for any class M C L(H), the properties of
the standard polar decomposition show that [+ = Jaq+. Since Q is closed by the adjoint operation,
we get Jg = Jot € Jp.p as claimed.

The second inclusion is consequence of P-P C7T. O

Proposition 6.2. Let A € Gt. Then, PA € Jg for some P € P ifand only if A|s is an isometry for some closed
subspace S.

Proof. Suppose that PA € Jo for some P € P. Then, P = PA(PA)* = PA?P and so, (PA?)? =
PA?PA%? = PA?, ie., PA? € Q and the result follows by Proposition 4.6. Conversely, if A|s is an
isometry for some closed subspace S then, by Proposition 4.6, PAZ € Q. Moreover, R(PA2) = R(P)
because A € G. Hence, PA(PA)*PA=PA>PA=PA, ie, PAc TNT =Jg. O
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Proposition 6.3. Let T € 7. Then V3A =|T| forall A € 7'T+ and |T|Vt e LT.

Proof. Let T = Pr5A = Vr|T|, i€, VrViA = Vr|T|. Hence, VA= ViVrViA = V3Vr|T| =|T| and
so [T|Vr=V*AVreLt. O

Proposition 6.4.

Jr={VeJ:3Ae L suchthat AV € LT and R(V) N N(A) = {0}}.

Proof. Consider T = V|T| € 7. Therefore, by Proposition 6.3, AV =|T| e £+ for all A e TT+. In
addition, N(AVt) = N(|T|) = N(T). Therefore, if y € R(V1) N N(A) then y = Vrx for some x € H and
Ay=AVrx=0,ie, xe N(AV7)=N(T)=N(Vrt). So, y = Vrx =0 and the first inclusion is proved.

Conversely, let V € J such that AV € LT for some A € LT with R(V) N N(A) = {0}. Define
T:=VV*AeT. Then, T*T = AVV*VV*A = AVV*A = (V*A)?, ie. |T| = V*A. Moreover, N(T) =
N(|T|) =N(V*A) = N(AV) = N(V) where the last equality holds because R(V) N N(A) = {0}. There-
fore VV*A is the polar decomposition of T €7 and so V € Jr. O

Given two operators T, S € £(H) we write T ~ S if there exists A € G such that T = A"1SA.

Corollary 6.5.

I, ={V eJ:3AeG" suchthat AV € LT}
={VeJ:V~,BforsomeBeL(H)"}.

Proof. Let us prove the first equality. Consider T = V1 |T| € 7¢. Then, by Theorem 3.3, there exists
AeGT such that T=VrViA=Vr|T|. So ViA=|T| e L(H)" with Aegt.

For the other inclusion, let V e J such that AV € L(H)* for some A € GT. Define T := VV*A.
Clearly, T € 7¢. Moreover, it is straightforward that |[T|=V*A and N(V) = N(T).

For the second equality, note that AV > 0 for some A € G* if and only if AV/2VA~1/2=B>0, ie,
V~;yBwithB>0. O

References

[1] A. Arias, S. Gudder, Almost sharp quantum effects, J. Math. Phys. 45 (2004) 4196-4206.
[2] M.L. Arias, G. Corach, M.C. Gonzalez, Generalized inverses and Douglas equations, Proc. Am. Math. Soc. 136 (2008)
3177-3183.
[3] M.L. Arias, M.C. Gonzalez, Reduced solutions of Douglas type equations and angles between subspaces, J. Math. Anal.
Appl. 355 (2009) 426-433.
[4] G. Corach, M.C. Gonzalez, A. Maestripieri, Unbounded symmetrizable idempotents, Linear Algebra Appl. 437 (2012)
659-674.
[5] G. Corach, A.L. Maestripieri, Polar decomposition of oblique projections, Linear Algebra Appl. 433 (2010) 511-519.
[6] G. Corach, A.L. Maestripieri, Products of orthogonal projections and polar decompositions, Linear Algebra Appl. 434 (2011)
1594-1609.
[7] G. Corach, A. Maestripieri, D. Stojanoff, A classification of projectors, Banach Cent. Publ. 67 (2005) 145-160.
[8] C. Davis, Separation of two linear subspaces, Acta Sci. Math. (Szeged) 19 (1958) 172-187.
[9] E. Deutsch, The angles between subspaces of a Hilbert space, in: S.P. Singh (Ed.), Approximation Theory, Wavelets and
Applications, Kluwer, Netherlands, 1995, pp. 107-130.
[10] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert spaces, Proc. Am. Math. Soc. 17
(1966) 413-416.
[11] PA. Fillmore, J.P. Williams, On operator ranges, Adv. Math. 7 (1971) 254-281.
[12] J.I. Fujii, T. Furuta, Holub’s factorization and normal approximants of idempotent operators, Math. Jpn. 25 (1980) 143-145.
[13] T.N.E. Greville, Solutions of the matrix equation XAX = X, and relations between oblique and orthogonal projectors, SIAM
J. Appl. Math. 26 (1974) 828-832.
[14] J.R. Holub, A note on Wiener-Hopf operators and projections, Math. Jpn. 25 (1980) 31-32.
[15] J.R. Holub, Wiener-Hopf operators and projections II, Math. Jpn. 25 (1980) 251-253.
[16] J.R. Holub, On invertibility of Wiener-Hopf operators, Math. Jpn. 25 (3) (1980) 341-343.


http://refhub.elsevier.com/S0024-3795(13)00334-0/bib414775s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib414347s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib414347s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib4147s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib4147s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib43474Ds1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib43474Ds1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib434D32s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib434Ds1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib434Ds1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib434D53s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib4461s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib446575s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib446575s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib44s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib44s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib4657s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib4646s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib47s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib47s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib486F6Cs1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib486F6C31s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib486F6C32s1

M.L. Arias et al. / Linear Algebra and its Applications 439 (2013) 1730-1741 1741

[17] S. Nelson, M. Neumann, Generalizations of the projection method with applications to SOR theory for Hermitian positive
semidefinite linear systems, Numer. Math. 51 (1987) 123-141.

[18] T. Oikhberg, Products of orthogonal projections, Proc. Am. Math. Soc. 127 (1999) 3659-3669.

[19] E.L. Pekarev, J.L. Smul’jan, Parallel addition and parallel substraction of operators, Math. USSR, Izv. 10 (1976) 351-370.

[20] R. Penrose, A generalized inverse for matrices, Proc. Camb. Philos. Soc. 51 (1955) 406-413.

[21] H. Radjavi, ].P. Williams, Products of self-adjoint operators, Mich. Math. J. 16 (1969) 177-185.

[22] Z. Sebestyén, Restrictions of positive operators, Acta Sci. Math. 46 (1983) 299-301.

[23] J.L. Smul’jan, A Hellinger operator integral, Mat. Sb. 49 (91) (1959) 381-430 (Russian), English transl. AMS Transl. 22 (1962),
289-337.

[24] 1. Vidav, On idempotent operators in a Hilbert space, Publ. Inst. Math. (Belgr.) 4 (18) (1964) 157-163.

[25] PY. Wu, The operator factorization problems, Linear Algebra Appl. 117 (1989) 35-63.


http://refhub.elsevier.com/S0024-3795(13)00334-0/bib4E4Es1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib4E4Es1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib4Fs1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib5053s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib50s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib5257s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib536562s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib53s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib53s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib56s1
http://refhub.elsevier.com/S0024-3795(13)00334-0/bib57s1

	Products of projections and positive operators
	1 Introduction
	2 Preliminaries
	3 The set T
	4 Optimal factorization
	5 Compatibility
	6 Polar decomposition
	References


