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Abstract

A polyhedron in Rn is a finite union of simplexes in Rn. An MV-algebra is polyhedral if it is isomorphic to the MV-algebra 
of all continuous [0, 1]-valued piecewise linear functions with integer coefficients, defined on some polyhedron P in Rn. We 
characterize polyhedral MV-algebras as finitely generated subalgebras of semisimple tensor products S ⊗ F with S simple and 
F finitely presented. We establish a duality between the category of polyhedral MV-algebras and the category of polyhedra with 
Z-maps. We prove that polyhedral MV-algebras are preserved under various kinds of operations, and have the amalgamation 
property. Strengthening the Hay–Wójcicki theorem, we prove that every polyhedral MV-algebra is strongly semisimple, in the 
sense of Dubuc–Poveda.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction and preliminary material

This paper is devoted to polyhedral MV-algebras. On the one hand, these algebras constitute a proper sub-
class of finitely generated strongly semisimple MV-algebras, and are a generalization of finitely presented MV-
algebras. On the other hand, polyhedral MV-algebras with homomorphisms are dual to polyhedra in euclidean space, 
equipped with Z-maps (Definition 3.1). Z-homeomorphism of two polyhedra P, Q ⊆R

n amounts to their continuous 
Gn-equidissectability, where Gn = GL(n, Z) �Z

n is the n-dimensional affine group over the integers, [18]. In the re-
sulting new geometry, already rational polyhedra, with their wealth of combinatorial and numerical invariants, pose 
challenging algebraic-topological, measure-theoretic and algorithmic problems, [4–6].
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Our paper is organized as follows: Section 2 is devoted to proving the characterization of polyhedral MV-algebras 
as finitely generated subalgebras of semisimple tensor products S ⊗F , with S simple and F finitely presented. In Sec-
tion 3 we give a virtually self-contained proof of the duality between the category of polyhedral MV-algebras and the 
category of polyhedra with Z-maps. In Section 4 we prove that polyhedral MV-algebras have the amalgamation prop-
erty. In Section 5 it is shown that polyhedral MV-algebras are strongly semisimple, in the sense of Dubuc–Poveda [8]. 
This generalizes the Hay–Wójcicki theorem [10,20].

We refer to [11] and [19] for background on polyhedral topology. A set Q ⊆ R
n is said to be a polyhedron if it is 

a finite union of simplexes Si ⊆ R
n. Thus Q need not be convex, nor connected; the simplexes Si need not have the 

same dimension. If each Si can be chosen with rational vertices, then Q is said to be a rational polyhedron.
For any integer n, m > 0 and polyhedron P ⊆ R

n, a function f : P → R
m is piecewise linear if it is continuous 

and there are finitely many linear transformations L1, . . . , Lu: Rn → R
m such that for each x ∈ P there is an index 

i ∈ {1, . . . , u} with f (x) = Li(x). The adjective “linear” is always understood in the affine sense. If in particular the 
coefficients of L1, . . . , Lu are integers, we say that f is piecewise linear with integer coefficients.

We refer to [7] and [17] for background on MV-algebras. For any polyhedron P ⊆ R
n we let M(P ) denote the 

MV-algebra of piecewise linear functions f : P → [0,1] with integer coefficients and the pointwise operations of 
negation ¬x = 1 −x and truncated addition x ⊕y = min(1, x +y). By [7, 3.6.7], M(P ) is a semisimple MV-algebra. 
M([0, 1]n) is the free n-generator MV-algebra. This is McNaughton’s theorem, [7, 9.1.5]. By [17, 6.3], an MV-algebra 
A is finitely presented iff it is isomorphic to M(R) for some rational polyhedron R ⊆ [0, 1]n. An MV-algebra A is 
said to be polyhedral if, for some n = 1, 2, . . . , it is isomorphic to M(P ) for some polyhedron P ⊆R

n.
Unless otherwise specified, all polyhedra in this paper are nonempty, and all MV-algebras are nontrivial.

2. A characterization of polyhedral MV-algebras

Lemma 2.1. For any polyhedron P ⊆R
n and function f : P → [0, 1], the following conditions are equivalent:

(i) f is piecewise linear. (As specified in the first lines of Section 1, piecewise linearity entails continuity.)
(ii) For some triangulation � of P , f is linear on each simplex of �.

(iii) For any cube C = [a, b]n ⊆R
n containing P there is a piecewise linear function g: C → [0,1] such that f is the 

restriction of g to P , in symbols, f = g � P .

Proof. (i)⇒(ii) From [19, 2.2.6]. (iii)⇒(i) Is trivial.
(ii)⇒(iii) There is a triangulation ∇ of the cube C such that the set ∇P = {T ∈ ∇ | T ⊆ P } is a triangulation of P

and is a subdivision of �. The existence of ∇ is a well-known fact in polyhedral topology [11,19]. A direct proof can 
be obtained from an adaptation of the De Concini–Procesi theorem in the version of [17, 5.3]. Actually, by a routine 
adaptation of the affine counterpart of [9, III, 2.8] we may insist that ∇P = �. Let g: C → [0,1] be the continuous 
function uniquely defined by the following stipulations: g is linear on every simplex of ∇ , g coincides with f at each 
vertex of ∇P and g(v) = 0 for each vertex v of ∇ not belonging to P . Then f = g � P . Evidently, g is piecewise 
linear. �

For any polyhedron P ⊆ R
n, we denote by MR(P ) the MV-algebra of all functions f : P → [0,1] satisfying any 

(hence all) of the equivalent conditions (i)–(iii) above.
Now suppose the polyhedron Q is contained in [0, 1]n. As in [15, 4.4] or [17, 9.17], the semisimple tensor product

[0, 1] ⊗ M(Q) can be identified with the MV-algebra of continuous functions from Q into [0, 1] generated by the 
pure tensors ρ · g = ρ ⊗ g, where ρ ∈ [0, 1] and g ∈M(Q).

In Theorem 2.4 we will prove that, up to isomorphism, polyhedral MV-algebras coincide with finitely generated 
subalgebras of a semisimple tensor product [0, 1] ⊗M(R), for some rational polyhedron R ⊆ [0, 1]n, n = 1, 2, . . . . 
We prepare:

Lemma 2.2. Up to isomorphism, [0,1] ⊗M([0, 1]n) =MR([0, 1]n).
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Proof. The inclusion [0,1] ⊗ M([0, 1]n) ⊆ MR([0, 1]n) is immediately verified, because the MV-algebra [0,1] ⊗
M([0, 1]n) is generated by its pure tensors, each pure tensor ρ ⊗ f = ρ · f belongs to MR([0, 1]n), and piecewise 
linearity is preserved by the MV-algebraic operations.

To prove the converse inclusion [0,1] ⊗M([0, 1]n) ⊇ MR([0, 1]n), we make the following:

Claim. Every truncated linear map

t (x) = t (x1, . . . , xn) = 1 ∧ (
0 ∨ (α0 + α1x1 + · · · + αnxn)

)
defined on [0, 1]n, with real coefficients α0, . . . , αn, belongs to [0,1] ⊗M([0, 1]n).

The claim is trivially true for every constant function f (x) = ρ (ρ ∈ [0,1]), because f is the pure tensor ρ ⊗ 1
of [0,1] ⊗ M([0, 1]n). Inductively, we may assume that the function t depends on all its variables, whence each of 
α1, . . . , αn is nonzero, and

0 < t(x) < 1 for some x ∈ [0,1]n. (1)

Now let us agree to say that a function f : [0, 1]n → R is flat if it has the form

f (x) = f (x1, . . . , xn) = β0 +
∑
i∈I

βixi +
∑
j∈J

βj (1 − xj ), (2)

where I ∩ J = ∅, I ∪ J = {1, . . . , n}, β0, β1, . . . , βn ≥ 0, and β0 + β1 + · · · + βn ≤ 1. The graph of f is linear. 
Let v = (v1, . . . , vn) be the vertex of the n-cube [0, 1]n given by vi = 0 for i ∈ I and vj = 1 for j ∈ J . Also let 
w = (w1, . . . , wn) be the vertex of the n-cube [0, 1]n given by wi = 1 for i ∈ I and wj = 0 for j ∈ J . Then f (v) = β0
is the minimum value of f , and f (w) = β0 +β1 +· · ·+βn is the maximum. The constant function β0 = β0 ⊗1 is a pure 
tensor of [0,1]⊗M([0, 1]n). For each k ∈ {1, . . . , n}, letting πk: [0, 1]n → [0,1] denote the kth coordinate projection, 
define π∗

k = πk if k ∈ I , and π∗
k = ¬πk if k ∈ J . Then βkπ

∗
k = βk ⊗ π∗

k ∈ [0,1] ⊗ M([0, 1]n). A direct inspection 
shows that f = β0 + β1π

∗
1 + · · · + βnπ

∗
n = β0 ⊕ β1π

∗
1 ⊕ · · · ⊕ βnπ

∗
n , whence f belongs to [0,1] ⊗M([0, 1]n).

Next let us say that the function g: [0, 1]n → R is subflat if for some flat f as in (2) with β0 = 0, and σ with 
0 < σ < 1, g has the form g(x) = f (x) � σ = f (x) � ¬σ = f (x) � (1 − σ). Recalling (1), the graph of g consists 
of two linear pieces. Again, g belongs to [0,1]⊗M([0, 1]n), because it is obtained from f ∈ [0,1]⊗M([0, 1]n) and 
the pure tensor σ ⊗ 1 via MV-algebraic operations.

To conclude the proof of the claim it is enough to prove that our truncated linear function t (x) = 1 ∧ (0 ∨ (α0 +
α1x1 + · · · + αnxn)) has the form

t (x) = m.r(x), for some integer m ≥ 0 and r either flat or subflat.

Following [7, p. 33], we let m.r denote m-fold iterated application of the ⊕ operation. Letting l(x) = l(x1, . . . , xn) =
α0 + α1x1 + · · · + αnxn, there are two possible cases:

Case 1. There is no x ∈ [0, 1]n such that l(x) = 0. Then recalling (1), for all large integers m > 0, the range of the 
function l(x)/m is contained in the open interval {β ∈ R | 0 < β < 1}. The function l(x)/m is flat, whence it belongs 
to [0,1] ⊗M([0, 1]n), and so does the function t = m.l/m.

Case 2. There is an x ∈ [0, 1]n such that l(x) = 0. Then for all large integers m > 0, the range of the function 
l(x)/m is contained in the interval {β ∈ R | −1 < β < 1}. The function 0 ∨ l(x)/m is subflat, whence it belongs to 
[0,1] ⊗M([0, 1]n), and so does t = m.(0 ∨ l(x)/m).

Having thus settled our claim, we end the proof by recalling that every function f ∈ MR([0, 1]n) can be written as 
f = ∨

i

∧
j ti,j for suitable truncated linear functions ti,j (the latter belonging to [0,1] ⊗ M([0, 1]n) by our claim). 

The familiar proof follows, e.g., by a routine adaptation of the proof of [7, 9.1.4(ii)]. Since f is obtained from the ti,j
via the MV-algebraic operations ∨, ∧ then f belongs to [0,1] ⊗M([0, 1]n). �

Generalizing the above lemma we next prove:

Theorem 2.3. For any polyhedron P ⊆ [0, 1]n, the semisimple tensor product [0,1] ⊗ M(P ) is (isomorphic to) the 
MV-algebra MR(P ).
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Proof. For the inclusion MR(P ) ⊇ [0,1] ⊗ M(P ) one observes that each pure tensor σ ⊗ f of [0,1] ⊗ M(P ) is 
piecewise linear.

We now prove the converse inclusion MR(P ) ⊆ [0,1] ⊗M(P ). The restriction to P of any pure tensor ρ ⊗ f =
ρ · f : [0, 1]n → [0,1] (ρ ∈ [0,1], f ∈ M([0, 1]n)), is a pure tensor of [0,1] ⊗M(P ), because (ρ · f ) � P = ρ · (f �
P) = ρ ⊗ (f � P) and f � P belongs to M(P ) by definition. On the other hand, every pure tensor σ ⊗ g: P → [0,1]
(σ ∈ [0,1], g ∈ M(P )), is the restriction to P of some pure tensor σ ⊗ h, h ∈ M([0, 1]n). To see this, recalling 
Lemma 2.1, let h be such that g = h � P and write (σ ⊗ h) � P = (σ · h) � P = σ · (h � P) = σ · g = σ ⊗ g. Thus 
the restriction map η: l ∈ [0,1]⊗M([0, 1]n) �→ l � P is a homomorphism of [0,1]⊗M([0, 1]n) onto [0,1]⊗M(P )

because η maps the set of pure tensors of [0,1] ⊗ M([0, 1]n) onto the set of pure tensors of [0,1] ⊗ M(P ). By 
Lemma 2.2, [0,1]⊗M([0, 1]n) = MR([0, 1]n). So [0,1]⊗M(P ) contains every function k ∈ MR(P ), because any 
such k is extendible to a function of MR([0, 1]n), again by Lemma 2.1. We have proved the inclusion MR(P ) ⊆
[0,1] ⊗M(P ). �
Theorem 2.4. An MV-algebra B is isomorphic to M(Q) for some polyhedron Q ⊆ [0, 1]m (m = 1, 2, . . .) iff it is 
isomorphic to a finitely generated subalgebra of a semisimple tensor product of the form [0,1] ⊗ M(P ) for some 
rational polyhedron P ⊆ [0, 1]n, n = 1, 2, . . . .

Proof. (⇒) Let � be a triangulation of Q, with its vertices v1, . . . , vd . The underlying abstract simplicial complex 
of � has a geometric realization in [0, 1]d sending each vi to the unit vector ei along the ith axis of Rd , in such a 
way that e1, . . . , ed are the vertices of a triangulation �′ of a rational polyhedron P ⊆ [0, 1]d , and the map ei �→ vi

determines a piecewise linear homeomorphism h = (h1, . . . , hm) of P onto Q, with h linear on each simplex of �′. 
Thus in particular, for every i = 1, . . . , m the function hi belongs to MR(P ). By Theorem 2.3 each hi belongs to 
[0,1] ⊗M(P ). Let A be the subalgebra of [0,1] ⊗M(P ) generated by {h1, . . . , hm}. A routine modification of the 
argument used for the proof of [17, 3.6] shows that A is isomorphic to M(h(P )) = M(Q) = B: specifically, letting 
◦ denote composition, the map f ∈M(Q) �→ f ◦ h provides an isomorphism of M(Q) onto A.

(⇐) Suppose B ⊆ [0,1] ⊗ M(P ) is generated by g1, . . . , gm. By Theorem 2.3, each generator gi is a member 
of MR(P ). Let the continuous map g: P → [0, 1]m be defined by g(x) = (g1(x), . . . , gm(x)). Then the map f ∈
M(g(P )) �→ f ◦ g is an isomorphism of M(g(P )) onto B . Further, the image Q = g(P ) ⊆ [0, 1]m of the rational 
polyhedron P under the map g is a polyhedron (see, e.g., [19, 1.6.8]). We conclude that B is isomorphic to the 
polyhedral MV-algebra M(Q). �
Remark 2.5. In Theorem 3.6 we will see that the restriction Q ⊆ [0, 1]n is immaterial, and the above characterization 
holds for every polyhedral MV-algebra.

3. Z-maps and the polyhedral duality M

We refer to [1] and [12] for all unexplained notions in category theory. In Corollary 3.5 we will introduce a duality 
between polyhedral MV-algebras and polyhedra. As a preliminary step, in Theorem 3.3 we give a self-contained proof 
of the duality [13] between compact sets in euclidean spaces and finitely generated semisimple MV-algebras.

Definition 3.1. Given integers n, m > 0 together with rational polyhedra P ⊆ R
n and Q ∈ R

m, a piecewise linear 
map with integer coefficients ξ : P → Q is called a Z-map. More generally, given compact sets X ⊆ R

n and Y ⊆ R
m, 

a map η: X → Y is called a Z-map if there exist rational polyhedra X ⊆ P and Y ⊆ Q, and a Z-map ξ : P → Q such 
that η = ξ � X.

We let

Z(X,Y ) = {η:X → Y | η is a Z-map}. (3)

By Lemma 2.1, for any polyhedron P ⊆R
n we have M(P ) = Z(P, [0, 1]).
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Notation We let C denote the category whose objects are compact subsets of Rn (n = 1, 2, . . .) and whose morphisms 
are Z-maps. We further let S be the full subcategory of MV-algebras whose objects are finitely generated semisimple 
MV-algebras.

Let P and Q be rational polyhedra. If (and only if) P and Q are C-isomorphic then there exists an injective surjec-
tive Z-map η: P → Q such that η−1 is also a Z-map. Following [17, 3.1], we then say that η is a Z-homeomorphism, 
and that P and Q are Z-homeomorphic, in symbols, P ∼=Z Q.

In Theorem 3.3 we will see that C and S are dually equivalent. We prepare:

Lemma 3.2. Let P ⊆R
n be a polyhedron and X, Y ∈ C.

(i) The image ξ(P ) of P under a Z-map ξ : P →R
m is a polyhedron.

(ii) For some n ∈ {1, 2, . . .} there is W ⊆ [0, 1]n such that W ∈ C and W is C-isomorphic to X.
(iii) If X ⊆ Y then for each y ∈ Y \ X there exists a Z-map γ : Y → [0, 1] such that γ (X) = 0 and γ (y) = 1.

Proof. (i) This is [19, 1.6.8]. (ii) Let R ⊆R
n be a rational polyhedron containing X. By [16, p. 1040] or [14, 3.5], each 

rational polyhedron R is C-isomorphic (i.e., Z-homeomorphic) to a rational polyhedron Q ⊆ [0, 1]n for some n. Let 
η: R → Q be a C-isomorphism between R and Q and W = η(X). Then η � X: X → W determines a C-isomorphism 
between X and W ⊆ Q ⊆ [0, 1]n. (iii) Straightforward from [17, 3.7]. This is also a particular case of complete 
regularity by definable functions, see [13, Lemma 3.5]. �
Theorem 3.3 (Duality). Let the functor M: C → S be defined by:

Objects: For any X ∈ C, M(X) is the MV-algebra Z(X, [0, 1]) of Z-maps as in (3), with the pointwise MV-algebraic 
operations of [0, 1].

Arrows: For every X, Y ∈ C and Z-map η: X → Y , M(η) is the map transforming each f ∈M(Y ) into the composite 
function f ◦ η.

Then M is a categorical equivalence between C and the opposite category Sop of S . For short, M is a duality between 
the categories C and S .

Proof. Once M(X) is stripped of its MV-structure, M is just the contravariant hom-functor Z(−, [0, 1]). It is imme-
diately verified that M(η) is an MV-homomorphism of M(Y ) into M(X) for each Z-map η: X → Y .

Claim 1. M is faithful.

Let X, Y ∈ C and η, η′ ∈ Z(X, Y) be such that η �= η′. Let x ∈ X be such that η(x) �= η′(x). By Lemma 3.2(iii) 
there exists f ∈M(Y ) such that f (η(x)) �= f (η′(x)). Thus (M(η))(f ) �= (M(η′))(f ).

Claim 2. M is full.

Let h: M(X) → M(Y ) be a homomorphism. By Lemma 3.2(ii) we can assume X ⊆ [0, 1]m. For each i ∈
{1, . . . , m} let πi : [0, 1]m → [0, 1] be the ith coordinate function. Since each πi is a Z-map, the restriction πi � X

is a member of M(X). For each i ∈ {1, . . . , m} there exists a rational polyhedron Pi ⊇ Y together with a Z-map 
fi : Pi → [0, 1] satisfying h(πi � X) = fi � Y . Let the Z-map η: P1 ∩ · · · ∩ Pm → [0, 1]m be defined by η(x) =
(f1(x), . . . , fm(x)). Since {π1, . . . , πm} is a generating set of M([0, 1]m) and h(πi � X) = fi = (πi ◦ η) � Y , then

h(g � X) = (g ◦ η) � Y, for each g ∈M
([0,1]m)

.

By Lemma 3.2(iii), for each x ∈ [0, 1]m \ X there is a Z-map, g: [0, 1]m → [0, 1] such that g(X) = 0 and g(x) �= 0. 
Thus h(g � X) = 0 = (g ◦ η) � Y and x /∈ η(Y ). From the inclusion η(Y ) ⊆ X it follows that η � Y : Y → X is a Z-map 
and h =M(η).
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Claim 3. For each A ∈ S there exists X ∈ C such that A ∼=M(X).

This follows from [7, 3.6.7].
Having thus proved Claims 1–3, an application of [12, IV.4.1] yields the desired conclusion. �

Remark 3.4. In [13, §3] the authors establish a duality between compact sets K ⊆ [0, 1]n, n = 1, 2, . . . equipped with 
“definable maps”, and finitely generated semisimple MV-algebras. Theorem 3.3 is an equivalent reformulation of that 
duality, modulo the following observations:

(i) The Z-maps of Definition 3.1 are a concrete geometric description of the “definable” functions of [13, 1.1].
(ii) In view of Lemma 3.2(ii), polyhedra in Rn can be safely assumed to be contained in some cube [0, 1]m.

Notation We let P denote the full subcategory of C whose objects are (not necessarily rational) polyhedra. By 
MVpoly we denote the full subcategory of S of polyhedral MV-algebras.

Corollary 3.5. The restriction to P of the functor M: C → S of Theorem 3.3 yields a duality between the categories 
P and MVpoly. Moreover, by Lemma 3.2(i), the class of polyhedra is closed under C-isomorphisms: whenever a 
polyhedron P is C-isomorphic to X ∈ C, then X is a polyhedron. �

From this corollary together with Lemma 3.2(iii), Theorem 2.4 acquires the following general form:

Theorem 3.6. An MV-algebra is polyhedral iff it is isomorphic to a finitely generated subalgebra of a semisimple 
tensor product S ⊗ F , where S is (finitely generated and) simple, and F is finitely presented.

Proof. Up to isomorphism, simple MV-algebras coincide with subalgebras of [0, 1], [7, 3.5.1], and finitely presented 
MV-algebras coincide with algebras of the form M(P ) as P ranges over rational polyhedra, [17, 6.3]. �
4. Amalgamation and coproducts

4.1. Amalgamation of polyhedral MV-algebras

It is well-known that the variety of MV-algebras has the amalgamation property (see [17, §2] and references 
therein). The same holds for finitely presented MV-algebras [17, 6.7], and for MV-chains [2]. We will prove that 
both finitely generated semisimple MV-algebras and polyhedral MV-algebras also have the amalgamation property. 
We prepare:

Lemma 4.1. Let X ⊆ R
n and Y ⊆ R

m be compact sets and η : X → Y a Z-map. Then the following conditions are 
equivalent:

(i) η is an epimorphism in C;
(ii) η is onto Y ;

(iii) M(η) is one–one.

Proof. The equivalence (i) ⇔ (iii) follows directly from Theorem 3.3, upon noting that in any variety of algebras 
monomorphisms are the same as injective homomorphisms.

The implication (ii)⇒(i) is valid in any concrete category over the category of sets. For the converse implication, 
by way of contradiction suppose that η is an epimorphism in C but is not onto Y . Let y ∈ Y \η(X). By Lemma 3.2(iii) 
there exists a Z-map γ : Y → [0, 1] such that γ (η(X)) = 0 and γ (y) = 1. Now let γ ′ be the constant zero map on Y . 
It is easy to see that γ ◦ η = γ ′ ◦ η, but γ �= γ ′, thus contradicting the assumption that η is an epimorphism. �
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Theorem 4.2. Both finitely generated semisimple MV-algebras and polyhedral MV-algebras have the amalgamation 
property.

Proof. Let X ⊆ R
m, Y ⊆ R

n and Z ⊆ R
k be objects in C. Let η: X → Z and γ : Y → Z be surjective Z-maps. Then 

the set

X ×Z Y = {
(x, y) ∈ X × Y

∣∣ η(x) = γ (y)
} ⊆R

m

is a closed subset of X ×Y , and hence is an object of C. From the surjectivity of η and γ , and the definition of X×Z Y

it follows that the projection maps πX: X ×Z Y → X and πY : X ×Z Y → Y are surjective Z-maps. By Theorem 3.3
and Lemma 4.1, the category S has the amalgamation property.

For any polyhedra X, Y and Z, suppose we have surjective Z-maps η: X → Z and γ : Y → Z. In view of [19, 
2.2.4], let � be a triangulation of X × Y such that both maps η ◦ πX and γ ◦ πY are linear on each simplex of �. The 
set

X ×Z Y = {
(x, y) ∈ X × Y

∣∣ η(x) = γ (y)
} =

⋃
{T ∈ � | η ◦ πX � T = γ ◦ πY � T }

is a polyhedron. Then the amalgamation property of polyhedral MV-algebras again follows from Theorem 3.3 and 
Lemma 4.1. �
4.2. Coproducts of polyhedral MV-algebras

We denote by SMV the class of semisimple MV-algebras. We will use the notation 
∐

S for S-coproducts, 
∐

SMV
for SMV-coproducts, and 

∐
MV for MV-coproducts. A moment’s reflection shows that finite MV-coproducts co-

incide with the finite free products of [17, §7].
The category C admits finite products, that turn out to coincide with cartesian products. Since a product of two 

polyhedra is a polyhedron (see [19, p. 29]), then also the category P has finite products. By Theorem 3.3, for all 
P1, P2 ∈ P and X1, X2 ∈ C we then have

M(P1 × P2) ∼=M(P1)
∐

MVpoly

M(P2) (4)

and

M(X1 × X2) ∼=M(X1)
∐
S

M(X2). (5)

In [17, 7.3] it is shown that both categories S (the dual of C) and MVpoly (the dual of P) are not closed under 
finite MV-coproducts.

Proposition 4.3. Let K be a set of algebras in SMV . The SMV-coproduct 
∐

SMV K coincides with MV-coproduct ∐
MV K modulo the radical of 

∐
MV K, in symbols,

∐
SMV

K ∼=
( ∐
MV

K

)/
Rad

( ∐
MV

K

)
.

Moreover, if O is any of the two categories S or MVpoly and K is a finite set of algebras in O, then∐
O

K=
∐

SMV
K.

Proof. Letting Rad(A) = ⋂{all maximal ideals of A}, the map A �→ A/Rad(A) determines a functor R: MV →
SMV . Since SMV is closed under subalgebras and (finite as well as infinite) cartesian products [7, 3.6.4], the 
functor R is the left adjoint of the inclusion functor form SMV to MV . By [12, V.5], for each (finite or infinite) set 
K of semisimple algebras, 

∐
SMV K coincides with R(

∐
MV K) = (

∐
MV K)/Rad(

∐
MV K).

For the second statement, in case O = S , suppose A, B ∈ S . Then A 
∐

SMV B is finitely generated, whence 
A 

∐
S B ∼= A 

∐
SMV B . In case O = SMV , suppose P1 ⊆R

n and P2 ⊆R
k to be polyhedra. By (4)–(5),
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M(P1)
∐

MVpoly

M(P2) ∼=M(P1 × P2) ∼=M(P1)
∐
S

M(P2)

∼=M(P1)
∐

SMV
M(P2). �

From [17, 7.9(iv)], it follows that whenever P and Q are rational polyhedra then M(P )
∐

MV M(Q) is the 
(rational) polyhedral MV-algebra M(P × Q). One may now naturally look for more general classes of polyhedral 
MV-algebras having a polyhedral finite MV-coproduct.

5. Polyhedral MV-algebras are strongly semisimple

Following Dubuc and Poveda [8], we say that an MV-algebra A is strongly semisimple if for every principal ideal 
J �= A of A, the quotient A/J is semisimple. Every strongly semisimple MV-algebra is semisimple (because {0} is 
a principal ideal of A). Trivially, all hyperarchimedean MV-algebras, whence in particular all boolean algebras, are 
strongly semisimple. By [7, 3.5 and 3.6.5], all simple and all finite MV-algebras are strongly semisimple. By [10] or 
[20], every finitely presented MV-algebra is strongly semisimple.

For every set E and real-valued function f on E we denote by Zf the zeroset of f , in symbols,

Zf = {
x ∈ E

∣∣ f (x) = 0
}
.

By [7, 3.6.7], every polyhedral MV-algebra A is semisimple. The following stronger result is also a generalization 
of the Hay–Wójcicki theorem [10,20] (also see [7, 4.6.7] and [17, 1.6]).

Theorem 5.1. Any polyhedral MV-algebra A is strongly semisimple.

Proof. Lemma 3.2(ii) yields a polyhedron P ⊆ [0, 1]n (for some integer n > 0) such that A ∼= M(P ). For every 
f ∈M([0, 1]n) we will mostly use the abbreviated notation f � for f � P . For any g ∈ M([0, 1]n) we will write 〈g�〉
for the principal ideal of M(P ) generated by g�,〈

g�〉 = 〈g � P 〉 = {
f � ∈M(P )

∣∣ f � ≤ m.g� for some m = 0,1, . . .
}
. (6)

We are tacitly assuming 〈g�〉 �= M(P ), whence the quotient M(P )/〈g�〉 is nontrivial, and the zeroset Zg� ⊆ [0, 1]n

is nonempty.

Claim. 〈g�〉 is an intersection of maximal ideals of M(P ).

As a matter of fact, let 〈g〉 be the ideal of M([0, 1]n) generated by g. Let 〈g〉 � P be the set of restrictions to P of 
the elements of 〈g〉, in symbols,

〈g〉 � P = {
f � P

∣∣ f ∈ M
([0,1]n) and f ≤ m.g for some m = 0,1, . . .

}
.

From (6) we immediately obtain the identity〈
g�〉 = 〈g � P 〉 = 〈g〉 � P. (7)

For all f ∈M([0, 1]n) we will next prove the equivalence:

f � ∈ 〈
g�〉 ⇔ Zf � ⊇ Zg�. (8)

The (⇒)-direction is an immediate consequence of (7). For the (⇐)-direction, let f ∈M([0, 1]n) be such that Zf � ⊇
Zg�, with the intent of proving

there is m = 0,1, . . . satisfying m.g ≥ f on P. (9)

To this aim, let � be a triangulation of [0, 1]n such that g and f are linear on each simplex of �, and⋃
{T ∈ � | T ⊆ P } = P. (10)
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Since P is a polyhedron and f, g are piecewise linear, � is given by an elementary construction in polyhedral topology 
[19, 2.2.6]. Let T = conv(v0, . . . , vr) be an arbitrary simplex of �. Fix a vertex vi of T . Since T ⊆ P and Zf � ⊇ Zg�, 
it is impossible to have g(vi) = 0 and f (vi) > 0 simultaneously. So we consider the following two cases:

(I) g(vi) > 0. Then letting μi = 1/g(vi) we have 1 = μig(vi) ≥ f (vi).
(II) g(vi) = f (vi) = 0. Then, letting μi = 1 we have 0 = μig(vi) ≥ f (vi) = 0.

Upon setting

mT = the smallest integer ≥ max(μ0, . . . ,μr),

from the linearity of g on T it follows that mT .g ≥ f on T . The function mT .g does belong to M([0, 1]n). Thus for 
each T ∈ � with T ⊆ P there is an integer mT ≥ 0 such that mT .g ≥ f on T . Letting now m = max{mT | T ∈ �, 
T ⊆ P } and recalling (10), we conclude that the McNaughton function m.g ∈ M([0, 1]n) satisfies m.g ≥ f on P . 
This concludes the proof of (9), as well as of (8). For each x ∈ P , let Jx be the maximal ideal of M(P ) given by 
of all functions of M(P ) that vanish at x. Combining [7, 3.4.3] with (8), for arbitrary f ∈ M([0, 1]n) we have: 
f � ∈ 〈g�〉 ⇔ Zf � ⊇ Zg� ⇔ f � ∈ ⋂{Jz | z ∈ Zg�}, thus settling our claim.

By [7, 3.6.6], the quotient MV-algebra M(P )/〈g�〉 is semisimple. We conclude that A ∼=M(P ) is strongly semi-
simple. �
Remark 5.2. A much less direct proof of Theorem 5.1 follows from the fact that polyhedra do not have outgoing 
Bouligand–Severi tangents (see [4, 2.4 and Theorem 3.4]). For n = 1, 2 the foregoing theorem is also a consequence 
of the results of [3].

Corollary 5.3. Let A be a polyhedral MV-algebra, g ∈ A, and 〈g〉 be the ideal of A generated by g. Then the principal 
quotient A/〈g〉 is polyhedral.

Proof. By Lemma 3.2(iii) we can write A =M(P ) for some polyhedron P ⊆ [0, 1]n. As proved in Theorem 5.1, 〈g〉
is an intersection of maximal ideals. By [7, 3.4.5], we have an isomorphism

η:f/〈g〉 ∈ M(P )/〈g〉 �→ f � V〈g〉, where V〈g〉 =
⋂{

Zl
∣∣ l ∈ 〈g〉}.

From the proof of Theorem 5.1 we also have the identity 〈g〉 = {l ∈ M(P ) |Zl ⊇ Zg}, whence V〈g〉 = Zg and η is 
an isomorphism of M(P )/〈g〉 onto M(Zg). Since g is a piecewise linear map, then Zg is a polyhedron Q ⊆ [0, 1]n. 
We conclude that the principal quotient M(P )/〈g〉 ∼=M(Q) is polyhedral. �

Since polyhedra in the same ambient space Rn are closed under finite (disjoint) unions, then by duality poly-
hedral MV-algebras are closed under finite cartesian products. As a final preservation result, from Theorem 3.6 we 
immediately have:

Proposition 5.4. Let A be a polyhedral MV-algebra. Then any finitely generated MV-subalgebra of A is polyhedral.
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