Polyhedral MV-algebras

Manuela Busaniche ${ }^{\text {a }}$, Leonardo Cabrer ${ }^{\text {b }}$, Daniele Mundici ${ }^{\mathrm{c}, *}$
${ }^{\text {a }}$ Instituto de Matemática Aplicada del Litoral, CONICET-UNL, Colectora Ruta Nac. N 168, Paraje El Pozo, 3000 Santa Fe, Argentina
${ }^{\text {b }}$ Department of Statistics, Computer Science and Applications "Giuseppe Parenti", University of Florence, Viale Morgagni 59, 50134 Florence, Italy
${ }^{\text {c }}$ Department of Mathematics and Computer Science "Ulisse Dini", University of Florence, Viale Morgagni 67/A, I-50134 Florence, Italy

Received 3 January 2014; received in revised form 21 May 2014; accepted 23 June 2014
Available online 27 June 2014
Dedicated to Francesc Esteva, on his 70th birthday

Abstract

A polyhedron in \mathbb{R}^{n} is a finite union of simplexes in \mathbb{R}^{n}. An MV-algebra is polyhedral if it is isomorphic to the MV-algebra of all continuous $[0,1]$-valued piecewise linear functions with integer coefficients, defined on some polyhedron P in \mathbb{R}^{n}. We characterize polyhedral MV-algebras as finitely generated subalgebras of semisimple tensor products $S \otimes F$ with S simple and F finitely presented. We establish a duality between the category of polyhedral MV-algebras and the category of polyhedra with \mathbb{Z}-maps. We prove that polyhedral MV-algebras are preserved under various kinds of operations, and have the amalgamation property. Strengthening the Hay-Wójcicki theorem, we prove that every polyhedral MV-algebra is strongly semisimple, in the sense of Dubuc-Poveda.

© 2014 Elsevier B.V. All rights reserved.

Keywords: Łukasiewicz logic; MV-algebra; Polyhedron; Tensor product; Strongly semisimple; Amalgamation property; Bouligand-Severi tangent; Duality; Finite presentability; Free product; Coproduct; \mathbb{Z}-map

1. Introduction and preliminary material

This paper is devoted to polyhedral MV-algebras. On the one hand, these algebras constitute a proper subclass of finitely generated strongly semisimple MV-algebras, and are a generalization of finitely presented MValgebras. On the other hand, polyhedral MV-algebras with homomorphisms are dual to polyhedra in euclidean space, equipped with \mathbb{Z}-maps (Definition 3.1). \mathbb{Z}-homeomorphism of two polyhedra $P, Q \subseteq \mathbb{R}^{n}$ amounts to their continuous \mathcal{G}_{n}-equidissectability, where $\mathcal{G}_{n}=\operatorname{GL}(n, \mathbb{Z}) \ltimes \mathbb{Z}^{n}$ is the n-dimensional affine group over the integers, [18]. In the resulting new geometry, already rational polyhedra, with their wealth of combinatorial and numerical invariants, pose challenging algebraic-topological, measure-theoretic and algorithmic problems, [4-6].

[^0]Our paper is organized as follows: Section 2 is devoted to proving the characterization of polyhedral MV-algebras as finitely generated subalgebras of semisimple tensor products $S \otimes F$, with S simple and F finitely presented. In Section 3 we give a virtually self-contained proof of the duality between the category of polyhedral MV-algebras and the category of polyhedra with \mathbb{Z}-maps. In Section 4 we prove that polyhedral MV-algebras have the amalgamation property. In Section 5 it is shown that polyhedral MV-algebras are strongly semisimple, in the sense of Dubuc-Poveda [8]. This generalizes the Hay-Wójcicki theorem [10,20].

We refer to [11] and [19] for background on polyhedral topology. A set $Q \subseteq \mathbb{R}^{n}$ is said to be a polyhedron if it is a finite union of simplexes $S_{i} \subseteq \mathbb{R}^{n}$. Thus Q need not be convex, nor connected; the simplexes S_{i} need not have the same dimension. If each S_{i} can be chosen with rational vertices, then Q is said to be a rational polyhedron.

For any integer $n, m>0$ and polyhedron $P \subseteq \mathbb{R}^{n}$, a function $f: P \rightarrow \mathbb{R}^{m}$ is piecewise linear if it is continuous and there are finitely many linear transformations $L_{1}, \ldots, L_{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that for each $x \in P$ there is an index $i \in\{1, \ldots, u\}$ with $f(x)=L_{i}(x)$. The adjective "linear" is always understood in the affine sense. If in particular the coefficients of L_{1}, \ldots, L_{u} are integers, we say that f is piecewise linear with integer coefficients.

We refer to [7] and [17] for background on MV-algebras. For any polyhedron $P \subseteq \mathbb{R}^{n}$ we let $\mathcal{M}(P)$ denote the MV-algebra of piecewise linear functions $f: P \rightarrow[0,1]$ with integer coefficients and the pointwise operations of negation $\neg x=1-x$ and truncated addition $x \oplus y=\min (1, x+y)$. By [7, 3.6.7], $\mathcal{M}(P)$ is a semisimple MV-algebra. $\mathcal{M}\left([0,1]^{n}\right)$ is the free n-generator MV-algebra. This is McNaughton's theorem, [7, 9.1.5]. By [17, 6.3], an MV-algebra A is finitely presented iff it is isomorphic to $\mathcal{M}(R)$ for some rational polyhedron $R \subseteq[0,1]^{n}$. An MV-algebra A is said to be polyhedral if, for some $n=1,2, \ldots$, it is isomorphic to $\mathcal{M}(P)$ for some polyhedron $P \subseteq \mathbb{R}^{n}$.

Unless otherwise specified, all polyhedra in this paper are nonempty, and all MV-algebras are nontrivial.

2. A characterization of polyhedral MV-algebras

Lemma 2.1. For any polyhedron $P \subseteq \mathbb{R}^{n}$ and function $f: P \rightarrow[0,1]$, the following conditions are equivalent:
(i) f is piecewise linear. (As specified in the first lines of Section 1, piecewise linearity entails continuity.)
(ii) For some triangulation Δ of P, f is linear on each simplex of Δ.
(iii) For any cube $C=[a, b]^{n} \subseteq \mathbb{R}^{n}$ containing P there is a piecewise linear function $g: C \rightarrow[0,1]$ such that f is the restriction of g to P, in symbols, $f=g \upharpoonright P$.

Proof. (i) \Rightarrow (ii) From $[19,2.2 .6]$. (iii) \Rightarrow (i) Is trivial.
(ii) \Rightarrow (iii) There is a triangulation ∇ of the cube C such that the set $\nabla_{P}=\{T \in \nabla \mid T \subseteq P\}$ is a triangulation of P and is a subdivision of Δ. The existence of ∇ is a well-known fact in polyhedral topology [11,19]. A direct proof can be obtained from an adaptation of the De Concini-Procesi theorem in the version of [17, 5.3]. Actually, by a routine adaptation of the affine counterpart of $[9$, III, 2.8$]$ we may insist that $\nabla_{P}=\Delta$. Let $g: C \rightarrow[0,1]$ be the continuous function uniquely defined by the following stipulations: g is linear on every simplex of ∇, g coincides with f at each vertex of ∇_{P} and $g(v)=0$ for each vertex v of ∇ not belonging to P. Then $f=g \upharpoonright P$. Evidently, g is piecewise linear.

For any polyhedron $P \subseteq \mathbb{R}^{n}$, we denote by $\mathcal{M}_{\mathbb{R}}(P)$ the MV-algebra of all functions $f: P \rightarrow[0,1]$ satisfying any (hence all) of the equivalent conditions (i)-(iii) above.

Now suppose the polyhedron Q is contained in $[0,1]^{n}$. As in [15, 4.4] or [17, 9.17], the semisimple tensor product $[0,1] \otimes \mathcal{M}(Q)$ can be identified with the MV-algebra of continuous functions from Q into [0, 1] generated by the pure tensors $\rho \cdot g=\rho \otimes g$, where $\rho \in[0,1]$ and $g \in \mathcal{M}(Q)$.

In Theorem 2.4 we will prove that, up to isomorphism, polyhedral MV-algebras coincide with finitely generated subalgebras of a semisimple tensor product $[0,1] \otimes \mathcal{M}(R)$, for some rational polyhedron $R \subseteq[0,1]^{n}, n=1,2, \ldots$. We prepare:

Lemma 2.2. Up to isomorphism, $[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)=\mathcal{M}_{\mathbb{R}}\left([0,1]^{n}\right)$.

Proof. The inclusion $[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right) \subseteq \mathcal{M}_{\mathbb{R}}\left([0,1]^{n}\right)$ is immediately verified, because the MV-algebra $[0,1] \otimes$ $\mathcal{M}\left([0,1]^{n}\right)$ is generated by its pure tensors, each pure tensor $\rho \otimes f=\rho \cdot f$ belongs to $\mathcal{M}_{\mathbb{R}}\left([0,1]^{n}\right)$, and piecewise linearity is preserved by the MV-algebraic operations.

To prove the converse inclusion $[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right) \supseteq \mathcal{M}_{\mathbb{R}}\left([0,1]^{n}\right)$, we make the following:
Claim. Every truncated linear map

$$
t(x)=t\left(x_{1}, \ldots, x_{n}\right)=1 \wedge\left(0 \vee\left(\alpha_{0}+\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right)\right)
$$

defined on $[0,1]^{n}$, with real coefficients $\alpha_{0}, \ldots, \alpha_{n}$, belongs to $[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)$.
The claim is trivially true for every constant function $f(x)=\rho(\rho \in[0,1])$, because f is the pure tensor $\rho \otimes 1$ of $[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)$. Inductively, we may assume that the function t depends on all its variables, whence each of $\alpha_{1}, \ldots, \alpha_{n}$ is nonzero, and

$$
\begin{equation*}
0<t(x)<1 \quad \text { for some } x \in[0,1]^{n} . \tag{1}
\end{equation*}
$$

Now let us agree to say that a function $f:[0,1]^{n} \rightarrow \mathbb{R}$ is flat if it has the form

$$
\begin{equation*}
f(x)=f\left(x_{1}, \ldots, x_{n}\right)=\beta_{0}+\sum_{i \in I} \beta_{i} x_{i}+\sum_{j \in J} \beta_{j}\left(1-x_{j}\right), \tag{2}
\end{equation*}
$$

where $I \cap J=\emptyset, I \cup J=\{1, \ldots, n\}, \beta_{0}, \beta_{1}, \ldots, \beta_{n} \geq 0$, and $\beta_{0}+\beta_{1}+\cdots+\beta_{n} \leq 1$. The graph of f is linear. Let $v=\left(v_{1}, \ldots, v_{n}\right)$ be the vertex of the n-cube $[0,1]^{n}$ given by $v_{i}=0$ for $i \in I$ and $v_{j}=1$ for $j \in J$. Also let $w=\left(w_{1}, \ldots, w_{n}\right)$ be the vertex of the n-cube $[0,1]^{n}$ given by $w_{i}=1$ for $i \in I$ and $w_{j}=0$ for $j \in J$. Then $f(v)=\beta_{0}$ is the minimum value of f, and $f(w)=\beta_{0}+\beta_{1}+\cdots+\beta_{n}$ is the maximum. The constant function $\beta_{0}=\beta_{0} \otimes 1$ is a pure tensor of $[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)$. For each $k \in\{1, \ldots, n\}$, letting $\pi_{k}:[0,1]^{n} \rightarrow[0,1]$ denote the k th coordinate projection, define $\pi_{k}^{*}=\pi_{k}$ if $k \in I$, and $\pi_{k}^{*}=\neg \pi_{k}$ if $k \in J$. Then $\beta_{k} \pi_{k}^{*}=\beta_{k} \otimes \pi_{k}^{*} \in[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)$. A direct inspection shows that $f=\beta_{0}+\beta_{1} \pi_{1}^{*}+\cdots+\beta_{n} \pi_{n}^{*}=\beta_{0} \oplus \beta_{1} \pi_{1}^{*} \oplus \cdots \oplus \beta_{n} \pi_{n}^{*}$, whence f belongs to $[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)$.

Next let us say that the function $g:[0,1]^{n} \rightarrow \mathbb{R}$ is subflat if for some flat f as in (2) with $\beta_{0}=0$, and σ with $0<\sigma<1, g$ has the form $g(x)=f(x) \ominus \sigma=f(x) \odot \neg \sigma=f(x) \odot(1-\sigma)$. Recalling (1), the graph of g consists of two linear pieces. Again, g belongs to $[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)$, because it is obtained from $f \in[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)$ and the pure tensor $\sigma \otimes 1$ via MV-algebraic operations.

To conclude the proof of the claim it is enough to prove that our truncated linear function $t(x)=1 \wedge\left(0 \vee\left(\alpha_{0}+\right.\right.$ $\left.\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right)$) has the form

$$
t(x)=m \cdot r(x), \quad \text { for some integer } m \geq 0 \text { and } r \text { either flat or subflat. }
$$

Following [7, p. 33], we let $m . r$ denote m-fold iterated application of the \oplus operation. Letting $l(x)=l\left(x_{1}, \ldots, x_{n}\right)=$ $\alpha_{0}+\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}$, there are two possible cases:

Case 1. There is no $x \in[0,1]^{n}$ such that $l(x)=0$. Then recalling (1), for all large integers $m>0$, the range of the function $l(x) / m$ is contained in the open interval $\{\beta \in \mathbb{R} \mid 0<\beta<1\}$. The function $l(x) / m$ is flat, whence it belongs to $[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)$, and so does the function $t=m . l / m$.

Case 2. There is an $x \in[0,1]^{n}$ such that $l(x)=0$. Then for all large integers $m>0$, the range of the function $l(x) / m$ is contained in the interval $\{\beta \in \mathbb{R} \mid-1<\beta<1\}$. The function $0 \vee l(x) / m$ is subflat, whence it belongs to $[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)$, and so does $t=m .(0 \vee l(x) / m)$.

Having thus settled our claim, we end the proof by recalling that every function $f \in \mathcal{M}_{\mathbb{R}}\left([0,1]^{n}\right)$ can be written as $f=\bigvee_{i} \bigwedge_{j} t_{i, j}$ for suitable truncated linear functions $t_{i, j}$ (the latter belonging to $[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)$ by our claim). The familiar proof follows, e.g., by a routine adaptation of the proof of [7, 9.1.4(ii)]. Since f is obtained from the $t_{i, j}$ via the MV -algebraic operations \vee, \wedge then f belongs to $[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)$.

Generalizing the above lemma we next prove:
Theorem 2.3. For any polyhedron $P \subseteq[0,1]^{n}$, the semisimple tensor product $[0,1] \otimes \mathcal{M}(P)$ is (isomorphic to) the MV-algebra $\mathcal{M}_{\mathbb{R}}(P)$.

Proof. For the inclusion $\mathcal{M}_{\mathbb{R}}(P) \supseteq[0,1] \otimes \mathcal{M}(P)$ one observes that each pure tensor $\sigma \otimes f$ of $[0,1] \otimes \mathcal{M}(P)$ is piecewise linear.

We now prove the converse inclusion $\mathcal{M}_{\mathbb{R}}(P) \subseteq[0,1] \otimes \mathcal{M}(P)$. The restriction to P of any pure tensor $\rho \otimes f=$ $\rho \cdot f:[0,1]^{n} \rightarrow[0,1]\left(\rho \in[0,1], f \in \mathcal{M}\left([0,1]^{n}\right)\right)$, is a pure tensor of $[0,1] \otimes \mathcal{M}(P)$, because $(\rho \cdot f) \upharpoonright P=\rho \cdot(f \upharpoonright$ $P)=\rho \otimes(f \upharpoonright P)$ and $f \upharpoonright P$ belongs to $\mathcal{M}(P)$ by definition. On the other hand, every pure tensor $\sigma \otimes g: P \rightarrow[0,1]$ $(\sigma \in[0,1], g \in \mathcal{M}(P))$, is the restriction to P of some pure tensor $\sigma \otimes h, h \in \mathcal{M}\left([0,1]^{n}\right)$. To see this, recalling Lemma 2.1, let h be such that $g=h \upharpoonright P$ and write $(\sigma \otimes h) \upharpoonright P=(\sigma \cdot h) \upharpoonright P=\sigma \cdot(h \upharpoonright P)=\sigma \cdot g=\sigma \otimes g$. Thus the restriction map $\eta: l \in[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right) \mapsto l \upharpoonright P$ is a homomorphism of $[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)$ onto $[0,1] \otimes \mathcal{M}(P)$ because η maps the set of pure tensors of $[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)$ onto the set of pure tensors of $[0,1] \otimes \mathcal{M}(P)$. By Lemma $2.2,[0,1] \otimes \mathcal{M}\left([0,1]^{n}\right)=\mathcal{M}_{\mathbb{R}}\left([0,1]^{n}\right)$. So $[0,1] \otimes \mathcal{M}(P)$ contains every function $k \in \mathcal{M}_{\mathbb{R}}(P)$, because any such k is extendible to a function of $\mathcal{M}_{\mathbb{R}}\left([0,1]^{n}\right)$, again by Lemma 2.1. We have proved the inclusion $\mathcal{M}_{\mathbb{R}}(P) \subseteq$ $[0,1] \otimes \mathcal{M}(P)$.

Theorem 2.4. An MV-algebra B is isomorphic to $\mathcal{M}(Q)$ for some polyhedron $Q \subseteq[0,1]^{m}(m=1,2, \ldots)$ iff it is isomorphic to a finitely generated subalgebra of a semisimple tensor product of the form $[0,1] \otimes \mathcal{M}(P)$ for some rational polyhedron $P \subseteq[0,1]^{n}, n=1,2, \ldots$

Proof. (\Rightarrow) Let Δ be a triangulation of Q, with its vertices v_{1}, \ldots, v_{d}. The underlying abstract simplicial complex of Δ has a geometric realization in $[0,1]^{d}$ sending each v_{i} to the unit vector e_{i} along the i th axis of \mathbb{R}^{d}, in such a way that e_{1}, \ldots, e_{d} are the vertices of a triangulation Δ^{\prime} of a rational polyhedron $P \subseteq[0,1]^{d}$, and the map $e_{i} \mapsto v_{i}$ determines a piecewise linear homeomorphism $h=\left(h_{1}, \ldots, h_{m}\right)$ of P onto Q, with h linear on each simplex of Δ^{\prime}. Thus in particular, for every $i=1, \ldots, m$ the function h_{i} belongs to $\mathcal{M}_{\mathbb{R}}(P)$. By Theorem 2.3 each h_{i} belongs to $[0,1] \otimes \mathcal{M}(P)$. Let A be the subalgebra of $[0,1] \otimes \mathcal{M}(P)$ generated by $\left\{h_{1}, \ldots, h_{m}\right\}$. A routine modification of the argument used for the proof of $[17,3.6]$ shows that A is isomorphic to $\mathcal{M}(h(P))=\mathcal{M}(Q)=B$: specifically, letting - denote composition, the map $f \in \mathcal{M}(Q) \mapsto f \circ h$ provides an isomorphism of $\mathcal{M}(Q)$ onto A.
(\Leftarrow) Suppose $B \subseteq[0,1] \otimes \mathcal{M}(P)$ is generated by g_{1}, \ldots, g_{m}. By Theorem 2.3, each generator g_{i} is a member of $\mathcal{M}_{\mathbb{R}}(P)$. Let the continuous map $g: P \rightarrow[0,1]^{m}$ be defined by $g(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)$. Then the map $f \in$ $\mathcal{M}(g(P)) \mapsto f \circ g$ is an isomorphism of $\mathcal{M}(g(P))$ onto B. Further, the image $Q=g(P) \subseteq[0,1]^{m}$ of the rational polyhedron P under the map g is a polyhedron (see, e.g., [19, 1.6.8]). We conclude that B is isomorphic to the polyhedral MV-algebra $\mathcal{M}(Q)$.

Remark 2.5. In Theorem 3.6 we will see that the restriction $Q \subseteq[0,1]^{n}$ is immaterial, and the above characterization holds for every polyhedral MV-algebra.

3. \mathbb{Z}-maps and the polyhedral duality \mathcal{M}

We refer to [1] and [12] for all unexplained notions in category theory. In Corollary 3.5 we will introduce a duality between polyhedral MV-algebras and polyhedra. As a preliminary step, in Theorem 3.3 we give a self-contained proof of the duality [13] between compact sets in euclidean spaces and finitely generated semisimple MV-algebras.

Definition 3.1. Given integers $n, m>0$ together with rational polyhedra $P \subseteq \mathbb{R}^{n}$ and $Q \in \mathbb{R}^{m}$, a piecewise linear map with integer coefficients $\xi: P \rightarrow Q$ is called a \mathbb{Z}-map. More generally, given compact sets $X \subseteq \mathbb{R}^{n}$ and $Y \subseteq \mathbb{R}^{m}$, a map $\eta: X \rightarrow Y$ is called a \mathbb{Z}-map if there exist rational polyhedra $X \subseteq P$ and $Y \subseteq Q$, and a \mathbb{Z}-map $\xi: P \rightarrow Q$ such that $\eta=\xi \upharpoonright X$.

We let

$$
\begin{equation*}
\mathbb{Z}(X, Y)=\{\eta: X \rightarrow Y \mid \eta \text { is a } \mathbb{Z} \text {-map }\} \tag{3}
\end{equation*}
$$

By Lemma 2.1, for any polyhedron $P \subseteq \mathbb{R}^{n}$ we have $\mathcal{M}(P)=\mathbb{Z}(P,[0,1])$.

Notation We let \mathcal{C} denote the category whose objects are compact subsets of $\mathbb{R}^{n}(n=1,2, \ldots)$ and whose morphisms are \mathbb{Z}-maps. We further let \mathcal{S} be the full subcategory of MV-algebras whose objects are finitely generated semisimple MV-algebras.

Let P and Q be rational polyhedra. If (and only if) P and Q are \mathcal{C}-isomorphic then there exists an injective surjective \mathbb{Z}-map $\eta: P \rightarrow Q$ such that η^{-1} is also a \mathbb{Z}-map. Following [17, 3.1], we then say that η is a \mathbb{Z}-homeomorphism, and that P and Q are \mathbb{Z}-homeomorphic, in symbols, $P \cong_{\mathbb{Z}} Q$.

In Theorem 3.3 we will see that \mathcal{C} and \mathcal{S} are dually equivalent. We prepare:
Lemma 3.2. Let $P \subseteq \mathbb{R}^{n}$ be a polyhedron and $X, Y \in \mathcal{C}$.
(i) The image $\xi(P)$ of P under a \mathbb{Z}-map $\xi: P \rightarrow \mathbb{R}^{m}$ is a polyhedron.
(ii) For some $n \in\{1,2, \ldots\}$ there is $W \subseteq[0,1]^{n}$ such that $W \in \mathcal{C}$ and W is \mathcal{C}-isomorphic to X.
(iii) If $X \subseteq Y$ then for each $y \in Y \backslash X$ there exists a \mathbb{Z}-map $\gamma: Y \rightarrow[0,1]$ such that $\gamma(X)=0$ and $\gamma(y)=1$.

Proof. (i) This is [19, 1.6.8]. (ii) Let $R \subseteq \mathbb{R}^{n}$ be a rational polyhedron containing X. By [16, p. 1040] or [14, 3.5], each rational polyhedron R is \mathcal{C}-isomorphic (i.e., \mathbb{Z}-homeomorphic) to a rational polyhedron $Q \subseteq[0,1]^{n}$ for some n. Let $\eta: R \rightarrow Q$ be a \mathcal{C}-isomorphism between R and Q and $W=\eta(X)$. Then $\eta \upharpoonright X: X \rightarrow W$ determines a \mathcal{C}-isomorphism between X and $W \subseteq Q \subseteq[0,1]^{n}$. (iii) Straightforward from [17, 3.7]. This is also a particular case of complete regularity by definable functions, see [13, Lemma 3.5].

Theorem 3.3 (Duality). Let the functor $\mathcal{M}: \mathcal{C} \rightarrow \mathcal{S}$ be defined by:
Objects: For any $X \in \mathcal{C}, \mathcal{M}(X)$ is the $M V$-algebra $\mathbb{Z}(X,[0,1])$ of \mathbb{Z}-maps as in (3), with the pointwise $M V$-algebraic operations of $[0,1]$.
Arrows: For every $X, Y \in \mathcal{C}$ and \mathbb{Z}-map $\eta: X \rightarrow Y, \mathcal{M}(\eta)$ is the map transforming each $f \in \mathcal{M}(Y)$ into the composite function $f \circ \eta$.

Then \mathcal{M} is a categorical equivalence between \mathcal{C} and the opposite category $\mathcal{S}^{\mathrm{op}}$ of \mathcal{S}. For short, \mathcal{M} is a duality between the categories \mathcal{C} and \mathcal{S}.

Proof. Once $\mathcal{M}(X)$ is stripped of its $M V$-structure, \mathcal{M} is just the contravariant hom-functor $\mathbb{Z}(-,[0,1])$. It is immediately verified that $\mathcal{M}(\eta)$ is an MV-homomorphism of $\mathcal{M}(Y)$ into $\mathcal{M}(X)$ for each \mathbb{Z}-map $\eta: X \rightarrow Y$.

Claim 1. \mathcal{M} is faithful.

Let $X, Y \in \mathcal{C}$ and $\eta, \eta^{\prime} \in \mathbb{Z}(X, Y)$ be such that $\eta \neq \eta^{\prime}$. Let $x \in X$ be such that $\eta(x) \neq \eta^{\prime}(x)$. By Lemma 3.2(iii) there exists $f \in \mathcal{M}(Y)$ such that $f(\eta(x)) \neq f\left(\eta^{\prime}(x)\right)$. Thus $(\mathcal{M}(\eta))(f) \neq\left(\mathcal{M}\left(\eta^{\prime}\right)\right)(f)$.

Claim 2. \mathcal{M} is full.
Let $h: \mathcal{M}(X) \rightarrow \mathcal{M}(Y)$ be a homomorphism. By Lemma 3.2(ii) we can assume $X \subseteq[0,1]^{m}$. For each $i \in$ $\{1, \ldots, m\}$ let $\pi_{i}:[0,1]^{m} \rightarrow[0,1]$ be the i th coordinate function. Since each π_{i} is a \mathbb{Z}-map, the restriction $\pi_{i} \upharpoonright X$ is a member of $\mathcal{M}(X)$. For each $i \in\{1, \ldots, m\}$ there exists a rational polyhedron $P_{i} \supseteq Y$ together with a \mathbb{Z}-map $f_{i}: P_{i} \rightarrow[0,1]$ satisfying $h\left(\pi_{i} \upharpoonright X\right)=f_{i} \upharpoonright Y$. Let the \mathbb{Z}-map $\eta: P_{1} \cap \cdots \cap P_{m} \rightarrow[0,1]^{m}$ be defined by $\eta(x)=$ $\left(f_{1}(x), \ldots, f_{m}(x)\right)$. Since $\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ is a generating set of $\mathcal{M}\left([0,1]^{m}\right)$ and $h\left(\pi_{i} \upharpoonright X\right)=f_{i}=\left(\pi_{i} \circ \eta\right) \upharpoonright Y$, then

$$
h(g \upharpoonright X)=(g \circ \eta) \upharpoonright Y, \quad \text { for each } g \in \mathcal{M}\left([0,1]^{m}\right)
$$

By Lemma 3.2(iii), for each $x \in[0,1]^{m} \backslash X$ there is a \mathbb{Z}-map, $g:[0,1]^{m} \rightarrow[0,1]$ such that $g(X)=0$ and $g(x) \neq 0$. Thus $h(g \upharpoonright X)=0=(g \circ \eta) \upharpoonright Y$ and $x \notin \eta(Y)$. From the inclusion $\eta(Y) \subseteq X$ it follows that $\eta \upharpoonright Y: Y \rightarrow X$ is a \mathbb{Z}-map and $h=\mathcal{M}(\eta)$.

Claim 3. For each $A \in \mathcal{S}$ there exists $X \in \mathcal{C}$ such that $A \cong \mathcal{M}(X)$.
This follows from [7, 3.6.7].
Having thus proved Claims 1-3, an application of [12, IV.4.1] yields the desired conclusion.
Remark 3.4. In [13, §3] the authors establish a duality between compact sets $K \subseteq[0,1]^{n}, n=1,2, \ldots$ equipped with "definable maps", and finitely generated semisimple MV-algebras. Theorem 3.3 is an equivalent reformulation of that duality, modulo the following observations:
(i) The \mathbb{Z}-maps of Definition 3.1 are a concrete geometric description of the "definable" functions of [13, 1.1].
(ii) In view of Lemma 3.2(ii), polyhedra in \mathbb{R}^{n} can be safely assumed to be contained in some cube $[0,1]^{m}$.

Notation We let \mathcal{P} denote the full subcategory of \mathcal{C} whose objects are (not necessarily rational) polyhedra. By $\mathcal{M} \mathcal{V}_{\text {poly }}$ we denote the full subcategory of \mathcal{S} of polyhedral MV-algebras.

Corollary 3.5. The restriction to \mathcal{P} of the functor $\mathcal{M}: \mathcal{C} \rightarrow \mathcal{S}$ of Theorem 3.3 yields a duality between the categories \mathcal{P} and $\mathcal{M} \mathcal{V}_{\text {poly }}$. Moreover, by Lemma 3.2(i), the class of polyhedra is closed under \mathcal{C}-isomorphisms: whenever a polyhedron P is \mathcal{C}-isomorphic to $X \in \mathcal{C}$, then X is a polyhedron.

From this corollary together with Lemma 3.2(iii), Theorem 2.4 acquires the following general form:
Theorem 3.6. An MV-algebra is polyhedral iff it is isomorphic to a finitely generated subalgebra of a semisimple tensor product $S \otimes F$, where S is (finitely generated and) simple, and F is finitely presented.

Proof. Up to isomorphism, simple MV-algebras coincide with subalgebras of [0, 1], [7, 3.5.1], and finitely presented MV-algebras coincide with algebras of the form $\mathcal{M}(P)$ as P ranges over rational polyhedra, [17, 6.3].

4. Amalgamation and coproducts

4.1. Amalgamation of polyhedral MV-algebras

It is well-known that the variety of MV-algebras has the amalgamation property (see [17, §2] and references therein). The same holds for finitely presented MV-algebras [17, 6.7], and for MV-chains [2]. We will prove that both finitely generated semisimple MV-algebras and polyhedral MV-algebras also have the amalgamation property. We prepare:

Lemma 4.1. Let $X \subseteq \mathbb{R}^{n}$ and $Y \subseteq \mathbb{R}^{m}$ be compact sets and $\eta: X \rightarrow Y$ a \mathbb{Z}-map. Then the following conditions are equivalent:
(i) η is an epimorphism in \mathcal{C};
(ii) η is onto Y;
(iii) $\mathcal{M}(\eta)$ is one-one.

Proof. The equivalence (i) \Leftrightarrow (iii) follows directly from Theorem 3.3, upon noting that in any variety of algebras monomorphisms are the same as injective homomorphisms.

The implication (ii) \Rightarrow (i) is valid in any concrete category over the category of sets. For the converse implication, by way of contradiction suppose that η is an epimorphism in \mathcal{C} but is not onto Y. Let $y \in Y \backslash \eta(X)$. By Lemma 3.2(iii) there exists a \mathbb{Z}-map $\gamma: Y \rightarrow[0,1]$ such that $\gamma(\eta(X))=0$ and $\gamma(y)=1$. Now let γ^{\prime} be the constant zero map on Y. It is easy to see that $\gamma \circ \eta=\gamma^{\prime} \circ \eta$, but $\gamma \neq \gamma^{\prime}$, thus contradicting the assumption that η is an epimorphism.

Theorem 4.2. Both finitely generated semisimple MV-algebras and polyhedral MV-algebras have the amalgamation property.

Proof. Let $X \subseteq \mathbb{R}^{m}, Y \subseteq \mathbb{R}^{n}$ and $Z \subseteq \mathbb{R}^{k}$ be objects in \mathcal{C}. Let $\eta: X \rightarrow Z$ and $\gamma: Y \rightarrow Z$ be surjective \mathbb{Z}-maps. Then the set

$$
X \times_{Z} Y=\{(x, y) \in X \times Y \mid \eta(x)=\gamma(y)\} \subseteq \mathbb{R}^{m}
$$

is a closed subset of $X \times Y$, and hence is an object of \mathcal{C}. From the surjectivity of η and γ, and the definition of $X{ }_{Z} Y$ it follows that the projection maps $\pi_{X}: X \times_{Z} Y \rightarrow X$ and $\pi_{Y}: X \times_{Z} Y \rightarrow Y$ are surjective \mathbb{Z}-maps. By Theorem 3.3 and Lemma 4.1, the category \mathcal{S} has the amalgamation property.

For any polyhedra X, Y and Z, suppose we have surjective \mathbb{Z}-maps $\eta: X \rightarrow Z$ and $\gamma: Y \rightarrow Z$. In view of [19, 2.2.4], let Δ be a triangulation of $X \times Y$ such that both maps $\eta \circ \pi_{X}$ and $\gamma \circ \pi_{Y}$ are linear on each simplex of Δ. The set

$$
X \times_{Z} Y=\{(x, y) \in X \times Y \mid \eta(x)=\gamma(y)\}=\bigcup\left\{T \in \Delta \mid \eta \circ \pi_{X} \upharpoonright T=\gamma \circ \pi_{Y} \upharpoonright T\right\}
$$

is a polyhedron. Then the amalgamation property of polyhedral MV-algebras again follows from Theorem 3.3 and Lemma 4.1.

4.2. Coproducts of polyhedral MV-algebras

We denote by $\mathcal{S M V}$ the class of semisimple MV-algebras. We will use the notation $\coprod_{\mathcal{S}}$ for \mathcal{S}-coproducts, $\coprod_{\mathcal{S M V}}$ for $\mathcal{S M V}$-coproducts, and $\bigsqcup_{\mathcal{M V}}$ for $\mathcal{M V}$-coproducts. A moment's reflection shows that finite $\mathcal{M V}$-coproducts coincide with the finite free products of [17, §7].

The category \mathcal{C} admits finite products, that turn out to coincide with cartesian products. Since a product of two polyhedra is a polyhedron (see [19, p. 29]), then also the category \mathcal{P} has finite products. By Theorem 3.3, for all $P_{1}, P_{2} \in \mathcal{P}$ and $X_{1}, X_{2} \in \mathcal{C}$ we then have

$$
\begin{equation*}
\mathcal{M}\left(P_{1} \times P_{2}\right) \cong \mathcal{M}\left(P_{1}\right) \coprod_{\mathcal{M} \mathcal{V}_{\text {poly }}} \mathcal{M}\left(P_{2}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{M}\left(X_{1} \times X_{2}\right) \cong \mathcal{M}\left(X_{1}\right) \coprod_{\mathcal{S}} \mathcal{M}\left(X_{2}\right) \tag{5}
\end{equation*}
$$

In [17, 7.3] it is shown that both categories \mathcal{S} (the dual of \mathcal{C}) and $\mathcal{M} \mathcal{V}_{\text {poly }}$ (the dual of \mathcal{P}) are not closed under finite $\mathcal{M V}$-coproducts.

Proposition 4.3. Let \mathfrak{K} be a set of algebras in $\mathcal{S M V}$. The $\mathcal{S M V}$-coproduct $\amalg_{\mathcal{S} \mathcal{M V}} \mathfrak{K}$ coincides with $\mathcal{M V}$-coproduct $\amalg_{\mathcal{M V}} \mathfrak{K}$ modulo the radical of $\coprod_{\mathcal{M V}} \mathfrak{K}$, in symbols,

$$
\coprod_{\mathcal{S M V}} \mathfrak{K} \cong\left(\coprod_{\mathcal{M V}} \mathfrak{K}\right) / \operatorname{Rad}\left(\coprod_{\mathcal{M} \mathcal{V}} \mathfrak{K}\right) .
$$

Moreover, if \mathcal{O} is any of the two categories \mathcal{S} or $\mathcal{M} \mathcal{V}_{\text {poly }}$ and \mathfrak{K} is a finite set of algebras in \mathcal{O}, then

$$
\coprod_{\mathcal{O}} \mathfrak{K}=\coprod_{\mathcal{S N V}} \mathfrak{K} .
$$

Proof. Letting $\operatorname{Rad}(\mathrm{A})=\bigcap\{$ all maximal ideals of $A\}$, the map $A \mapsto A / \operatorname{Rad}(A)$ determines a functor $R: \mathcal{M V} \rightarrow$ $\mathcal{S M V}$. Since $\mathcal{S M V}$ is closed under subalgebras and (finite as well as infinite) cartesian products [7, 3.6.4], the functor R is the left adjoint of the inclusion functor form $\mathcal{S M V}$ to $\mathcal{M V}$. By [12, V.5], for each (finite or infinite) set \mathfrak{K} of semisimple algebras, $山_{\mathcal{S} \mathcal{M V}} \mathfrak{K}$ coincides with $R\left(\bigsqcup_{\mathcal{M V}} \mathfrak{K}\right)=\left(\bigsqcup_{\mathcal{M V}} \mathfrak{K}\right) / \operatorname{Rad}\left(\coprod_{\mathcal{M V}} \mathfrak{K}\right)$.

For the second statement, in case $\mathcal{O}=\mathcal{S}$, suppose $A, B \in \mathcal{S}$. Then $A \bigsqcup_{\mathcal{S M V}} B$ is finitely generated, whence $A \coprod_{\mathcal{S}} B \cong A \coprod_{\mathcal{S M V}} B$. In case $\mathcal{O}=\mathcal{S} \mathcal{M V}$, suppose $P_{1} \subseteq \mathbb{R}^{n}$ and $P_{2} \subseteq \mathbb{R}^{k}$ to be polyhedra. By (4)-(5),

$$
\begin{aligned}
\mathcal{M}\left(P_{1}\right) \coprod_{\mathcal{M} \mathcal{V}_{\text {poly }}} \mathcal{M}\left(P_{2}\right) & \cong \mathcal{M}\left(P_{1} \times P_{2}\right) \cong \mathcal{M}\left(P_{1}\right) \coprod_{\mathcal{S}} \mathcal{M}\left(P_{2}\right) \\
& \cong \mathcal{M}\left(P_{1}\right) \coprod_{\mathcal{S M V}} \mathcal{M}\left(P_{2}\right)
\end{aligned}
$$

From [17, 7.9(iv)], it follows that whenever P and Q are rational polyhedra then $\mathcal{M}(P) \coprod_{\mathcal{M V}} \mathcal{M}(Q)$ is the (rational) polyhedral MV-algebra $\mathcal{M}(P \times Q)$. One may now naturally look for more general classes of polyhedral MV-algebras having a polyhedral finite $\mathcal{M V}$-coproduct.

5. Polyhedral MV-algebras are strongly semisimple

Following Dubuc and Poveda [8], we say that an MV-algebra A is strongly semisimple if for every principal ideal $J \neq A$ of A, the quotient A / J is semisimple. Every strongly semisimple MV-algebra is semisimple (because $\{0\}$ is a principal ideal of A). Trivially, all hyperarchimedean MV-algebras, whence in particular all boolean algebras, are strongly semisimple. By [7, 3.5 and 3.6.5], all simple and all finite MV-algebras are strongly semisimple. By [10] or [20], every finitely presented MV-algebra is strongly semisimple.

For every set E and real-valued function f on E we denote by $Z f$ the zeroset of f, in symbols,

$$
Z f=\{x \in E \mid f(x)=0\}
$$

By [7, 3.6.7], every polyhedral MV-algebra A is semisimple. The following stronger result is also a generalization of the Hay-Wójcicki theorem [10,20] (also see [7, 4.6.7] and [17, 1.6]).

Theorem 5.1. Any polyhedral MV-algebra A is strongly semisimple.
Proof. Lemma 3.2(ii) yields a polyhedron $P \subseteq[0,1]^{n}$ (for some integer $n>0$) such that $A \cong \mathcal{M}(P)$. For every $f \in \mathcal{M}\left([0,1]^{n}\right)$ we will mostly use the abbreviated notation f^{\diamond} for $f \upharpoonright P$. For any $g \in \mathcal{M}\left([0,1]^{n}\right)$ we will write $\left\langle g^{\diamond}\right\rangle$ for the principal ideal of $\mathcal{M}(P)$ generated by g^{\diamond},

$$
\begin{equation*}
\left\langle g^{\diamond}\right\rangle=\langle g \upharpoonright P\rangle=\left\{f^{\diamond} \in \mathcal{M}(P) \mid f^{\diamond} \leq m \cdot g^{\diamond} \text { for some } m=0,1, \ldots\right\} . \tag{6}
\end{equation*}
$$

We are tacitly assuming $\left\langle g^{\diamond}\right\rangle \neq \mathcal{M}(P)$, whence the quotient $\mathcal{M}(P) /\left\langle g^{\diamond}\right\rangle$ is nontrivial, and the zeroset $Z g^{\diamond} \subseteq[0,1]^{n}$ is nonempty.

Claim. $\left\langle g^{\diamond}\right\rangle$ is an intersection of maximal ideals of $\mathcal{M}(P)$.
As a matter of fact, let $\langle g\rangle$ be the ideal of $\mathcal{M}\left([0,1]^{n}\right)$ generated by g. Let $\langle g\rangle \upharpoonright P$ be the set of restrictions to P of the elements of $\langle g\rangle$, in symbols,

$$
\langle g\rangle \upharpoonright P=\left\{f \upharpoonright P \mid f \in \mathcal{M}\left([0,1]^{n}\right) \text { and } f \leq m . g \text { for some } m=0,1, \ldots\right\} .
$$

From (6) we immediately obtain the identity

$$
\begin{equation*}
\left\langle g^{\diamond}\right\rangle=\langle g \upharpoonright P\rangle=\langle g\rangle \upharpoonright P . \tag{7}
\end{equation*}
$$

For all $f \in \mathcal{M}\left([0,1]^{n}\right)$ we will next prove the equivalence:

$$
\begin{equation*}
f^{\diamond} \in\left\langle g^{\diamond}\right\rangle \quad \Leftrightarrow \quad Z f^{\diamond} \supseteq Z g^{\diamond} \tag{8}
\end{equation*}
$$

The (\Rightarrow)-direction is an immediate consequence of (7). For the (\Leftarrow)-direction, let $f \in \mathcal{M}\left([0,1]^{n}\right)$ be such that $Z f^{\diamond} \supseteq$ $Z g^{\diamond}$, with the intent of proving

$$
\begin{equation*}
\text { there is } m=0,1, \ldots \text { satisfying } m \cdot g \geq f \text { on } P . \tag{9}
\end{equation*}
$$

To this aim, let Δ be a triangulation of $[0,1]^{n}$ such that g and f are linear on each simplex of Δ, and

$$
\begin{equation*}
\bigcup\{T \in \Delta \mid T \subseteq P\}=P . \tag{10}
\end{equation*}
$$

Since P is a polyhedron and f, g are piecewise linear, Δ is given by an elementary construction in polyhedral topology $[19,2.2 .6]$. Let $T=\operatorname{conv}\left(v_{0}, \ldots, v_{r}\right)$ be an arbitrary simplex of Δ. Fix a vertex v_{i} of T. Since $T \subseteq P$ and $Z f^{\diamond} \supseteq Z g^{\diamond}$, it is impossible to have $g\left(v_{i}\right)=0$ and $f\left(v_{i}\right)>0$ simultaneously. So we consider the following two cases:
(I) $g\left(v_{i}\right)>0$. Then letting $\mu_{i}=1 / g\left(v_{i}\right)$ we have $1=\mu_{i} g\left(v_{i}\right) \geq f\left(v_{i}\right)$.
(II) $g\left(v_{i}\right)=f\left(v_{i}\right)=0$. Then, letting $\mu_{i}=1$ we have $0=\mu_{i} g\left(v_{i}\right) \geq f\left(v_{i}\right)=0$.

Upon setting

$$
m_{T}=\text { the smallest integer } \geq \max \left(\mu_{0}, \ldots, \mu_{r}\right),
$$

from the linearity of g on T it follows that $m_{T} \cdot g \geq f$ on T. The function $m_{T} \cdot g$ does belong to $\mathcal{M}\left([0,1]^{n}\right)$. Thus for each $T \in \Delta$ with $T \subseteq P$ there is an integer $m_{T} \geq 0$ such that $m_{T} \cdot g \geq f$ on T. Letting now $m=\max \left\{m_{T} \mid T \in \Delta\right.$, $T \subseteq P\}$ and recalling (10), we conclude that the McNaughton function $m . g \in \mathcal{M}\left([0,1]^{n}\right)$ satisfies $m . g \geq f$ on P. This concludes the proof of (9), as well as of (8). For each $x \in P$, let J_{x} be the maximal ideal of $\mathcal{M}(P)$ given by of all functions of $\mathcal{M}(P)$ that vanish at x. Combining [7, 3.4.3] with (8), for arbitrary $f \in \mathcal{M}\left([0,1]^{n}\right)$ we have: $f^{\diamond} \in\left\langle g^{\diamond}\right\rangle \Leftrightarrow Z f^{\diamond} \supseteq Z g^{\diamond} \Leftrightarrow f^{\diamond} \in \bigcap\left\{J_{z} \mid z \in Z g^{\diamond}\right\}$, thus settling our claim.

By [7, 3.6.6], the quotient MV-algebra $\mathcal{M}(P) /\left\langle g^{\curvearrowright}\right\rangle$ is semisimple. We conclude that $A \cong \mathcal{M}(P)$ is strongly semisimple.

Remark 5.2. A much less direct proof of Theorem 5.1 follows from the fact that polyhedra do not have outgoing Bouligand-Severi tangents (see [4, 2.4 and Theorem 3.4]). For $n=1,2$ the foregoing theorem is also a consequence of the results of [3].

Corollary 5.3. Let A be a polyhedral MV-algebra, $g \in A$, and $\langle g\rangle$ be the ideal of A generated by g. Then the principal quotient $A /\langle g\rangle$ is polyhedral.

Proof. By Lemma 3.2(iii) we can write $A=\mathcal{M}(P)$ for some polyhedron $P \subseteq[0,1]^{n}$. As proved in Theorem 5.1, $\langle g\rangle$ is an intersection of maximal ideals. By [7, 3.4.5], we have an isomorphism

$$
\eta: f /\langle g\rangle \in \mathcal{M}(P) /\langle g\rangle \mapsto f \upharpoonright V_{\langle g\rangle}, \quad \text { where } V_{\langle g\rangle}=\bigcap\{Z l \mid l \in\langle g\rangle\} .
$$

From the proof of Theorem 5.1 we also have the identity $\langle g\rangle=\{l \in \mathcal{M}(P) \mid Z l \supseteq Z g\}$, whence $V_{\langle g\rangle}=Z g$ and η is an isomorphism of $\mathcal{M}(P) /\langle g\rangle$ onto $\mathcal{M}(Z g)$. Since g is a piecewise linear map, then $Z g$ is a polyhedron $Q \subseteq[0,1]^{n}$. We conclude that the principal quotient $\mathcal{M}(P) /\langle g\rangle \cong \mathcal{M}(Q)$ is polyhedral.

Since polyhedra in the same ambient space \mathbb{R}^{n} are closed under finite (disjoint) unions, then by duality polyhedral MV-algebras are closed under finite cartesian products. As a final preservation result, from Theorem 3.6 we immediately have:

Proposition 5.4. Let A be a polyhedral MV-algebra. Then any finitely generated $M V$-subalgebra of A is polyhedral.

Acknowledgements

The authors are very grateful to the referees for their careful and competent reading of this paper, and their valuable suggestions for improvement.

The second author was supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Program (Ref. 299401, FP7-PEOPLE-2011-IEF).

References

[1] J. Adámek, H. Herrlich, G.E. Strecker, Abstract and Concrete Categories, John Wiley and Sons, 1990. Revised version 2004, freely downloadable from http://katmat.math.uni-bremen.de/acc.
[2] M. Busaniche, D. Mundici, Geometry of Robinson consistency in Łukasiewicz logic, Ann. Pure Appl. Log. 147 (2007) 1-22.
[3] M. Busaniche, D. Mundici, Bouligand-Severi tangents in MV-algebras, Rev. Mat. Iberoam. 30 (1) (2014) 191-201.
[4] L.M. Cabrer, Bouligand-Severi k-tangents and strongly semisimple MV-algebras, J. Algebra 404 (2014) 271-283.
[5] L.M. Cabrer, D. Mundici, Rational polyhedra and projective lattice-ordered abelian groups with order unit, Commun. Contemp. Math. 14 (3) (2012) 1250017, http://dx.doi.org/10.1142/S0219199712500174 (20 pp.).
[6] L.M. Cabrer, D. Mundici, A Stone-Weierstrass theorem for MV-algebras and unital ℓ-groups, J. Log. Comput. (2014), http://dx.doi.org/ 10.1093/logcom/exu023, First published online: June 1, 2014.
[7] R. Cignoli, I.M.L. D’Ottaviano, D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, vol. 7, Kluwer Academic Publishers, Dordrecht, 2000.
[8] E. Dubuc, Y. Poveda, Representation theory of MV-algebras, Ann. Pure Appl. Log. 161 (2010) 1024-1046.
[9] G. Ewald, Combinatorial Convexity and Algebraic Geometry, Springer-Verlag, New York, 1996.
[10] L.S. Hay, Axiomatization of the infinite-valued predicate calculus, J. Symb. Log. 28 (1963) 77-86.
[11] J.F.P. Hudson, Piecewise Linear Topology, W.A. Benjamin, Inc., New York, 1969.
[12] S. Mac Lane, Categories for the Working Mathematician, 2nd edition, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998.
[13] V. Marra, L. Spada, The dual adjunction between MV-algebras and Tychonoff spaces, Stud. Log. 100 (2012) 253-278.
[14] V. Marra, L. Spada, Duality, projectivity, and unification in Łukasiewicz logic and MV-algebras, Ann. Pure Appl. Log. 164 (2013) 192-210.
[15] D. Mundici, Tensor products and the Loomis-Sikorski theorem for MV-algebras, Adv. Appl. Math. 22 (1999) 227-248.
[16] D. Mundici, Finite axiomatizability in Łukasiewicz logic, Ann. Pure Appl. Log. 162 (2011) 1035-1047.
[17] D. Mundici, Advanced Łukasiewicz Calculus and MV-algebras, Trends in Logic, vol. 35, Springer-Verlag, Berlin, 2011.
[18] D. Mundici, Invariant measure under the affine group over \mathbb{Z}, Comb. Probab. Comput. 23 (2014) 248-268.
[19] J.R. Stallings, Lectures on Polyhedral Topology, Tata Institute of Fundamental Research, Mumbay, 1967.
[20] R. Wójcicki, On matrix representations of consequence operations of Łukasiewicz sentential calculi, Z. Math. Log. Grundl. Math. 19 (1973) 239-247. Reprinted, in: R. Wójcicki, G. Malinowski (Eds.), Selected Papers on Łukasiewicz Sentential Calculi, Ossolineum, Wrocław, 1977, pp. 101-111.

[^0]: * Corresponding author.

 E-mail addresses: mbusaniche@santafe-conicet.gov.ar (M. Busaniche), 1.cabrer@disia.unifi.it (L. Cabrer), mundici@math.unifi.it (D. Mundici).

