SOP TRANSACTIONS ON THEORETICAL PHYSICS

De la Peña approach for Position-dependent Masses

Luis Canderle ${ }^{1 *}$, Angelo Plastino
${ }^{1}$ Department of Physics, National University La Pampa, Argentina.
${ }^{2}$ National University La Plata and IFLP-CCT-CONICET, C. C. 727, 1900 La Plata, Argentina.
*Corresponding author: g.kamuntavicius@gmf.vdu.lt

Abstract

: Schrödinger's equation for a position-dependent effective mass is successfully tackled using the De la Peña's factorization technique.

Keywords:

Schrödinger equation; Position-dependent mass; Factorization approach

1. INTRODUCTION

Many physical problems can be treated via a model employing a Schrödinger equation with a positiondependent mass (SEPDM) $[0,1,2]$. Such an approximation is useful for determining electronic properties of semiconductors [1] and quantum-dots [2]. The concept of effective mass is also relevant in connection with the energy density functional (EDF) approach to the quantum many-body problem. The EDF formalism has provided reasonable theoretical predictions of many experimental properties for several quantum many-body systems. Within the EDF approach, the nonlocal terms of the associated potential can be often interpreted as a position dependence on an appropriate, position dependent effective mass. This has been used for nuclei [3], quantum liquids [4], ${ }^{3} \mathrm{He}$ clusters [5], and metallic clusters [6]. There also exist exactly solvable models with smooth potentials and abrupt mass-jumps [7,8].

In another vein, one encounters interesting activity regarding the application of the so-called supersymmetric quantum mechanics (SUSY) $[9,10,11]$ to SEPDM with $m=m(x)$. For any such system, a super-symmetric partner exists with the same mass-dependence [12]. The pertinent wave equation and eigen-energies of a SEPDM arise form solving an equation of the form

$$
\begin{equation*}
\left[-\nabla \frac{\hbar^{2}}{2 m(\mathbf{r})} \nabla+V(\mathbf{r})\right] \psi(\mathbf{r})=E \psi(\mathbf{r}) \tag{1}
\end{equation*}
$$

We concentrate our efforts here on a SUSY-equivalent formulation advanced by L. de La Peña y R. Montemayor, discussed in reference [14], where it was applied to an important family of potential functions of the form [13] (expressed in Hartree atomic units [144])

$$
\begin{equation*}
V=\frac{1}{2}\left[1-\frac{2}{\cosh ^{2} x}\right], \tag{2}
\end{equation*}
$$

derived from the general instance

$$
\begin{equation*}
V=\frac{1}{2}\left[n^{2}-\frac{n(n+1)}{\cosh ^{2} x}\right] \tag{3}
\end{equation*}
$$

Our present goal is to show the de la Peña-Montemayor - Susy equivalence for SEPDMs.

2. Schrödinger EQUATION FOR A POSITION DEPENDENT EFFECTIVE MASS

The one-dimension SEPDM equation reads $[7,8]$

$$
\begin{equation*}
-\left(\frac{\hbar^{2}}{2 m(x)}\right) \frac{d^{2} \psi}{d x^{2}}-\left[\frac{d}{d x}\left(\frac{\hbar^{2}}{2 m(x)}\right)\right] \frac{d \psi}{d x}+V(x) \psi(x)=E \psi(x) \tag{4}
\end{equation*}
$$

with $m(x)$ an effective mass, $V(x)$ the potential function, and E the eigen-energies. We face an eigen-values equation

$$
\begin{equation*}
H \psi=E \psi \tag{5}
\end{equation*}
$$

with a Hamiltonian

$$
\begin{equation*}
H=\mathscr{P}\left(\frac{1}{2 m}\right) \mathscr{P}+V \tag{6}
\end{equation*}
$$

with \mathscr{P} the impulse. Eq. (4) can be derived from a variational principle similar to the standard one. The energy-expectation value is

$$
\begin{gather*}
\langle H\rangle= \\
=\int d x \psi(x)\left[-\frac{d}{d x}\left(\frac{\hbar^{2}}{2 m(x)} \frac{d}{d x}\right)+V(x)\right] \psi(x)= \tag{7}\\
=\int d x\left[\frac{\hbar^{2}}{2 m(x)}\left(\frac{d \psi(x)}{d x}\right)^{2}+V(x) \psi^{2}(x)\right]
\end{gather*}
$$

It is easily seen that minimization of $\langle H\rangle$ under normalization constraint $\langle\psi \mid \psi\rangle=1$ leads to Eq. (4). The wave function's ay an abrupt interface originated by a discontinuity of the effective mass, with $V(x)$ finite, are, in self-explanatory notation,

$$
\begin{equation*}
\psi_{-}=\psi_{+} \tag{8}
\end{equation*}
$$

plus the continuity of $\frac{1}{m(x)} \frac{d \psi(x)}{d x}$, i.e.,

$$
\begin{equation*}
\left(\frac{1}{m(x)} \frac{d \psi(x)}{d x}\right)_{-}=\left(\frac{1}{m(x)} \frac{d \psi(x)}{d x}\right)_{+} \tag{9}
\end{equation*}
$$

Sub-indexes - and + indicate, respectively, the left- and right-hand sides of the mass discontinuity. The last relation is also verified if, at the mass-discontinuity point x_{0} the potential V exhibits a finite jump. If V displays a δ-singularity at x_{0}

$$
\begin{equation*}
V \sim V_{0} \delta\left(x-x_{0}\right) \tag{10}
\end{equation*}
$$

it is possible to replace Eq. (9) by

$$
\begin{equation*}
\left(\frac{1}{m(x)} \frac{d \psi(x)}{d x}\right)_{+}-\left(\frac{1}{m(x)} \frac{d \psi(x)}{d x}\right)_{-}=\frac{2 V_{0}}{\hbar^{2}} \psi\left(x_{0}\right) \tag{11}
\end{equation*}
$$

For more details see reference [15].

3. THE SUPER-SYMMETRIC FORMALISM

3.1 Generalized step operators

In this introductory Section m is constant. Reference [9] is excellent. The formalism is based upon the relations amongst (i) eigen-energies, (ii) eigen-values, and (iii) phase relations between the two partner Hamiltonians

$$
\begin{equation*}
H_{1}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{1} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{2}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{2} \tag{13}
\end{equation*}
$$

associated to potentials that are called super-symmetric, namely, V^{1} and V^{2}. Without loss of generality one can assume that H_{1} 's ground state energy vanishes: $\left(E_{0}^{(1)}=0\right)$ and that the associated ψ_{0} is known. Then,

$$
\begin{equation*}
H_{1} \psi_{0}=\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{1}(x)\right) \psi_{0}=0 \tag{14}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
V_{1}(x)=\frac{\hbar^{2}}{2 m} \frac{\psi_{0}^{\prime \prime}}{\psi_{0}} \tag{15}
\end{equation*}
$$

Accordingly, H_{1} adopts the appearance

$$
\begin{equation*}
H_{1}=-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d x^{2}}-\frac{\psi_{0}^{\prime \prime}}{\psi_{0}}\right) \tag{16}
\end{equation*}
$$

which suggests introducing two operators Q and Q^{\dagger}

$$
\begin{align*}
Q & =\frac{\hbar}{\sqrt{2 m}}\left[\frac{d}{d x}-\frac{\psi_{0}^{\prime}}{\psi_{0}}\right] \tag{17}\\
Q^{\dagger} & =\frac{\hbar}{\sqrt{2 m}}\left[-\frac{d}{d x}-\frac{\psi_{0}^{\prime}}{\psi_{0}}\right]
\end{align*}
$$

so that H_{1} becomes

$$
\begin{equation*}
H_{1}=Q^{\dagger} Q \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{2}=Q Q^{\dagger}=-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d x^{2}}+\frac{\psi_{0}^{\prime \prime}}{\psi_{0}}+2\left[\frac{\psi_{0}^{\prime}}{\psi_{0}}\right]^{2}\right)=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{2} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{2}(x)=-V_{1}(x)-\frac{\hbar^{2}}{m}\left(\frac{\psi_{0}^{\prime}}{\psi_{0}}\right)^{2} \tag{20}
\end{equation*}
$$

It is useful to define a "super-potential" $W(x)$. Given $\psi_{0}, W(x)$ is

$$
\begin{equation*}
W(x)=-\frac{\hbar}{\sqrt{2 m}}\left(\frac{1}{\psi_{0}}\right)\left(\frac{d \psi_{0}}{d x}\right) \tag{21}
\end{equation*}
$$

and one can cast $V_{1}-V_{2}$ in W-terms

$$
\begin{align*}
& V_{1}=W^{2}-\frac{\hbar W^{\prime}}{\sqrt{2 m}} \tag{22}\\
& V_{2}=W^{2}+\frac{\hbar W^{\prime}}{\sqrt{2 m}} \tag{23}
\end{align*}
$$

Also, we can write $Q-Q^{\dagger}$ in terms of $W(x)$:

$$
\begin{gather*}
Q=\frac{\hbar}{\sqrt{2 m}} \frac{d}{d x}+W(x), \tag{24}\\
Q^{\dagger}=-\frac{\hbar}{\sqrt{2 m}} \frac{d}{d x}+W(x) . \tag{25}
\end{gather*}
$$

With the knowledge of W one finds ψ_{0}

$$
\begin{equation*}
\psi_{0}(x)=\exp \left(-\frac{\sqrt{2 m}}{\hbar} \int^{x} W(x) d x\right) \tag{26}
\end{equation*}
$$

3.2 Identities

The first one is:

$$
\begin{equation*}
Q \psi_{0}=0 \tag{27}
\end{equation*}
$$

Since $H^{1} \psi_{0}=0$ and using (17)

$$
Q^{\dagger} Q \psi_{0}=0
$$

entailing

$$
\begin{equation*}
\left\langle\psi_{0}\right| Q^{\dagger} Q\left|\psi_{0}\right\rangle=0 . \tag{28}
\end{equation*}
$$

Then, the norm of $Q\left|\psi_{0}\right\rangle$ vanishes as well. One also has

$$
\begin{equation*}
Q^{\dagger} H_{2}-Q H_{1}=0 \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
Q H_{1}-H_{2} Q=0 \tag{30}
\end{equation*}
$$

Given the eigen-state ψ_{n}^{1} of H_{1} with energy E_{n}^{1}, one has

$$
\begin{equation*}
H_{1} \psi_{n}^{1}=Q^{\dagger} Q \psi_{n}^{1}=E_{n}^{1} \psi_{n}^{1} \tag{31}
\end{equation*}
$$

and applying Q on the left

$$
\begin{equation*}
Q H_{1} \psi_{n}^{1}=Q Q^{\dagger}\left(Q \psi_{n}^{1}\right)=H_{2}\left(Q \psi_{n}^{1}\right)=E_{n}^{1}\left(Q \psi_{n}^{1}\right) \tag{32}
\end{equation*}
$$

it is clear that $Q \psi_{n}^{1}$ is an eigen-state of H_{2} with energy E_{n}^{1}, save for the ground state ψ_{0}^{1} on account of (25). Analogously, starting from an eigen-state ψ_{n}^{2} of H_{2} of energy E_{n}^{2} we find

$$
\begin{equation*}
H_{2} \psi_{n}^{2}=Q Q^{\dagger} \psi_{n}^{2}=E_{n}^{2} \psi_{n}^{2} \tag{33}
\end{equation*}
$$

and applying on the left Q^{\dagger} to (32):

$$
\begin{equation*}
Q^{\dagger} Q\left(Q^{\dagger} \psi_{n}^{2}\right)=H^{1}\left(Q^{\dagger} \psi_{n}^{2}\right)=E_{n}^{2}\left(Q^{\dagger} \psi_{n}^{2}\right) \tag{34}
\end{equation*}
$$

is it obvious that $Q^{\dagger} \psi_{n}^{2}$ is an eigen-state of H_{1} with energy E_{n}^{2}. Accordingly, the spectra of our two Hamiltonians can be derived one from the other. The relation between the respective eigen-values becomes:

$$
\begin{equation*}
E_{n}^{2}=E_{n+1}^{1} \quad n=0,1,2, \ldots \tag{35}
\end{equation*}
$$

As for normalization, start from $\left\langle\psi_{n}^{2}\right| Q Q^{\dagger}\left|\psi_{n}^{2}\right\rangle=E_{n}^{2}\left\langle\psi_{n}^{2} \mid \psi_{n}^{2}\right\rangle$. If $\left|\psi_{n}^{2}\right\rangle$ is normalized, then

$$
\begin{equation*}
\left|\psi_{n}^{1}\right\rangle=\frac{1}{\sqrt{E_{n}^{2}}} Q^{\dagger}\left|\psi_{n}^{2}\right\rangle \tag{36}
\end{equation*}
$$

is normalized as well. A similar relation holds for $\left|\psi_{n}^{2}\right\rangle$:

$$
\begin{equation*}
\left|\psi_{n}^{2}\right\rangle=\frac{1}{\sqrt{E_{n}^{1}}} Q^{\dagger}\left|\psi_{n}^{1}\right\rangle \tag{37}
\end{equation*}
$$

4. de La Peña's FORMALISM

This is an alternative treatment which can be matched to that of SUSY [13,14] and we will call the de La Peña one. It is based upon a sort of universal operator for each system that we call here P. Let $\{|n\rangle\}$ stand for a Hilbert-basis, characterized by the set of quantum numbers n. Sea $\left\{p_{n}\right\}$ its eigen-value spectrum

$$
\begin{equation*}
P|n\rangle=p_{n}|n\rangle \tag{38}
\end{equation*}
$$

The creation-destruction operators associated to P will be called η^{\dagger} and η :

$$
\begin{equation*}
\eta^{\dagger}=\sum_{n} C_{n}|n+1\rangle\langle n| ; \quad \eta=\sum_{n} C_{n-1}|n-1\rangle\langle n|, \tag{39}
\end{equation*}
$$

the C_{n} being appropriate coefficients to be specified later. Rebaptize $|n\rangle \equiv|k\rangle$,

$$
\begin{align*}
& \eta^{\dagger}|k\rangle=C_{k}|k+1\rangle \tag{40}\\
& \eta|k\rangle=C_{k-1}|k-1\rangle \tag{41}
\end{align*}
$$

The C_{n} are related to the bilinear operators $\eta \eta^{\dagger}-\eta^{\dagger} \eta$, as from (39),

$$
\begin{equation*}
\eta \eta^{\dagger}|k\rangle=\left|C_{k}\right|^{2}|k\rangle \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
\eta^{\dagger} \eta|k\rangle=\left|C_{k-1}\right|^{2}|k\rangle \tag{43}
\end{equation*}
$$

As customary, we assume that our spectra are bounded by below, linked to $n=0$, which entails (see (39.b))

$$
\begin{equation*}
\eta^{\dagger}|0\rangle=0 ; \quad \Rightarrow C_{-1}=0 \tag{44}
\end{equation*}
$$

If an upper bound to the spectra also exists, say $n=N$, then

$$
\begin{equation*}
\eta^{\dagger}|N\rangle=0 ; \quad \Rightarrow C_{N}=0 \tag{45}
\end{equation*}
$$

If not, this last restriction does not exist, of course. We are now in a condition to conjecture the form

$$
\begin{equation*}
P=a_{00}+a_{10} \eta \eta^{\dagger}+a_{01} \eta^{\dagger} \eta \tag{46}
\end{equation*}
$$

and evaluate the p_{m} in the fashion

$$
\begin{equation*}
p_{m}=a_{00}+a_{10}\left|C_{m}\right|^{2}+a_{01}\left|C_{m-1}\right|^{2} \tag{47}
\end{equation*}
$$

ending up with $N+3$ unknowns, in particular, a_{00}, a_{10}, a_{01}, and $\left\{\left|C_{n}\right|, n=0,1,2, \ldots, N-1\right\}$. We also have $N+1$ conditions from (43), with $n=0,1,2, \ldots, N$, plus normalization, i.e., scale-fixing and originselection. This suffices for a complete determination of P^{\prime} s spectrum. This line of reasoning makes it evident the convenience of working with the products of η an η^{\dagger}. We choose:

$$
\begin{equation*}
A=\left[\eta, \eta^{\dagger}\right]=\eta \eta^{\dagger}-\eta^{\dagger} \eta ; \quad \text { entailing } S=\left\{\eta, \eta^{\dagger}\right\}=\eta \eta^{\dagger}+\eta^{\dagger} \eta \tag{48}
\end{equation*}
$$

so that

$$
\begin{equation*}
P=q_{0}+q_{a} A+q_{s} S \tag{49}
\end{equation*}
$$

where the constants will be conveniently adjusted. The eigen-values of A and S will be called, respectively, a_{k} and s_{k}. One has, via (39.a), (39.b), and (44):

$$
\begin{gather*}
A|k\rangle=a_{k}|k\rangle=\left(\left|C_{k}\right|^{2}-\left|C_{k-1}\right|^{2}\right)|k\rangle \\
\text { entailing } S|k\rangle=s_{k}|k\rangle=\left(\left|C_{k}\right|^{2}+\left|C_{k-1}\right|^{2}\right)|k\rangle \tag{50}
\end{gather*}
$$

where

$$
\begin{equation*}
a_{k}=\left|C_{k}\right|^{2}-\left|C_{k-1}\right|^{2} ; \text { entailing } s_{k}=\left|C_{k}\right|^{2}+\left|C_{k-1}\right|^{2} \tag{51}
\end{equation*}
$$

A little algebra shows that

$$
\begin{equation*}
\left|C_{k}\right|^{2}=\frac{1}{2}\left(s_{k}+a_{k}\right)=\frac{1}{2}\left(s_{k+1}-a_{k+1}\right) \tag{52}
\end{equation*}
$$

The spectra of A and S satisfy a series of consistency relations.
(i) From (47) and (48)

$$
\begin{equation*}
s_{k} \geq 0 ; \quad s_{k}+a_{k} \geq 0 ; \quad s_{k}-a_{k} \geq 0 \tag{53}
\end{equation*}
$$

(ii) From (48)

$$
\begin{equation*}
s_{k}+a_{k}=s_{k+1}-a_{k+1}, \tag{54}
\end{equation*}
$$

and (iii), from (47) and (41.b):

$$
\begin{equation*}
s_{0}=a_{0} ; \quad s_{N}=-a_{N} . \tag{55}
\end{equation*}
$$

Eq. (49) shows that S^{\prime} spectrum is nonnegative and has a lower limit a_{0}. Eq. (50) fixes the P-spectrum structure. Lower and (possibly) upper bounds are determined by Eq. (51). If applying this equation leads to a contradiction, no upper bound exists. Consistency relations (49), (50), and (51) contain all available information regarding P.

5. POSITION-DEPENDENT MASS

Our original contribution enters here. Schrödinger's equation for $m=m(x)$ is

$$
\begin{equation*}
\left[-\nabla \frac{\hbar^{2}}{2 m(x)} \nabla+V(x)\right] \psi(x)=E \psi(x) \tag{56}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
-\left(\frac{\hbar^{2}}{2 m(x)}\right) \frac{d^{2} \psi}{d x^{2}}-\left[\frac{d}{d x}\left(\frac{\hbar^{2}}{2 m(x)}\right)\right] \frac{d \psi}{d x}+V(x) \psi(x)=E \psi(x) \tag{57}
\end{equation*}
$$

Super-symmetric operators Q and Q^{\dagger} are given in $W(x)$-terms as

$$
\begin{gather*}
Q \psi=\frac{\hbar \psi}{\sqrt{2 m}} \frac{d \psi}{d x}+W \psi \tag{58}\\
Q^{\dagger} \psi=-\frac{d}{d x}\left(\frac{\hbar \psi}{\sqrt{2 m}}\right)+W \psi \tag{59}
\end{gather*}
$$

so that

$$
\begin{equation*}
H_{1}=Q^{\dagger} Q=-\left(\frac{\hbar^{2}}{2 m}\right) \frac{d^{2}}{d x^{2}}-\left(\frac{\hbar^{2}}{2 m}\right)^{\prime} \frac{d}{d x}-\left(\frac{\hbar W}{\sqrt{2 m}}\right)^{\prime}+W^{2} \tag{60}
\end{equation*}
$$

corresponding to an effective mass $m(x)$ moving in a potential

$$
\begin{equation*}
V_{1}=-\left(\frac{\hbar W}{\sqrt{2 m}}\right)^{\prime}+W^{2} \tag{61}
\end{equation*}
$$

with

$$
\begin{align*}
H_{2}=Q Q^{\dagger}= & -\left(\frac{\hbar^{2}}{2 m}\right) \frac{d^{2}}{d x^{2}}-\left(\frac{\hbar^{2}}{2 m}\right)^{\prime} \frac{d}{d x}-\left(\frac{\hbar W}{\sqrt{2 m}}\right)^{\prime}+W^{2}+ \\
& \frac{2 \hbar(W)^{\prime}}{\sqrt{2 m}}-\left(\frac{\hbar}{\sqrt{2 m}}\right)\left(\frac{\hbar}{\sqrt{2 m}}\right)^{\prime \prime} \tag{62}\\
= & H_{1}+\frac{2 \hbar(W)^{\prime}}{\sqrt{2 m}}-\left(\frac{\hbar}{\sqrt{2 m}}\right)\left(\frac{\hbar}{\sqrt{2 m}}\right)^{\prime \prime} . \tag{63}
\end{align*}
$$

H_{1} and H_{2} describe particles of mass $m(x)$ moving in different potentials. One has

$$
\begin{equation*}
V_{2}=V_{1}+\frac{2 \hbar(W)^{\prime}}{\sqrt{2 m}}-\left(\frac{\hbar}{\sqrt{2 m}}\right)\left(\frac{\hbar}{\sqrt{2 m}}\right)^{\prime \prime} \tag{64}
\end{equation*}
$$

The relation between the de La Peña's A and the SUSY-operators Q^{\dagger} and Q for a position-dependent mass becomes

$$
\begin{equation*}
A \psi=Q Q^{\dagger} \psi-Q^{\dagger} Q \psi=V_{2}-V_{1}=H_{2}-H_{1}=\frac{2 \hbar(W)^{\prime}}{\sqrt{2 m}}-\left(\frac{\hbar}{\sqrt{2 m}}\right)\left(\frac{\hbar}{\sqrt{2 m}}\right)^{\prime \prime} \tag{65}
\end{equation*}
$$

If m does not depend upon x the above equation reduces to (taking $\hbar=m=1$)

$$
\begin{equation*}
A=\sqrt{2} W^{\prime} I \tag{66}
\end{equation*}
$$

with I the identity operator, a relation that coincides with Eq. (4.3) of reference [14]. For de De La Peña's S one has

$$
\begin{gather*}
S \psi(x)=Q Q^{\dagger} \psi+Q^{\dagger} Q \psi=H_{2}+H_{1} \tag{67}\\
=2 H_{1}+\frac{2 \hbar(W)^{\prime}}{\sqrt{2 m}}-\left(\frac{\hbar}{\sqrt{2 m}}\right)\left(\frac{\hbar}{\sqrt{2 m}}\right)^{\prime \prime} \tag{68}\\
=2\left[-\left(\frac{\hbar^{2}}{2 m}\right) \frac{d^{2}}{d x^{2}}-\left(\frac{\hbar^{2}}{2 m}\right)^{\prime} \frac{d}{d x}-\left(\frac{\hbar W}{\sqrt{2 m}}\right)^{\prime}+W^{2}\right]+2 \frac{\hbar W^{\prime}}{\sqrt{2 m}}-\left(\frac{\hbar}{\sqrt{2 m}}\right)\left(\frac{\hbar}{\sqrt{2 m}}\right)^{\prime \prime} . \tag{69}
\end{gather*}
$$

If m is independent of x, the above expression reduces to (taking $\hbar=m=1$) to

$$
\begin{equation*}
S=2\left[-\frac{1}{2} \frac{d^{2}}{d x^{2}}+W^{2}\right] \tag{70}
\end{equation*}
$$

i.e., to Eq. (4.4) of reference [14]. One finds

$$
\begin{gather*}
P=q_{0}+q_{a} A+q_{s} S \tag{71}\\
=q_{0}+q_{a}\left[\frac{2 \hbar(W)^{\prime}}{\sqrt{2 m}}-\left(\frac{\hbar}{\sqrt{2 m}}\right)\left(\frac{\hbar}{\sqrt{2 m}}\right)^{\prime \prime}\right] \tag{72}\\
+q_{s}\left(2\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}-\left(\frac{\hbar^{2}}{2 m}\right)^{\prime} \frac{d}{d x}-\left(\frac{\hbar W}{\sqrt{2 m}}\right)^{\prime}+W^{2}\right]+\frac{2 \hbar W^{\prime}}{\sqrt{2 m}}-\left(\frac{\hbar}{\sqrt{2 m}}\right)\left(\frac{\hbar}{\sqrt{2 m}}\right)^{\prime \prime}\right) . \tag{73}
\end{gather*}
$$

Given that q_{0}, q_{a}, q_{s} are adjustable parameters, if we take $q_{0}=0, q_{a}=-\frac{1}{2}, q_{s}=\frac{1}{2}$, we can identify P with H_{1} and the S-eigen-values are energy ones:

$$
\begin{equation*}
s_{k}=E_{k} \tag{74}
\end{equation*}
$$

which reconfirms that we are working with the correct spectrum.

6. CONCLUSIONS

Eqs. (61) and (63) are De La Peña's expressions for A and S in the case of a position-dependent effective mass $m(x)$, whose obtention was the goal of this paper. These equation correctly reduced to the known forms for these operators when the mass is constant (see [14]). The all important adjustable parameters q_{0}, q_{a}, q_{s} have here the same form that they had acquired for reflection-less potentials in these operators when the mass is constant [14]. This suggests that these forms for q_{0}, q_{a}, q_{s} might be universal.

7. References

[0] For some historical notes on the concept of mass see S. Ray, arXiv:physics/0411127
[1] G. Bastard, "Wave Mechanics Applied to Semiconductor Heterostructures" (Les Editions de Physique, France, 1988
[2] Ll. Serra and E. Lipparini, Europhys. Lett. 40, 667 (1997)
[3] P. Ring and P. Schuck, "The Nuclear Many Body Problem" (Springer-Verlag, New York, 1980), p. 211
[4] F. Arias de Saavedra, J. Boronat, A. Polls, and A. Fabrocini, Phys. Rev. B 50, 4248 (1994)
[5] M. Barranco, M. Pi, S. M. Gatica, E. S. Hernandez, and J. Navarro, Phys. Rev. B 56, 8997 (1997)
[7] L. Dekar, L. Chetouani, and T. F. Hammann, J. Math. Phys. 39, 2551 (1998)
[8] L. Dekar, L. Chetouani, and T. F. Hammann, Phys. Rev. A 59, 107 (1999)
[9] F. Cooper, A. Khare, and Sukhatme, "Supersymmetry in Quantum Mechanics", World Scientific, River Edge, NJ, USA, 2001
[10] B. K. Bagchi, "Supersymmetry in Quantum and Classical Mechanics" Vol. 116, Chapman \& Hall/CRC, Boca Raton, Fla, USA, 2001
[11] G. Junker, "Supersymmetric Methods in Quantum and Statistical Physics", Texts and Monographs in Physics, Springer, Berlin, Germany, 1996
[12] A. R. PLastino, A. Rigo, M. Casas, F. Garcias, and A. Plastino, Phys. Rev. A 60, 6, 4318 (1999)
[13] L. de La Peña and R. Montemayor, Am. J. of Phy., vol. 48, no. 10, pp. 855-860, 1980
[14] L. Canderle, A. Plastino, M. Casas, y A. R. Plastino, Int. J. of Math. and Math. Sc., Vol. 2009, Article ID 575217
[14'] http://en.wikipedia.org/wiki/Natural-units
[15] D. J. Griffiths, "Int. to Quantum Mechanics", (Prentice Hall, Englewood Cliffs, New Jersey, USA, 1995)
[16] E. Witten, "Search for a realistic Kaluza-Klein theory", Nuclear Physics, B, vol. 186, no. 3, pp. 412-428, 1981

```
About This Journal
TPHY is an open access journal published by Scientific Online Publishing. This journal focus on the following scopes (but not limited to):
```

```
> Chaos Theory
```

> Chaos Theory
Chaotic Cryptography
Chaotic Cryptography
Classical and Quantum Gravitation
Classical and Quantum Gravitation
Cosmology and Astrophysics
Cosmology and Astrophysics
Fluctuation Phenomena
Fluctuation Phenomena
> Foundational Problems in Theoretical Physics
> Foundational Problems in Theoretical Physics
Foundations of Quantum Mechanics
Foundations of Quantum Mechanics
> High Energy Physics
> High Energy Physics
> Mathematical Physics
> Mathematical Physics
> Modified Gravity Theory

```
> Modified Gravity Theory
```

Welcome to submit your original manuscripts to us. For more information, please visit our website: http://www.scipublish.com/journals/TPHY/

You can click the bellows to follow us:
Facebook: https://www.facebook.com/scipublish
\diamond Twitter: https://twitter.com/scionlinepub
২ LinkedIn: https://www.linkedin.com/company/scientific-online-publishing-usa
৪ Google+: https://google.com/+ScipublishSOP

SOP welcomes authors to contribute their research outcomes under the following rules:
$>$ Although glad to publish all original and new research achievements, SOP can't bear any misbehavior: plagiarism, forgery or manipulation of experimental data.
$>$ As an international publisher, SOP highly values different cultures and adopts cautious attitude towards religion, politics, race, war and ethics.
$>$ SOP helps to propagate scientific results but shares no responsibility of any legal risks or harmful effects caused by article along with the authors.
$>$ SOP maintains the strictest peer review, but holds a neutral attitude for all the published articles.
$>$ SOP is an open platform, waiting for senior experts serving on the editorial boards to advance the progress of research together.

