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Abstract:
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De la Pena’s factorization technique.
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1. INTRODUCTION

Many physical problems can be treated via a model employing a Schrodinger equation with a position-
dependent mass (SEPDM) [0, 1,2]. Such an approximation is useful for determining electronic properties
of semiconductors [1] and quantum-dots [2]. The concept of effective mass is also relevant in connection
with the energy density functional (EDF) approach to the quantum many-body problem. The EDF
formalism has provided reasonable theoretical predictions of many experimental properties for several
quantum many-body systems. Within the EDF approach, the nonlocal terms of the associated potential
can be often interpreted as a position dependence on an appropriate, position dependent effective mass.
This has been used for nuclei [3], quantum liquids [4], 3He clusters [5], and metallic clusters [6]. There
also exist exactly solvable models with smooth potentials and abrupt mass-jumps [7, 8].

In another vein, one encounters interesting activity regarding the application of the so-called super-
symmetric quantum mechanics (SUSY) [9,10,11] to SEPDM with m = m(x). For any such system, a
super-symmetric partner exists with the same mass-dependence [12]. The pertinent wave equation and
eigen-energies of a SEPDM arise form solving an equation of the form

)
[—VMV+V(r)] y(r) =Ey(r) €]

We concentrate our efforts here on a SUSY-equivalent formulation advanced by L. de La Pefa y
R. Montemayor, discussed in reference [14], where it was applied to an important family of potential
functions of the form [13] (expressed in Hartree atomic units [144])

Vzl{l__z ] @

2 cosh?x




SOP TRANSACTIONS ON THEORETICAL PHYSICS

100

derived from the general instance

_ 1[5 nh+l)
V= 2 [n cosh?x ] S

Our present goal is to show the de la Pefia-Montemayor - Susy equivalence for SEPDMs.

2. Schrédinger EQUATION FOR A POSITION DEPENDENT EFFECTIVE
MASS

The one-dimension SEPDM equation reads [7, 8]

2 2 2
(o ) - |5 (o )| S Vw0 = Bvi), @
with m(x) an effective mass, V (x) the potential function, and E the eigen-energies. We face an eigen-values
equation
Hy =Ey, &)
with a Hamiltonian
H=2 (ﬁ) P4 ©)

with & the impulse. Eq. (4) can be derived from a variational principle similar to the standard one. The
energy-expectation value is

(H) =
= Jdxy(x) [~ & (s ) + V)| wi) =

= Jdx [#) (29) 4 v() wz(x)] : )

It is easily seen that minimization of (H) under normalization constraint (y | ¥) = 1 leads to Eq. (4).
The wave function’s ay an abrupt interface originated by a discontinuity of the effective mass, with V (x)
finite, are, in self-explanatory notation,

Vo =Yy ®)

plus the continuity of ﬁ d'gfcx), ie.,

(m:x) dyf;(fx)>_ B (m:x) d‘Z)(Cx)>+ €))

Sub-indexes — and + indicate, respectively, the left- and right-hand sides of the mass discontinuity. The

last relation is also verified if, at the mass-discontinuity point x( the potential V exhibits a finite jump. If
V displays a -singularity at x

V ~ Vb (x—xp), (10)
it is possible to replace Eq. (9) by
1 dy(x) 1 dy(x)\ 2%
<W dx )+_ (@ dx ) =72 v (xo) (11)

For more details see reference [15].
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3. THE SUPER-SYMMETRIC FORMALISM
3.1 Generalized step operators

In this introductory Section m is constant. Reference [9] is excellent. The formalism is based upon the

relations amongst (i) eigen-energies, (ii) eigen-values, and (iii) phase relations between the two partner

Hamiltonians s
le—;l—m;?-l-Vu

and o
sz—f—m%-FVz,

12)

(13)

associated to potentials that are called super-symmetric, namely, V! and V2. Without loss of generality

one can assume that H;’s ground state energy vanishes: (E(()l) = O) and that the associated Yy is known.

Then,
W d?
H = _—— = .
1% ( 2mdx2+V1(x)) Vo =0

It is clear that
1!

Y
V](x) = %Vz

Accordingly, H; adopts the appearance

hz d2 /!
Hi=—n (55— Y0,
2m \dx?2

which suggests introducing two operators Q and QF

V2m |dx o
o = b {_i_%]
V2m | dx oyl
so that H; becomes
H, =00,
and
hZ d2 lIII/ lIII 2 h2 d2
2=00' =7 (dx2 Yo {%] md T
where

It is useful to define a “super-potential” W (x). Given yp, W(x) is

o A () ()

(14)

(15)

(16)

a7

(18)

19)

(20)

2n
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and one can cast V| - V, in W —terms

aw’
V2m ’

Vi=W?—

'
V2m'

V2=W2+

Also, we can write Q - Q" in terms of W (x):

(22)

(23)

(24)

(25)

(26)

3.2 Identities

The first one is:

Since H'yy = 0 and using

entailing

Oy =0

(17)
0" 0wy =0,

(wol 070 |wo) =0.

Then, the norm of Q |yp) vanishes as well. One also has

Q'H, — QH, =0,

OH; — H,Q = 0.

Given the eigen-state W, of H; with energy E,, one has

and applying Q on the left

Hiy, =0'0vy, =E} v,

OH vy, = 00" (Qv,) = H2 (Qv,) = E; (Qw) ,

27

(28)

(29)

(30)

€1y

(32)
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it is clear that Q! is an eigen-state of H, with energy E,}, save for the ground state l//(} on account of
(25). Analogously, starting from an eigen-state l//,% of H; of energy E,% we find

Hyy, = 00"y, = B, (33)

and applying on the left QT to (32):
0'0(Q'yy) =H' (Q'w;) = Ex (Q"w) . (34)
is it obvious that Qf l[/,% is an eigen-state of H; with energy E,% Accordingly, the spectra of our two
Hamiltonians can be derived one from the other. The relation between the respective eigen-values

becomes:
E2=E)., n=0,1,2,.. (35)

As for normalization, start from <1;/3| Q" |l//3> =E? <l//,%| 1;/3) If |ly,%> is normalized, then

o vy, (36)

v =~
n

VE;
is normalized as well. A similar relation holds for |y} ):

1

lvr) = \/EQ*WJ)-

(37

4. de La Pena’s FORMALISM

This is an alternative treatment which can be matched to that of SUSY [13, 14] and we will call the
de La Pefia one. It is based upon a sort of universal operator for each system that we call here P. Let
{|n)} stand for a Hilbert-basis, characterized by the set of quantum numbers n. Sea {p, } its eigen-value
spectrum

P|n) = puln) (38)

The creation-destruction operators associated to P will be called n' and 1:
=Y Cilnt+1)(n; n=Y Cooiln—1)(nl, (39)
n n
the C,, being appropriate coefficients to be specified later. Rebaptize |n) = |k),

n' k) =Crlk+1), (40)

nlk) =Ce1lk—1). (41)
The C, are related to the bilinear operators N1’ - 177, as from (39),

nn’ k) = |Ce[* k) 42)
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n'n k) = |Ce1 [P 1k) (43)

As customary, we assume that our spectra are bounded by below, linked to n = 0, which entails (see
(39.b))
nt |0y=0;, = C_;=0. (44)

If an upper bound to the spectra also exists, say n = N, then
nfIN)=0;, = Cy=0. (45)
If not, this last restriction does not exist, of course. We are now in a condition to conjecture the form
P=ap+aonn’ +ann’n (46)
and evaluate the p,, in the fashion
Pm = aoo+ a0 |Cul” +ao1 [Cu1 |, (47)
ending up with N + 3 unknowns, in particular, ap, @10, @01, and {|C,|,n=0,1,2,....N — 1}. We also
have N + 1 conditions from (43), with n =0, 1,2,..., N, plus normalization, i.e., scale-fixing and origin-

selection. This suffices for a complete determination of P’s spectrum. This line of reasoning makes it
evident the convenience of working with the products of 1 an 7. We choose:

A=[nn']=nn"-n'n; entailings={n,n"} =nn’+n'n, (48)

so that
P =qo+qaA+qsS (49)
where the constants will be conveniently adjusted. The eigen-values of A and S will be called, respectively,

ay and s;. One has, via (39.a), (39.b), and (44):

AR) = a6 = (G =1 ) 163

entailing S 1K) = s k) = (1G> +[Ci 1) [1), (50)
where
ay = |Ce|* = |Ce1|?; entailing s; = |C|* + |Gt | (51)
A little algebra shows that
Cl* = %(Sk‘i‘ak) = %(sk+l —agi1)- (52)

The spectra of A and S satisfy a series of consistency relations.

(i) From (47) and (48)
sg2>20; setag>0; sg—ap>0. (53)
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(i1) From (48)

Sk + Ak = Sk+1 — Ak+1,

and (iii), from (47) and (41.b):

S0 = ap, SN = —an.

(54)

(55)

Eq. (49) shows that S’ spectrum is nonnegative and has a lower limit ag. Eq. (50) fixes the P—spectrum

structure. Lower and (possibly) upper bounds are determined by Eq. (51). If applying this equation leads

to a contradiction, no upper bound exists. Consistency relations (49), (50), and (51) contain all available

information regarding P.

5. POSITION-DEPENDENT MASS

Our original contribution enters here. Schrodinger’s equation for m = m(x) is

h2
{_vmwwx)} v(x) =Ey(x),

ie.,

() S8 ()2 vm e

Super-symmetric operators Q and O are given in W (x)-terms as

V= TV
d ([ hy
Ty — & [ Y
Q'y = dx( %)*W"’

so that ,
n\ d n\ d aw o\
=00 <2m) dx? <2m) dx <\/2m> W
corresponding to an effective mass m(x) moving in a potential

w o\’
Vi=—|—) +W?,
: <v2m>

with

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)
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H, and H, describe particles of mass m(x) moving in different potentials. One has
20 (W) ( h ) < h )”
W=Vi+ - 64
g ! V2m V2m V2m 4
The relation between the de La Pefia’s A and the SUS Y-operators Q' and Q for a position-dependent mass
becomes
AY=00Ty—Q 0y =Vo—Vi =H,—H —ZE(W)’—< L )( L ) (65)
2 2 ! V2m V2m V2m)

If m does not depend upon x the above equation reduces to (taking i =m = 1)
A=\2W'I (66)

with I the identity operator, a relation that coincides with Eq. (4.3) of reference [14]. For de De La Peiia’s
S one has

Sy(x) = 00"y + 0"y = Hy + H, (67)
-2+ 25 - () () ©
[ (E)E-(E) 4 () e (B)®H) @

If m is independent of x, the above expression reduces to (taking i =m = 1) to

soof L e (70)
B 2 dx? ’
i.e., to Eq. (4.4) of reference [14]. One finds
P =qo+q.A+qsS (71)
o ' "
~an+ao 257 () (%) | o
2 (12 4 w ) w2l o n i\’
s (2 [‘me@‘(Zm) () v+ 2 - (5) () ) (73)
Given that qo, q4, g5 are adjustable parameters, if we take go =0, g, = —%, qs = %, we can identify P
with H; and the S-eigen-values are energy ones:
sk = Ey 74

which reconfirms that we are working with the correct spectrum.
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6. CONCLUSIONS

Eqgs. (61) and (63) are De La Pefia’s expressions for A and S in the case of a position-dependent
effective mass m(x), whose obtention was the goal of this paper. These equation correctly reduced to
the known forms for these operators when the mass is constant (see [14]). The all important adjustable
parameters qo, ¢4, ¢s have here the same form that they had acquired for reflection-less potentials in these
operators when the mass is constant [14].This suggests that these forms for o, g4, g; might be universal.
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