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Abstract:
We focus discussion on extracting probability distribution functions (PDFs) from semi-chaotic

time series (TS). We wish to ascertain what is the best extraction approach and to such an

end we use an extremely well known semiclassical system in its classical limit [1, 2]. Since

this systems possesses a very rich dynamics, it can safely be regarded as representative of

many other physical scenarios. In discussing this “extraction” problem, we consider the two

most natural approaches, namely, i) histograms and ii) the Bandt–Pompe technique. We use the

Kullback-Leibler relative entropy to compare the information content of the concomitant PDFs.
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1. INTRODUCTION

Information extracted from time series (TS) data, originating from diverse natural processes, may be
conveyed by probabilistic distribution functions (PDFs) [3]. What is the appropriate technique to best
build up these PDFs from a given time series? The data at our disposal always possess a stochastic
component due to noise [4, 5], so that different procedures attain diverse quality degrees.

The extraction procedures constitute our main concern here. We wish to ascertain what is the best
extraction approach and to such an end we use an extremely well known semiclassical system in its
trajectory towards classical limit [1, 2]. Since this systems possesses a very rich dynamics, it can safely
be regarded as representative of many other physical scenarios [1, 2]. The system’s dynamics exhibits
regulars zones, chaotic ones and other regions that, although not chaotic, display complex features.
Form a purely dynamic viewpoint the systems has been exhaustively investigated [2]. This is also
the case in which the research has been made via statistical techniques, like Entropy and Statistical
Complexity [6]. Consequently, one can safely concentrate efforts on the appropriateness of different
extraction techniques, that pose the only questions to be answered here. We will focus attention on two
popular PDF methodologies and discuss their information-content. We will deal with the histogram
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approach [7] and with Bandt and Pompe’s Methodology (BP) [8]. Even if one might guess that the BP
methodology would be the best one, it is still important to carefully assess just in which of the regions (or
for what dynamical features) its performance is more satisfactory.

Our mail tools will be the Kullback-Leibler relative entropy [9] and the Cressie-Read divergence [10].
Note that relative entropies can be regarded as pseudo-distances in probability space. Here we use them to
establish just what is the amount of information that one methodology gains with respect to another one.

The two extraction procedures mentioned above are discussed in Section II. Section III briefly recapitu-
lates notions concerning the Kullback-Leibler relative entropy and the CR-divergence family of entropic
functionals [10]. A test-scenario is described in Section IV and the concomitant results presented in
Section V. Finally, some conclusions are drawn in Section VI.

2. TWO USUAL EXTRACTION TECHNIQUES

In this Section we generate an appropriate time-series (TS) and proceed to extract from it a suitable
PDF. The crucial issue is getting a PDF that will properly “capture” either the physics at hand, the nature
of the associated underlying natural process, and/or the features of the TS-generating nonlinear dynamical
system. Two methodologies have became rather popular in this respect, PDF based on histograms [7] and
PDF based on Bandt and Pompe’s Methodology [8]. We describe them below.

2.1 PDF Based on Histograms

In order to extract a PDF via amplitude-statistics, the interval [a,b] (with respectively a and b the
minimum and maximum of the time series S (t) = {xt ; t = 1, · · · ,M}) is first divided into a finite number
Nbin of non-overlapping subintervals Ai: [a,b] =

SNbin
i=1 Ai and Ai

T
A j = /0, 8i 6= j. One may then employ

the usual histogram-method, which is based on counting the relative frequencies of the time series values
within each subinterval.

The resulting PDF lacks any information regarding temporal ordering (temporal causality). The only
pieces of information that result are the xt�values that allow one to assign inclusion within a given bin,
and this ignores the temporal order (the subindex t). In addition, it is necessary to consider a judiciously
chosen optimal value for Nbin (see De Micco et al. [7]).

2.2 PDF Based on Bandt and Pompe’s Methodology

To use the Bandt and Pompe [8] methodology for evaluating the probability distribution P associated
with the time series (dynamical system), one starts by considering partitions of the pertinent D-dimensional
space that will hopefully “reveal” relevant details of the ordinal structure of a given one-dimensional time
series S (t) = {xt ; t = 1, · · · ,M}, with embedding dimension D > 1 and time delay t .

We will take here t = 1 as the time delay [8] and be interested in “ordinal patterns”, of order D [8, 11],
generated by

(s) 7!
�

xs�(D�1), xs�(D�2), · · · , xs�1, xs
�
, (1)

which assigns to each time s the D-dimensional vector of values at times s,s� 1, · · · ,s� (D� 1).
Clearly, the greater the D�value, the more information on the past is incorporated into our vectors. By
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“ordinal pattern” related to the time (s), we mean the permutation p = (r0,r1, · · · ,rD�1) of [0,1, · · · ,D�1]
defined by

xs�rD�1  xs�rD�2  · · ·  xs�r1  xs�r0 . (2)

In this way the vector defined by (1) is converted into a unique symbol x̂i. Thus, a permutation
probability distribution Px = {p(x̂i), i = 1, . . . ,D!} is obtained from the time series xi. The probability
distribution P is obtained once we fix the embedding dimension D and the time delay t . The former
parameter plays an important role for the evaluation of the appropriate probability distribution, since D
determines the number of accessible states, D!, and tells us about the necessary length M of the time
series needed in order to work with a reliable statistics, i.e. it must be D! ⌧ M. In particular, Bandt and
Pompe [8] suggest for practical purposes to work with 3  D  7. For more details see [11].

3. KULLBACK-LEIBLER RELATIVE ENTROPY AND CRESSIE-READ FAM-
ILY OF DIVERGENCES

Our goal is to assess the informational content of the two methodologies reviewed above. To this end
we use Kullback-Leibler’s (KL) divergence or relative entropy [9]. This measure provides an objective
assessment of how much information a given PDF contains relative to a second PDF. KL measures the
expected number of extra bits required to code samples from p when using a code based on q, rather than
using a code based on p [9].

For two normalized, discrete probability distribution functions (PDF) p and q, one has

DKL(p,q) =
n

Â
i=1

ln
✓

pi

qi

◆
pi (3)

with DKLsn(p,q)� 0. DKL(p,q) = 0 if and only if p = q [9]. Being probabilities, usual PDF features
like pi, qi 2 [0,1] for all values of i are assumed. Also, qi 6= 0, for all values of i. The qi’s are interpreted
as reference probabilities. It is convenient to work with a normalized KL-version, for the sake of a better
comparison between different results. If we divide by lnn (n 6= 1) corresponding to KL for the certainty
vs. the equiprobability case, so that expression (3) becomes

DN
KL(p,q) =

1
lnn

n

Â
i=1

ln
✓

pi

qi

◆
pi (4)

with 0  DN
KL  1. We will work with (4).

Given two PDFs p and q, DN
KL(p,q) permits us to determine what new information is contained in p

relative to that contained in q. If q is a uniform PDF, it conveys no information and KL measures the
information content of p. In the present analysis p will be associated with the Bandt–Pompe PDF and q
with the histogram procedure (occasionally we also use a p associated to the histogram procedure and a q
that represents the uniform PDF).

KL can be seen as a particular case of the Cressie-Read (CR) family of goodness of fit-power divergence
measures [10]

I(p,q,g) = 1
g(g +1)

n

Â
i=1

pi [(
pi

qi
)g �1] (5)

where g is a parameter that indexes members of the CR family. In the two special cases where
g = 0 or �1, the notation I(p,q,0) and I(p,q,�1) are to be interpreted as the continuous limits, limg !0
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or limg !�1, respectively [10]. The g = 0 case, corresponds to DKL(p,q) [10]. On the other hand,
I(p,q,�1) = DKL(q, p) [10]. We assume that qi 6= 0, for all values of i. It is also convenient to employ
a normalized I(p,q,g)�version for comparison purposes. So as to normalize the expression (5), we
consider g � 0 in our studies and divide by (ng �1)/g(g +1) (n 6= 1) in the case of computing I(p,q,g)
for the certainty vs. the equiprobability case. One has

IN(p,q,g) = 1
ng �1

n

Â
i=1

pi [(
pi

qi
)g �1] (6)

One finds 0  IN(p,q,g)  1. IN(p,q,g) = 0, if and only if p = q. One sees that the normalized
Kullback-Leibler divergence given by (4) is equal the normalized CR given by (6), with g ! 0. Note that
I(p,q,g) tends to the Kullback-Leibler divergence DKL(p,q) (see above) and that (ng �1)/g(g +1) tends
to lnn when g ! 0.

The CR family of power divergences is defined through a class of additive convex functions [10] and
the CR power divergence measure encompasses a broad family of test statistics that leads to a broad
family of likelihood functions within a moments-based estimation context. In an extremum metrics
scenario [10] the general Cressie-Read family of power divergence statistics represents a flexible family
of pseudo-distance measures from which to derive empirical probabilities associated with indirect noisy
micro and macro data [10].

As g varies, the resulting estimators that minimize power divergence exhibit qualitatively different
sampling behaviors. In the preliminary work of [3] we used g = 1.

4. APPLICATION: CLASSICAL-QUANTUM TRANSITION

We test our PDF-extracting approaches with reference to an important physical problem. The classical
limit of quantum mechanics (CLQM) is a subject that continues to attract much attention, and can be
regarded as one of the frontiers of physics research [12–16]. Certainly, it is the source of much exciting
discussion (see, for instance, [12, 13] and references therein). Of particular interest is the issue of
“quantum” chaotic motion with regards to the so-called classical limit. Recent efforts by different authors
can be consulted in [17] and references therein. It is also of interest the generalized uncertainty principle
(GUP) approach ([18, 19]).

Since the introduction of the decoherence concept (1980s) by Zeh, Zurek, Habib [14–16] and others,
the emergence of the classical world from Quantum Mechanics has become a subject of great interest.
Much insight may be derived from semiclassical perspectives. Several approaches exist: the historical
WKB and Born–Oppenheimer approaches, etc. The two-interacting systems, considered by Bonilla and
Guinea [20], Cooper et al. [1], and Kowalski et al. [2, 21], constitute composite models in which one
system is classical and the other is quantal. This makes sense whenever the quantum effects of one of the
two systems are negligible in comparison to those of the other one [2]. Examples include Bloch equations,
two-level systems interacting with an electromagnetic field within a cavity and collective nuclear motion.
We deal with a special bipartite system that represents the zero-th mode contribution of a strong external
field to the production of charged meson pairs [1, 2]. The corresponding Hamiltonian is

Ĥ =
1
2

✓
p̂2

mq
+

PA
2

mcl
+ mqw2x̂2

◆
(7)

where, (i) x̂ and p̂ are quantum operators, (ii) A and PA are classical canonical conjugate variables and
(iii) w2 = wq

2 + e2A2 is an interaction term that introduces nonlinearity, where wq is a frequency. The
quantities mq and mcl are masses, corresponding to the quantum and classical systems, respectively. As
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shown in [21], in dealing with (7), one faces the following autonomous system of nonlinear coupled
equations

dhx̂2i
dt

=
hL̂i
mq

;
dh p̂2i

dt
=�mq w2hL̂i;

dhL̂i
dt

= 2(
hp̂2i
mq

�mq w2hx̂2i);

dhL̂i
dt

= 2(
h p̂2i
mq

�mq w2hx̂2i); dA
dt

=
PA

mcl
;

dPA

dt
=�e2mq Ahx̂2i;

L̂ = x̂ p̂+ p̂x̂ (8)

The system given by (8) is derived from Ehrenfest’s relations
for quantum variables and canonical Hamilton’s equations for classical ones [21]. To study the classical

limit we also need to consider the classical counterpart of the Hamiltonian given by (7), where all the
variables are classical. Recourse to Hamilton’s equations allows one to find the classical version of (8);
see Ref. [21] for further details. These equations are identical in form to (8) after suitable replacement
of quantum mean values by classical variables. The classical limit is obtained by letting the “relative
energy” [2]

Er =
|E|

I1/2wq
! • (9)

where E is the total energy of the system and I is an invariant of the motion described by the system of
equations previously introduced (8), related to the Uncertainty Principle

I = hx̂2ih p̂2i� hL̂i2

4
� h̄2

4
(10)

The system requires numerical solution. The analysis of the system is done by plotting quantities
of interest against Er, that ranges in [1,•]. For Er = 1 the quantum system acquires all the energy
E = I1/2wq and the quantal and classical variables gets located at the fixed point (hx̂2i= I1/2/mqwq,hp̂2i=
I1/2mqwq,hL̂i= 0,A = 0,PA = 0) [21]. Since A = 0 the two systems become uncoupled. For Er ⇠ 1 the
system is almost quantal and the dynamics quasi-periodic [2].

As Er grows, quantum dynamics features are quite quickly lost and one enters a semiclassical region.
From a given value Er

cl , the morphology of the solutions to (8) begins to resemble that of classical
curves [2]. Convergence of (8) solutions to the classical ones is achieved. For very large Er�values, the
system is classical. Both types of solutions coincide. We speak of a semiclassical region 1 < Er < Er

cl .
Within such an interval one pinpoints the special value Er = Er

P , where chaos emerges [21]. The relative
number of chaotic orbits (with respect to the total number of orbits) grows with Er and tends to unity for
Er ! • [2].

Time series for the system are to be extracted from a “signal” given by the Er�evolution of appropriate
expectation values of the dynamical variables.
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5. RESULTS

In obtaining our numerical results we used mq = mcl = wq = e = 1 for the system’s parameters. As for
the initial conditions needed to investigate things described by (8) we employed E = 0.6. Thus, we fixed
E and then varied I so as to obtain our different Er values. We used 41 different values of I. Additionally,
we set hLi(0) = L(0) = 0, A(0) = 0 (both in the quantum and the classical instances), while x2(0). hx2i(0)
adopted values within the intervals (0,2E), (E �

p
E2 � I,E +

p
E2 � I) with I  E2, respectively. Here

Er
P = 3.3282 and Er

cl = 21.55264.
We have a signal that represents the system’s state at a given Er. Sampling that signal we extracted

several PDFs. One way of doing this is via histograms. Another way is using the B-P approach. In
last methodology it is convenient to adopt the largest D�value that verifies the condition D! ⌧ M (see
Section 2.2) This value is D = 6, because we will deal with vectors with components of at least M = 5000
data-points for each orbit. For verification purposes we also used D = 5, without detecting appreciable
changes. For D = 6 we must consider n = Nbin = 720 in histograms PDF (See (4) and (6)). The condition
qi 6= 0, for all values of i (see Section 3) holds for all our PDFs.

Figure 1 illustrates the fact that for Er = 1 (see section 4), DN
KL(B�P,histogram) vanishes. Only there

the dynamics is strictly periodic. For larger Er�values, it becomes quasi-periodic. The curves become
more convoluted as Er grows and DN

KL(B�P,histogram) increases quite rapidly, reaching a maximum at
⇠Er

P . Afterwards, it diminishes and tends eventually to an asymptotic value of DN
KL(B�P,histogram)⇠

0.1 for Er ! •. This asymptotic value coincides with the value of DN
KL(B�P,histogram) calculated with

the classic orbits (solutions of the fully classical system), towards which the solutions of the system of (8)
converge.

Accordingly, we gather that the BP PDF could contain more information than the associated his-
togram one for all stages of the process (save for the instance Er = 1). However, we should also
consider the quantity DN

KL(histogram,B�P), expressing the extra informational amount that the his-
togram PDF might possess vis-a-vis the BP approach. In Figure 2 we compare the DN

KL(B�P,histogram),
in black, to the DN

KL(histogram,B�P), in red. We see that, starting at the special “maximal” Er ⇠ Er
P ,

as DN
KL(B� P,histogram) decreases, DN

KL(histogram,B� P) grows. It eventually tends towards the
same value achieved by DN

KL(B�P,histogram). An useful indicator is D = DN
KL(B�P,histogram)�

DN
KL(histogram,B�P) [22]. This quantity may be seen as a better measure of the relative information

between both PDFs. We can observe in Figure 2 that D vanishes at both end-point, that is, in the quantum
zone and at the classical limit. The associated dynamics are in these zones, respectively, periodic and
very chaotic. For the rest of the process one has D > 0, and a more complex dynamics (superposition
of chaotic curves and non-chaotic, but complex, ones). Accordingly, using D it turns out that it is in
this zone that the BP PDF carries more information than the histogram one, specially at the transition
zone 1 < Er < Er

cl . Its appropriateness is more pronounced for complex non-chaotic curves than for
the chaotic Er > Er

P region. As the chaoticity augments, the BP’s superiority diminishes, and the two
concomitant PDFs have the same asymptotic value. As a check, Figure 1 displays as well

DN
KL(histogram,uni f orm) = 1 � �1

lnn

n

Â
i=1

pi ln pi (11)

the normalized information of the histogram’s PDF, that contains, not surprisingly, more information than
the uniform PDF in the chaotic region, as one can appreciate. However, we see that the two involved
PDFs are equivalent in the quantal periodic zone and in the quasi-periodic zone (near the quantum zone).
We conclude that the histogram PDF detects chaoticity. These results validate preceding findings that
employ the Cressie-Read family of measures (with g = 1 in (6) reported in [3]). it We note that here
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Figure 1. Kullback–Leibler divergence. DN
KL(B�P,histogram) and DN

KL(histogram,uni f orm) are plotted vs. Er.
DN

KL(B�P,histogram) � 0 in the three stages of the process. In general, it carries more information
than the histogram PDF and is much better in the transition zone, 1 < Er < Er

cl . For Er > Er
P , BP’s

superiority diminishes. As the chaoticity augments with Er, the histogram PDF contains more information.

we had at our disposal values very close to Er = 1 that were unavailable in [3] and are here included in
Figure 3 and Figure 4.

Comparing now our present results with those of [3] (this entails comparison of Figure 1-Figure 2
with Figure 3-Figure 4). Note that the maximum within the transition region i) is more pronounced for
the CR-divergence and ii) is located at a Er-value more distant from Er

P than in the KL case. Also,
the convergence of DN

KL(B�P,histogram) and DN
KL(histogram,B�P) towards the asymptotic values is

slower for KL than for CR. This asymptotic value is larger in the DN
KL(B�P,histogram) case than its CR

counterpart. This happens also with reference to DN
KL(histogram,uni f orm) asymptotic value.
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Figure 2. Normalized Kullback–Leibler divergence DN
KL(B�P,histogram) and DN

KL(histogram,B�P) are plotted
vs. Er. We compare the two quantities. This comparison indicates that the BP approach carries more infor-
mation than the histogram PDF, save for 1) the quantum zone and 2) the classical limit. As the chaoticity
augments, the BP’s superiority diminishes, and the two concomitant PDFs have the same asymptotic value.

6. CONCLUSIONS

The study and characterization of time series, by recourse to conventional parametric statistical theory
tools, assumes that the underlying probability distribution function (PDF) is given. Several methodologies
are available for the purpose. We have focused our attention upon the technique employed so as to extract
these PDFs from the concomitant time-series, using as a testing ground a well known semiclassical
Hamiltonian in its associated dynamics journey from the quantum region towards the classical limit [1, 2].
Since this systems possesses a very rich dynamics, it can safely be regarded as representative of many
other physical scenarios. [1, 2]. The system’s dynamics exhibits regulars zones, chaotic ones and other
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Figure 3. Normalized Cressie-Read divergence (g = 1). I(B-P,histogram,1) and I(histogram,uniform,1) are plotted
vs. Er. These graphs show results essentially equivalent to those of Figure 1.

regions that, although not chaotic, display complex features.
In discussing this “extraction” problem, we consider the two more natural approaches, namely, i)

histograms and [7] ii) the Bandt–Pompe technique [8]. We have employed the Kullback-Leibler relative
entropy and the Cressie-Read family of power divergence statistics with g = 1 [3], in order to obtain a
definite, quantitative assessment of the performance of these methodologies. CR results match KL ones in
a close fashion.

We have confirmed the BP-superiority relative to their histogram counterparts. The BP approach carries
at least the same information than the histogram one for the three stages of the process. In general, it
carries more information que the histogram PDF, save for 1) the quantum zone and 2) the classical limit
(Figure 2 and Figure 4) and is much better in the transition zone, where the dynamics is complex but
non-chaotic. In the chaotic region, this BP’s superiority gradually diminishes (Figure 1, Figure 2, and
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Figure 4. Normalized Cressie–Read divergence (g = 1). I(B-P,histogram,1) and I(histogram,B-P,1) are plotted vs.
Er. Again, this graph displays results essentially equivalent to those of Figure 2.

Figure 4). Rather surprisingly, at the the classical limit, histogram PDF contains as much information as
the BP approach and can replace it. We conclude that the histogram PDF detects chaoticity.

Preceding papers have examined the relative merits of the histogram vs. the BP approach (for instance,
see the excellent review [11] and references therein). However, these approaches utilize indirect measures
such as Shannon’s Entropy or Statistical Complexity (for instance, see [6]). Our work adds an objective
assessment, via the Kullback-Leibler relative entropy and the Cressie-Read divergence, where PDF-to-PDF
direct comparison is feasible.
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