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Abstract Given a finite sequence of vectors F0 in C
d we describe the spectral and

geometrical structure of optimal frame completions of F0 obtained by appending a
finite sequence of vectors with prescribed norms, where optimality is measured with
respect to a general convex potential. In particular, our analysis includes the so-called
Mean Square Error (MSE) and the Benedetto-Fickus’ frame potential. On a first step,
we reduce the problem of finding the optimal completions to the computation of the
minimum of a convex function in a convex compact polytope in R

d . As a second
step, we show that there exists a finite set (that can be explicitly computed in terms
of a finite step algorithm that depends on F0 and the sequence of prescribed norms)
such that the optimal frame completions with respect to a given convex potential
can be described in terms of a distinguished element of this set. As a byproduct we
characterize the cases of equality in Lidskii’s inequality from matrix theory.
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1 Introduction

A finite sequence of vectors F = {fi}ni=1 in Cd is a frame for Cd if the sequence
spans C

d . It is well known that finite frames provide redundant linear encoding-
decoding schemes, that have proved useful in real life applications. Conversely,
several research problems in this field have arisen in the attempt to apply this theory
in different contexts.

Recently, the following frame completion problem was posed in [19]: given an
initial sequence F0 = {fi}no

i=1 in Cd and a sequence of positive numbers a = (αi)
k
i=1

then compute the sequences G = {gi}ki=1 in Cd whose elements have norms given by
the sequence a and such that the completed sequence F = (F0 , G) is a frame that
minimizes the functional MSE(F) = tr(S−1

F ), where SF denotes the frame operator
of F . Notice there are other possible functionals - known as convex potentials (see [8,
18, 28]) - that we could choose to minimize such as, for example, the frame potential
introduced in [2] by Benedetto and Fickus.

A first step toward the solution of this general version of the completion problem
was made in [32]. There we showed that under certain hypothesis (feasible cases, see
Section 2), optimal frame completions with prescribed norms do not depend on the
particular choice of convex functional. On the other hand, it is easy to show examples
in which the previous result does not apply (non-feasible cases); in these cases the
optimal frame completions with prescribed norms are not known even for the MSE
nor the frame potential.

In this paper we consider the frame completion problem of an initial sequence F0

in Cd , for general sequences a of prescribed norms and for a fixed convex potential
Pf - where f is a strictly convex function - in the non-feasible cases (see Section 2 for
motivations and a detailed description of our main problem). In order to deal with the
general problem we introduce and develop a class of pairs of positive matrices that are
optimal in the sense that they achieve equality in Lidskii’s inequality (called Lidskii
matching matrices, see (section Appendix II) that allows to reduce the problem to
the computation of minimizers of a scalar convex function F (associated to f ) in
a compact convex domain in Rd (the same set for every map f ). This constitutes
a reduction of the optimization problem, that in turn can be tackled with several
numerical tools in concrete examples. In fact, the convex domain has a natural and
explicit description in terms of majorization, which is an algorithmic notion.

We also study the spectral and geometrical structure of (local) minimizers of Pf

in the set of frame completions with prescribed norms, in terms of a geometrical
approach to a perturbation problem. We show that optimal completionsF = (F0 , G)

are frames and they have the property that the vectors of the completing sequence G
are eigenvectors of the frame operator of the complete sequence F . This last result
allows for a second reduction of the problem: there is a finite set E(F0 , a) in Rd -
that depends only on the initial family F0 and the finite sequence a of positive
numbers - such that for any fixed convex potential Pf there exists a unique vector
μ = μf ∈ E(F0 , a) (computable by a minimization on the finite set E(F0 , a) in
terms of F ) such that all optimal frame completions for Pf with prescribed norms
can be computed in terms of μ.
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In both methods, we describe the optimal vector of eigenvalues for the frame
operator of the completing sequences. With this data, the optimal frame completions
(which satisfy the norm restrictions) can be effectively computed by using a well
known algorithm developed in [16] that implements the Schur-Horn theorem.

In all examples that we have computed numerically, we have found that the opti-
mal spectrum of the completing sequences does not depend on the particular choice
of convex potential Pf considered. Although at the present we have not been able to
prove this fact, we state it as a conjecture. We have also observed two other common
features of optimal solutions, that allow to implement an efficient (and considerably
faster) algorithm that computes a smaller set than E(F0 , a) that also enables to com-
pute the optimal frame completions with prescribed norms with respect to a general
convex potential Pf in all the examples considered.

The paper is organized as follows. In Section 2 we state several notions and facts
about frame theory in finite dimension and majorization, which is a notion from
matrix theory; in this section we describe in detail the main problem of the present
paper and some previous related results. In Section 3 we state the main results (about
frames) of the paper, and we describe briefly some of their consequences. This
section includes several links explaining the role of all other sections and their state-
ments, so that it can be used as a guide for reading the paper. In Section 4 we reduce
the problem of computing optimal frame completions with prescribed norms to a
set of completions whose frame operators are optimal in the sense that they achieve
equality in Lidskii’s inequality; we study the case of equality in Lidskii’s inequality
in (section Appendix II). We also show that the spectral structure of optimal comple-
tions is unique and has some other features. Based on the results in Section 4 it is
possible to obtain a first reduction of the problem by showing that the optimal frame
completions with prescribed norms for the convex potential Pf can be described in
terms of the minimizers of an associated function F in a compact convex polytope
in Rd (as described in Section 3). In Section 5 we introduce a natural metric in the
set of completions and study some properties of local minimizers for the comple-
tion problem in terms of irreducible sequences. These properties are useful for the
following section, and they depend on the geometrical structure of irreducible local
minimizers; this study, which involves tools from differential geometry, is postponed
to Appendix I. Using these results we show in Section 6 that optimal completions
F = (F0 , G) are frames and they have the property that the vectors of the completing
sequence G are eigenvectors of the frame operator SF of the complete sequence F .
Based on this last fact we develop an algorithm (that can be effectively implemented)
to compute optimal completions numerically. We include a discussion of other com-
mons features of the numerical solutions from the computed examples. In Appendix I
we apply tools form differential geometry to study some properties of local mini-
mizers which were stated in Section 5. Finally, in Appendix II we introduce pairs of
positive matrices, that we call Lidskii matchings, and describe the structure of these
pairs; this corresponds to the study of the case of equality in Lidskii’s inequality from
matrix theory.
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2 Frames and optimal completions with prescribed parameters

In what follows we shall consider the set F = F(n , d) of (n, d)-frames, that is,
generating sequences F = {fi}ni=1 of a d-dimensional complex Hilbert space H.
We will denote by TF , T ∗

F and SF the synthesis, analysis and frame operator for F
respectively. For a detailed account of results on frame theory, we refer the reader to
[2, 9, 15, 21, 29] and the references therein.

In several applied situations it is desired to construct a sequence F in such a way
that the frame operator of F is given by some positive definite operator S and the
squared norms of the frame elements are prescribed by a sequence of positive num-
bers a = (αi)

n
i=1. That is, given a positive definite operator S of H and a ∈ R

n
>0, to

analyze the existence (and construction) of a sequence F = {fi}ni=1 such that SF = S

and ‖fi‖2 = αi , for 1 ≤ i ≤ n. This is known as the classical frame design problem.
It has been treated by several research groups (see for example [1, 7, 10, 12, 16–18,
25]). In what follows we recall a solution of the classical frame design problem in
the finite dimensional setting, in the way that it is convenient for our analysis.

Proposition 2.1 ([1, 28]) Let B be a positive operator on H with (ordered) eigenval-
ues λ1 ≥ · · · λd ≥ 0. Consider α1 ≥ · · · ≥ αk > 0. Then there exists a sequence
G = {gi}ki=1 in H with frame operator SG = B such that ‖gi‖2 = αi for every
1 ≤ i ≤ k if and only if

j∑

i=1

αi ≤
j∑

i=1

λi, for 1 ≤ j ≤ min{k , d} and
k∑

i=1

αi =
d∑

i=1

λi. (1)

The family of inequalities described in Eq. 1 imply that the vector of eigenvalues of
B must majorize a. Majorization between vectors is a notion from matrix analysis
theory that plays a key role in our work and will be used throughout the paper. Given
x, y ∈ Rd we say that x is submajorized by y, and write x ≺w y, if

k∑

i=1

x
↓
i ≤

k∑

i=1

y
↓
i for every k ∈ Id ,

where x↓ ∈ Rd denotes the vector obtained from x by rearrangement of its entries
in non-increasing order. If x ≺w y and

∑d
i=1 xi = ∑d

i=1 yi , then we say that x is
majorized by y, and write x ≺ y. If the two vectors x and y have different size, we
write x ≺ y if the extended vectors (completing with zeros to have the same size)
satisfy the previous relationship (as in Eq. 1).

We shall also use the notation ≺ (resp. ≺w) when we (spectrally) compare a
pair of self-adjoint operators in a finite dimensional Hilbert space H: S1 ≺ S2 if
λ(S1) ≺ λ(S2), where λ(S) ∈ (Rd)↓ is the ordered vector of eigenvalues of S,
counting multiplicities.

Recently, researchers have made a step forward in the classical frame design prob-
lem and have asked about the structure of optimal frames with prescribed parameters.
For example, consider the following problem posed in [19]: let F0 = {fi}no

i=1 be a
sequence in a d-dimensional Hilbert space H. Consider a sequence a = (αi)

k
i=1 of
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positive numbers such that rk SF0 ≥ d − k and denote by n = no + k. Then the
problem is to construct a sequence

G = {fi}ni=no+1 in H with ‖fno+i‖2 = αi for 1 ≤ i ≤ k,

such that the resulting completed sequence is a frame F = (F0 , G) = {fi}ni=1 ∈
F(n , d) that minimizes the so called mean square error i.e., the functional
MSE(F) = tr S−1

F , among all possible such completions. It is worth pointing out that
the MSE terminology comes from the theory of approximations of a vector x from
(〈x, fi〉 + εi)

n
i=1 where each εi is an additive error term: when εi are independently

distributed with each having mean zero and variance σ 2, it can be seen that the MSE
of the reconstruction of x using the canonical dual can be simplified in terms of the
trace of the inverse of the frame operator of F ([19]).

Note that there are other possible ways to measure robustness (optimality) of the
completed frame F as above. For example, we can consider optimal (minimizing)
completions, with prescribed norms, for the Benedetto-Fickus’ potential. In this case
we search for a frame F = (F0 , G) = {fi}ni=1 ∈ F(n , d), with ‖fno+i‖2 = αi for
1 ≤ i ≤ k, and such that its frame potential FP (F) = tr S2

F is minimal among all
possible such completions. Indeed, this problem has been considered before in the
particular case in which F0 = ∅ in [2, 13, 20, 23, 29].

In this paper we shall consider the problem of optimal completion with prescribed
norms, where optimality is measured with respect to general convex potentials, i.e.
we consider minimizers for the (generalized) convex potential associated to a convex
function f : [0 , ∞) → [0 , ∞), denoted Pf , given by

Pf (F) = tr f (SF ) =
d∑

j=1

f (λj (SF ) ) for F = {fi}ni=1 ∈ Hn . (2)

It is clear that these potentials generalize the frame potential and MSE (f (t) = t2

and f (t) = t−1 respectively).

Remark 2.2 A well known result concerning the majorization preorder between vec-
tors is the following: Let f : I → R be a convex function defined on an interval

I ⊆ R. Given x, y ∈ I d then x ≺ y =⇒
d∑

i=1
f (xi) ≤

d∑
i=1

f (yi) (see for example

[3]).
Moreover, if x ≺w y and f is a strictly convex function such that tr f (x) =

tr f (y) then there exists a permutation σ of {1, . . . , d} such that yi = xσ(i) for
1 ≤ i ≤ d . �

This suggest the study of minimizers for majorization in order to find the frame oper-
ators of the optimal completions with respect to a generalized potential Pf . In order
to describe our main problem we first fix the notation that we shall use throughout
the paper.

Definition 2.3 Let F0 = {fi}no

i=1 ∈ Hno and a = (αi)
k
i=1 be a sequence of positive

numbers such that d − rk SF0 ≤ k. Define n = no + k. Then
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1. In what follows we say that (F0 , a) are initial data for the completion problem
(CP).

2. Let f : [0, ∞) → R be a strictly convex function. In those statements which use
this map we shall say that (F0 , a , f ) are initial data for the completion problem
(CP).

3. For these data we consider the set of completions

Ca(F0) = { {fi}ni=1 ∈ Hn : {fi}no
i=1 = F0 and ‖fno+i‖2 = αi for 1 ≤ i ≤ k

}

and the set of frame operators of these completions

SCa(F0) = {SF : F ∈ Ca(F0)} .

When the initial data (F0 , a) are fixed, we shall use throughout the paper the
notations S0 = SF0 , λ = λ(S0) = (λi)

d
i=1 are the eigenvalues of S0 counting

multiplicities and arranged in a non-increasing order, and n = no + k.

Problem (Optimal completions with prescribed norms with respect to Pf ) Let
(F0 , a , f ) be initial data for the CP as in 2.3. Construct all possible F ∈ Ca(F0)

that are the minimizers of Pf in Ca(F0). �
Our analysis of the completed frame F = (F0 , G) will depend on F through SF .

Hence, the following description of SCa(F0) plays a central role in our approach.

Proposition 2.4 An operator S ∈ SCa(F0) if and only if S − SF0 is a positive semi-
definite operator on H and a ≺ λ(S − SF0), where λ(S − SF0) is the vector of
eigenvalues of S − SF0 counting multiplicities.

Proof Observe that if F = (F0 , G) ∈ Hn then SF = SF0 + SG . The result follows
applying Proposition 2.1 to B = SF − SF0 (which must be nonnegative since S ∈
SCa(F0)).

In view of the Remark 2.2 and a spectral characterization of a specific set of matrices,
in [32] is described a special case, known as feasible case of optimal completions.

Remark 2.5 (Optimal completion problem with prescribed norms: the feasible case)
Consider the following set of positive perturbations of a positive semidefinite
operator S0: given t > tr S0 and k ∈ N, k ≤ d ,

Ut(S0, k) = {S0 + B : B positive semidefinite, rk B ≤ k, tr (S0 + B) = t },
In [32, Theorem 3.12] it is shown that there exist ≺-minimizers in Ut(S0, k). Indeed,
there exists ν = νλ , k(t) - that can be effectively computed by simple algorithms -
such that S ∈ Ut(S0, k) is a ≺-minimizer if and only if λ(S) = ν.

Now, let F0 = {fi}no

i=1 ∈ Hno and a = (αi)
k
i=1 be a sequence of positive numbers.

Denote by S0 = SF0 and let t = tr S0 + tr a. We say that the completion problem for

(F0 , a) is feasible if μ
def= ν −λ satisfies that a ≺ μ, where ν = νλ , k(t) is as above.

In this case, in [32] it is shown that λ(S−S0) = μ↓ for any S which is a ≺-minimizer
in Ut(S0, k). Hence we conclude that S ∈ SCa(F0). Moreover, Proposition 2.4 also
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shows that SCa(F0) ⊆ Ut(S0, k) and therefore S is a ≺-minimizer in SCa(F0). In this
case, as a consequence of Remark 2.2 any completion F ∈ Ca(F0) such that SF = S

is a minimizer of Pf for any convex function f : [0, ∞) → R. That is, in the feasible
case we have structural solutions of the completion problem, in the sense that these
solutions do not depend on the particular choice of convex potential considered.

Nevertheless, it is easy to construct examples in which the completion problem
for (F0 , a) is not feasible (see [32] or Example 6.7 below) for which the structure of
the optimal completions with these norms is not known, even for the MSE. �

3 Main results

Here we describe the main results of the present paper, for the convenience of the
reader. The proofs of these results, as well as detailed descriptions of some of their
applications, will be presented in the following sections.

Let (F0 , a) be initial data for the CP as in 2.3. As we shall see in Section 4, the
minimizers for the CP lie on the set of frame completions which achieve equality in
Lidskii’s inequality, namely:

{F = (F0 , G) ∈ Ca(F0) : λ(SF ) = (
λ(SF0) + λ↑(SG)

)↓ }
. (3)

Recall that the notation λ(S) is used to describe the vector of eigenvalues of S,
counting multiplicities and such that its entries are arranged in non-increasing order,
while the arrows ↓ and ↑ are used to indicate that the vectors are rearranged so that
the entries are listed in non-increasing or non-decreasing order. Consider the set of
ordered vectors {μ ∈ (Rd

≥0)
↑ : a ≺ μ}. It is easy to see that this set is compact

and convex (for example, it is bounded since the condition a ≺ μ requires ‖μ‖1 =
tr μ = tr a = ‖a‖1). Therefore the shifted set � = {λ↓ + μ↑ : μ ∈ R

d
≥0 and a ≺ μ}

is also compact and convex. We shall see in Theorem 4.4 that this set characterizes
the spectrum λ(SF ) for every F = (F0 , G) lying in the set described in Eq. 3, and
that the frame operators SF0 and SG commute.

Theorem 3.1 Let F0 = {fi}no

i=1 and a = (αi)
k
i=1 be a sequence of positive numbers

such that d−rk SF0 ≤ k. Let λ be the vector of eigenvalues of SF0 . Let f : [0, ∞) →
R be a strictly convex function. Then there exists a vector μ(λ , a , f ) = μ such that
μ = μ↑, a ≺ μ and

1. F = (F0 , G) ∈ Ca(F0) is a global minimizer of Pf ⇐⇒ λ(SF ) = (
λ(SF0)+

λ↑(SG)
)↓ and λ↑(SG) = μ.

2. The vector μ is uniquely determined by the conditions μ = μ↑ , a ≺ μ and

d∑

i=1

f (λi + μi) = min
ν∈�

d∑

i=1

f (νi ) = min

{
d∑

i=1

f (λi + γi) : γ ∈ (Rd
≥0)

↑ and a ≺ γ

}

(4)

Proof See Theorem 4.6.
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Remark 3.2 (First reduction of the optimal CP problem) Let (F0 , a , f ) be ini-
tial data for the CP as in 2.3. Consider the compact convex set {λ↓ + μ↑ : μ ∈
R

d
≥0 and a ≺ μ} ⊆ R

d
≥0 . Since the strictly convex function γ ∈ Rd �→

∑d
i=1 f (γi) is also lower semi-continuous, there exists a unique minimizer ν =

ν(λ , a , f ) such that

d∑

i=1

f (νi) ≤
d∑

i=1

f (λi + γi) for every γ ∈ (Rd
≥0)

↑ , a ≺ γ . (5)

We remark that ν could have some zero entries, so that the minimizers of the CP
would not be frames. We shall show that this is not the case in Proposition 5.5.

Theorem 3.1 states that μ(λ , a , f ) = ν(λ , a , f ) − λ. Thus, a completion F =
(F0 , G) ∈ Ca(F0) such that λ(SF ) = (

λ(SF0)+λ↑(SG)
)↓

is an optimal completion
with respect to Pf if and only if λ(SG) = (ν(λ , a , f )−λ)↓. Thus, the minimization
problem in Eq. 5 constitutes a reduction of the CP to a optimization problem in Rd

that in turn can be tackled with several numerical tools in concrete examples. Notice
that the set of λ↓ + μ↑ such that μ ∈ R

d
≥0 and a ≺ μ has a natural and explicit

description in terms of majorization, which is an algorithmic notion. �

Using the results about equality in Lidskii’s inequality of Appendix II (or Theo-
rem 4.4), and a detailed study of the geometry of local minimizers for the CP in
terms of decompositions into irreducible subfamilies of the completing sequences
(see Section 5 and Appendix I), we can show the following result (for a more detailed
formulation - and its proof - see Theorem 6.1):

Theorem 3.3 Assume that F = (F0 , G) is a global minimizer of Pf on Ca(F0).
Then

1. The frame operator SF = SF0 + SG is invertible, so that F is a frame.
2. Every vector of the sequence G is an eigenvector of the frame operator SF .

Proof It is a consequence of Theorem 6.1.

Remark 3.4 Let (F0 , a , f ) be initial data for the CP as in 2.3 and let λ = λ(SF0).
Using item 2 of Theorem 3.3, it follows that there exists a finite set E(F0 , a),
described in Remark 6.2, which can be algorithmically computed and allows to
reduce the optimization problem for finding minimizers for the CP of Remark 3.2 to
a finite process in the following sense (see Theorem 6.3):

1. The vector μ = μ(λ , a , f ) ∈ (Rd
≥0)

↑ of Theorem 3.1 satisfies that μ ∈
E(F0 , a).

2. Moreover, this vector μ is uniquely determined by the equation
∑d

i=1 f (λi + μi) = min {∑d
i=1 f (λi + γi) : γ ∈ E(F0 , a) } , (6)

That is, F = (F0 , G) ∈ Ca(F0) is a Pf global minimizer if and only if λ(SF ) =(
λ(SF0) + λ↑(SG)

)↓
, μ = λ↑(SG) ∈ E(F0 , a) and it satisfies (6). In the sec-

ond part of Section 6 we describe in detail the corresponding algorithm, we discuss
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its complexity, and we show several examples. We remark that the algorithmic con-
struction of the finite set E(F0 , a) is based on the fact that any vector of the
completing sequence of a minimizer must be a eigenvector of the frame opera-
tor. Hence E(F0 , a) arises from an intrinsic structure of this problem, and it is
not merely a reduction to extremal points of the convex set {λ↓ + μ↑ : μ ∈
R

d
≥0 and a ≺ μ}. Moreover, as we point out in Remark 6.9, based on this struc-

ture the set E(F0 , a) could be reduced, getting significant simplifications of the
complexity of the optimization problem. �

4 The spectrum of the minimizers of Pf on Ca(F0)

In this section we reduce the problem of computing optimal frame completions with
prescribed norms to a set of completions whose frame operators achieve equality in
Lidskii’s inequality. We also show that the spectral structure of optimal completions
is unique and has some other properties that will be considered in the following
sections.

Let (F0 , a) be initial data for the CP as in 2.3. Let μ ∈ R
d
≥0 be such that a ≺ μ.

We consider the set

Ca(F0 , μ)
def= {F = (F0 , G) ∈ Ca(F0) : λ(SG) = μ↓} ⊆ Ca(F0).

Recall that if F = (F0 , G) then SF = SF0 + SG . By Proposition 2.4 we get the
following partition:

Ca(F0) =
⊔

{Ca(F0 , μ) : μ ∈ R
d
≥0 , a ≺ μ}. (7)

As a consequence of Proposition 2.4, we shall deal with the spectrum of SF , SF0 ,
and B = SF − SF0 . These eigenvalues are related with a family of inequalities
provided by a known result of Lidskii:

Theorem 4.1 (Lidskii’s inequality ) Let A, B be a pair of d ×d Hermitian matrices,
with eigenvalues λ(A), λ(B) ∈ (Rd)↓. Then λ↓(A) + λ↑(B) ≺ λ(A + B) , �

Lidskii’s inequality plays an important role in our study of optimal frame completion
problems. Moreover, the case of equality, i.e. when (λ↓(A) + λ↑(B) )↓ = λ(A + B)

plays a central role in this paper. We completely characterize such pair of matrices -
that we call Lidskii matching matrices - in Appendix II. Next we consider the spectral
structure of each of the slices in the partition above.

Proposition 4.2 Consider the previous notations and fix μ ∈ (Rd
≥0)

↑ such that

a ≺ μ. Then the vector ν = (λ(SF0) + μ↑)↓ is a ≺-minimizer in {λ(SF ) : F ∈
Ca(F0 , μ)}.

Proof Notice that the set of all frame operators SG such that F = (F0 , G) ∈
Ca(F0 , μ) is closed under unitary equivalence. Indeed, if U is any unitary operator
on H, then U SG U∗ is the frame operator of the sequence U · G = {Ufi}ni=no+1.
Then it is clear that ν ∈ {λ(SF ) : F ∈ Ca(F0 , μ)}. On the other hand, given
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F = (F0 , G) ∈ Ca(F0 , μ), then Lidskii’s inequality 4.1 states that the vector
ν ≺ λ(SF0 + SG) = λ(SF ). This establishes that ν is a ≺-minimizer in the set
{λ(SF ) : F ∈ Ca(F0 , μ)}.

Remark 4.3 Consider the previous notations and fix μ ∈ (Rd
≥0)

↑ such that a ≺ μ.
Let f : [0 , ∞) → [0 , ∞) be a strictly convex function and let Pf be the convex
potential induced by f . By Remark 2.2 and and Proposition 4.2 we see that, if λ =
λ(SF0) then

F ∈ argmin{Pf (G) : G ∈ Ca(F0 , μ)} ⇐⇒ λ(SF ) = (λ + μ)↓ = ( λ↓ + μ↑ )↓ .

(8)
That is, if we consider the partition of Ca(F0) described in Eq. 7, then in each
slice Ca(F0 , μ) the minimizers of the potential Pf are characterized by the spectral
condition (8).

This shows that in order to search for global minimizers of Pf on Ca(F0) we
can restrict our attention to the set of frame completions which achieve equality in
Lidskii’s inequality:

Cop
a (F0)

def= {F = (F0 , G) ∈ Ca(F0) : λ(SF ) = (
λ(SF0) + λ↑(SG)

)↓ }
.

Indeed, Eqs. 7 and 8 show that if F is a minimizer of Pf in Ca(F0) then F ∈ Cop
a (F0),

i.e.,

argmin {Pf (F) : F ∈ Ca(F0)} = argmin {Pf (F) : F ∈ Cop
a (F0)} . �

The following theorem, based on the study of equality in Lidskii’s inequality (cf. The-
orem 8.8 in Appendix II) together with a careful analysis of sums of ordered vectors
(cf. Proposition 8.6 and Remark 8.7), gives a strong characterization of the sequences
in Cop

a (F0) which will be a key result in order to characterize the minimizers for the
CP.

Theorem 4.4 Let (F0 , a) be initial data for the CP as in 2.3. Denote by λ = λ(SF0).
Then

1. The spectral picture {λ(SF ) : F ∈ Cop
a (F0)} = {ν ↓ : ν = λ↓ + μ↑ : μ ∈

R
d
≥0 and a ≺ μ}.

2. If F = (F0 , G) ∈ Cop
a (F0), with λ↑(SG) = μ, then there exists an orthonormal

basis {vi}di=1 of Cd such that SF0 vi = λi vi and

SG =
d∑

i=1

μi · vi ⊗ vi =⇒ SF = SF0 + SG =
d∑

i=1

(λi + μi) vi ⊗ vi . (9)

In particular, the frame operators SF0 and SG commute.

Proof 1. It is an immediate consequence of the definition of Cop
a (F0).

2. Let F = (F0 , G) ∈ Cop
a (F0). Then the frame operator SG is a Lidskii matching

matrix for SF0 in the sense of Eq. 31 (see Appendix II). Hence, the existence of an
ONB {vi}di=1 satisfying (9) follows from Theorem 4.4.
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Remark 4.5 The advantage in considering the set {λ + μ↑ : μ ∈ R
d
≥0 and a ≺ μ}

instead of the the spectral picture {λ(SF ) : F ∈ Cop
a (F0)} is that it is easy to check

that the former is a convex set (although its elements are not necessarily ordered vec-
tors). This fact will play an important role in the following results. On the other hand,
note that the ordered joint diagonalization in Eq. 9 (which follows from Theorem 8.8)
is not a direct consequence of the fact that the frame operators SF0 and SG commute.
�

Theorem 4.6 There exists a vector μ(λ , a , f ) = μ ∈ (Rd
≥0)

↑ such that a ≺ μ and

1. F = (F0 , G) ∈ Ca(F0) is a global minimizer of Pf ⇐⇒ λ(SF ) = (
λ(SF0) +

λ↑(SG)
)↓

and λ↑(SG) = μ.
2. The vector μ is uniquely determined by the conditions μ = μ↑ , a ≺ μ and

d∑
i=1

f (λi + μi) = min

{
d∑

i=1
f (λi + γi) : γ ∈ (Rd

≥0)
↑ and a ≺ γ

}
.

(10)

Proof Recall that

Pf (F) = tr f (SF ) =
d∑

i=1

f (λi(SF )) for every F ∈ Ca(F0) . (11)

Since the set {λ↓ + μ↑ : μ ∈ R
d
≥0 and a ≺ μ} is compact and convex and

F(γ ) = ∑d
i=1 f (γi) is strictly convex and invariant under permutations of the

entries γi , every local minimizer of F in this set coincide with a unique global mini-
mizer denoted by ν = ν(a , λ , f ). Denote by μ = ν −λ, which clearly satisfies that
μ = μ↑ and a ≺ μ.

Recall that given F = (F0 , G) ∈ Ca(F0) then a necessary condition for F to be a
global minimizer of Pf on Ca(F0) is that F ∈ Cop

a (F0) (see Remark 4.3). Hence, by
item 1 in Theorem 4.4, the fact that F is permutation invariant and (11) we conclude
that F ∈ Ca(F0) is a global minimizer of Pf on Ca(F0) if and only if

F = (F0 , G) ∈ Cop
a (F0) and λ(SF ) = (

λ + λ↑(SG)
)↓ = ν↓ . (12)

Denote by ρ = λ↑(SG) for such a minimizer. Then a ≺ ρ = ρ↑ and hence λ + ρ is a
minimizer of F . Then λ+ρ = ν and ρ = μ. The converse is clear. This shows items
1 and 2.

Remark 4.7 Majorization between vectors in Rd is intimately related with the class
of doubly stochastic d × d matrices, denoted by DS(d). Recall that a d × d matrix
D ∈ DS(d) if it has non-negative entries and each row sum and column sum equals 1.

It is well known (see [3]) that given x , y ∈ Rd then x ≺ y if and only if there
exists D ∈ DS(d) such that D y = x. As a consequence of this fact we see that if
x1 , y1 ∈ Rr and x2 , y2 ∈ Rs are such that xi ≺ yi , i = 1 , 2, then x = (x1 , x2) ≺
y = (y1 , y2) in Rr+s . Indeed, if D1 and D2 are the doubly stochastic matrices
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corresponding the previous majorization relations then D = D1 ⊕ D2 ∈ DS(r + s)

is such that D y = x. �

The following results, which are rather technical consequences of Theorem 4.6, will
be used in the proof of Theorem 6.1 (and Theorem 3.3).

Lemma 4.8 The vector μ = μ(λ , a , f ) ∈ (Rd
≥0)

↑ of Theorem 4.6 also satisfies
that

0 < μi = μi+1 =⇒ λi = λi+1 for every 1 ≤ i ≤ d − 1 . (13)

Proof Assume that 0 < μi = μi+1 but λi > λi+1 for some 1 ≤ i ≤ d − 1 . We
denote by ρ the vector obtained from μ by replacing the i-th and (i + 1)-th entries of
μ by

ρi = μi − ε and ρi+1 = μi+1 + ε, where 0 < ε < min{λi − λi+1

2
, μi}.

Although it is possible that ρ �= ρ↑, the facts that (μi , μi+1) ≺ (ρi , ρi+1) and
μj = ρj for every j �= i , i + 1 imply, by Remark 4.7, that μ ≺ ρ and hence
a ≺ μ ≺ ρ. Using Proposition 2.4 and fixing an ONB {vi}di=1 for SF0 such that
SF0 vi = λi vi for every 1 ≤ i ≤ d , we deduce that there exists F ′ = (F0 , G ′) ∈
Ca(F0) such that λ(SG ′) = ρ↓ and λ(SF ′) = (λ + ρ)↓. Recall that ν = λ+ μ. Since
ρi+1 − ρi = 2 ε < λi − λi+1 , then

νi = λi + μi > λi + ρi > λi+1 + ρi+1 > λi+1 + μi+1 = νi+1 ,

while νj = λj + μj = λj + ρj for every j �= i , i + 1. Then, by Remark 4.7, we
conclude that λ+ρ ≺ ν and (λ+ρ)↓ �= ν↓. Hence, if f is strictly convex the previous
facts imply that Pf (F ′) <

∑d
i=1 f (νi), which contradicts the characterization of

minimizers given in Eq. 12.

Recall that given two (orthogonal) projections P , Q of H, we say that Q is a sub-
projection of P if R(Q) ⊆ R(P ) or equivalently if PQ = Q = QP .

Corollary 4.9 Let (F0 , a , f ) be initial data for the CP as in 2.3. Let F =
(F0 , G) ∈ Ca(F0) be a global minimizer of Pf . Denote by S0 = SF0 . If z ∈
σ(SG) \ {0} then there exists w ∈ σ(S0) such that ker(SG − z) ⊆ ker(S0 − w). In
particular, if P denotes a sub-projection of the spectral projection P(z) of SG onto
its eigenspace ker(SG − z), then P and S0 commute.

Proof By Remark 4.3, the Pf -minimality of F = (F0 , G) in Ca(F0) implies that
F ∈ Cop

a (F0). Then, by Theorem 4.4, there exists an ONB {vi}di=1 such that S0 vi =
λi vi and (9) holds. Denote by S1 = SG , μ = λ↑(S1) and fix z ∈ σ(S1) \ {0}.
Consider the indices

m(z) = min{1 ≤ i ≤ d : μi = z} and M(z) = max{1 ≤ i ≤ d : μi = z} .
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By Eq. 13 in Lemma 4.8 we know that there exists w ∈ σ(S0) such that λi = w for
every m(z) ≤ i ≤ M(z). Then, we can use Eq. 9 and deduce that

ker(SG − z) = span{vi : m(z) ≤ i ≤ M(z)} ⊆ ker(S0 − w) .

Therefore, any sub-projection P of P(z) must satisfy that P ·S0 = S0 ·P = wP .

5 Local minimizers and irreducible sequences

The following notions have a key role in the characterization of local and global
minimizers for the completion problem.

Definition 5.1 Given a sequence G = {gi}ki=1 in Hk we say that

1. G is irreducible if it can not be partitioned into two mutually orthogonal
subsequences.

2. A partition of G into irreducible subfamilies is a family {Gi}pi=1 given by a
partition � = {Ji}pi=1 of {1, . . . , k} in such a way that each Gi = {fj }j∈Ji

satisfies that:

• The subspaces Wi = span{Gi} (1 ≤ i ≤ p) are mutually orthogonal, so that

SG =
p⊕

i=1
SGi

.

• Each subfamily Gi is irreducible. �

Remark 5.2 It is easy to see that every sequence G = {fi}ki=1 ⊆ Hk has a unique
partition into irreducible subfamilies. Indeed, consider the subspace R = span{G} ⊆
C

d and the (non-unital) ∗-subalgebra M(G) = {fi ⊗ fi : 1 ≤ i ≤ k} ′ ∩ {A : A =
PR A PR}. If G is not irreducible, then M(G) contains a unique sequence of minimal
orthogonal projections {Qi}Pi=1 such that Qi Qj = 0 for i, j ≤ p such that i �= j

and
∑P

i=1 Qi = PR (with p > 1). Then

Qi fj = ε(i, j) fj for every 1 ≤ i ≤ p and 1 ≤ j ≤ k,

where ε(i, j) ∈ σ(Qi) = {0, 1}. Let Ji = {1 ≤ j ≤ k : ε(i, j) = 1} for 1 ≤ i ≤ p .
Then the partition � = {Ji}pi=1 has the desired properties. �

In applied situations it is quite useful to understand the structure of local minimizers
of objective functions. In our case, the study of local minimizers allows us to give
a detailed description of the geometrical structure of global minimizers. We shall
consider the punctual metric dP on the set Ca(F0), given by

dP (F , F ′) = ‖TF − TF ′ ‖ ,

where ‖·‖ denotes the spectral norm. Given a strictly convex function f : [0 , ∞) →
[0 , ∞), we study the geometrical and spectral structure of dP -local minimizers F of
Pf on Ca(F0) or Cop

a (F0).
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The notion of irreducible sequence allows to develop a geometrical study which
give strong properties for irreducible dP -local minimizers. This study is rather tech-
nical and it needs several notions and notations, so that we will state and prove these
results in Appendix I.

The following result deals with some features of completions F ∈ Ca(F0) that are
dP -local minimizers of Pf , under some rather technical assumptions. Nevertheless,
this result will apply in case F is a global minimizer of Pf in Ca(F0) (see the proof
of Theorem 6.1 below).

Proposition 5.3 Let F = (F0 , G) ∈ Ca(F0) be a dP -local minimizer of Pf on
Ca(F0). Let {Gi}pi=1 be a partition of G into irreducible subfamilies, where Gi =
{fj }j∈Ji for a partition {Ji}pi=1 of the set of indices {i : no + 1 ≤ i ≤ n}. Assume
that SGi

and S0 commute, for every 1 ≤ i ≤ p . Then there exist positive numbers

c1 , . . . , cp ∈ R>0 such that SFfj = ci fj , j ∈ Ji , 1 ≤ i ≤ p .

Proof Notice that, by construction, the ranges of the frame operators SGi
and

SGj
are orthogonal whenever i �= j . Fix 1 ≤ i ≤ p. The hypothesis allows us

to apply Lemma 7.5 of Appendix I to the sequence (F0 , Gi ) ∈ Cai (F0), where
ai = (‖fj‖2)j∈Ji . In this case we conclude that there exists ci ∈ R>0 such that
(SF0 + SGi

) fj = ci fj , for every j ∈ Ji . Hence,

SF fj = (SF0 + SG) fj =
(

SF0 +
p⊕

l=1

SGl

)
fj = (SF0 + SGi

) fj = ci fj ,

for every j ∈ Ji .

Let (F0 , a) be initial data for the CP as in 2.3. The key argument in order to
characterize the minimizers for the CP is to compute the minimum of a convex
map on the compact convex set {μ ∈ (Rd

≥0)
↑ : a ≺ μ}. Notice that the set

{λ↓ + μ↑ : μ ∈ R
d
≥0 and a ≺ μ} contains vectors with zero entries that corre-

spond to completions that are not frames. Fortunately, this is not the case for global
minimizers (or even dP -local minimizers) as we show in Proposition 5.5 below.

Lemma 5.4 Let f : [0 , ∞) → [0 , ∞) be a strictly convex function and let
{ai}ni=1 ∈ R

n
>0 for some n ≥ d . If F = {fi}ni=1 is a dP -local minimizer of Pf in the

set {G = {gi}ni=1 ∈ Hn : ‖gi‖2 = ai , 1 ≤ i ≤ n}, then F is a frame for H.

Proof Let � = {Ji}pi=1 be a partition of {1, . . . , n} such that, if Fi = {fj }j∈Ji for
1 ≤ i ≤ p , then {Fi}pi=1 is a partition of F into irreducible subsequences, as in

Definition 5.1. Recall that in this case the subspaces Wi
def= span{Fi} (1 ≤ i ≤ p)

are mutually orthogonal. Hence, it is easy to see that each subfamily Fi is a dP -local
minimizer of Pf in the set

{{gj }j∈Ji : gj ∈ Wi , ‖gi‖ = ‖fi‖ , j ∈ Ji} .



Optimal frame completions 1025

By [29, Corollary 3] and the properties of �, each Fi is a ci-tight frame for Wi , for
some ci > 0, 1 ≤ i ≤ p. Therefore

SF =
p∑

i=1

SFi
=

p∑

i=1

ci PWi .

Notice that, in particular, SF fj = ci fj for every j ∈ Ji .
Suppose that F is not a frame for H. Then, there exists i ∈ Ip and q, s ∈ Ji such

that 〈fq, fs〉 �= 0, because otherwise F would be a sequence of mutually orthogonal
vectors, then n = d and we would have span F = H. In particular, for this choice of
indices we have that as = ‖fs‖2 < ci , since

ci ‖fs‖2 = 〈SF fs , fs〉 ≥ |〈fs , fs 〉|2 + |〈fs , fq 〉|2 =
(

‖fs‖2 + |〈fs , fq 〉|2
‖fs‖2

)
‖fs‖2 .

We are assuming that ker SF �= {0}. Hence there exists g ∈ ker SF with ‖g‖ =
‖fs‖. Let

fs(t) = cos
( π

2
t
)

· fs + sin
( π

2
t
)

· g for every t ∈ [0, 1] ,

so that fs(0) = fs and fs(1) = g. Notice that ‖fs(t)‖ = ‖fs‖ for every t ∈ [0, 1].
Let F(t) be the sequence obtained from F by replacing fs by fs(t) and let s(t)
denote the frame operator of F(t), for each t ∈ [0, 1]. Then

s(t) = [SF − (fs ⊗ fs)] + fs(t) ⊗ fs(t) for every t ∈ [0, 1] .

The inequality as = ‖fs‖2 < ci implies that SF −(fs ⊗fs) is a positive operator and
also that R(SF −(fs ⊗fs)) = R(SF ). Indeed, SF −(fs ⊗fs) = [a−1

s (ci −as)]·fs ⊗
fs + S ′ with S ′ a positive operator on H; in this case λ(S ′) is obtained from λ(SF )

by setting one of the occurrences of ci in λ(S) equal to 0, and fs ∈ ker S ′. Thus,

s(t) = S ′ + [a−1
s (ci − as) · fs ⊗ fs + fs(t) ⊗ fs(t)] with fs , fs(t) ∈ ker S ′ ,

(14)
for every t ∈ [0, 1]. Using again the inequality as = ‖fs‖2 < ci , let us define

λ(t) = λ([a−1
s (ci − as)] · fs ⊗ fs + fs(t) ⊗ fs(t)) = (λ1(t) , λ2(t) , 0 , . . . , 0) ∈ (Rd

≥0)
↓ .

Then λ(0) = (ci , 0 , . . . , 0), λ(1) = (ci − as , as , 0 , . . . , 0)↓ and λ2(t) > 0 for
t > 0. Then there exists t0 ∈ (0, 1) such that for 0 < t < t0, λ2(t) < ε for ε > 0
such that ε < min1≤j≤p cj and ε < λ1(t) = (ci − λ2(t)). By the previous remarks,
it follows that λ(s(t)) is obtained from λ(SF ) by replacing one occurrence of ci by
λ1(t) and one occurrence of 0 by λ2(t). Therefore, if r = rk SF then λj (s (t)) ≤
λj (SF ) for 1 ≤ j ≤ r and tr SF = ∑r+1

j=1 λj (s (t)) = tr s (t) imply that λ(s (t)) ≺
λ(SF ) for 0 < t < t0 .

These facts show that F(t) converges to F with respect to the dP -metric as t →
0+, while Pf (F(t)) < Pf (F) for t ∈ (0, t0). This contradicts the assumption that
F is a dP -local minimum of Pf and thus we should have that R(SF ) = H, i.e. F
is a frame.
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If we fix a strictly convex function f : [0 , ∞) → [0 , ∞) then (see Remark 4.3)
global minimizers of Pf on Ca(F0) actually lie in Cop

a (F0). Hence, we shall focus
our interest in the properties of dP -local minimizers F ∈ Cop

a (F0) of Pf .

Proposition 5.5 Let (F0 , a , f ) be initial data for the CP as in 2.3. Let F =
(F0 , G) ∈ Cop

a (F0) be a dP -local minimizer of Pf on Cop
a (F0). Then F is a frame,

i.e. S = SF is an invertible operator on H.

Proof Denote by S0 = SF0 , λ(S0) = λ = λ↓, S1 = SG and λ(S1) = μ↓ for some
a ≺ μ = μ↑. Since F = (F0 , G) ∈ Cop

a (F0), by Theorem 4.4 there exists an ONB
{vi}di=1 such that S0 = ∑d

i=1 λi vi ⊗ vi and S = S0 + S1 = ∑d
i=1 (λi + μi) vi ⊗ vi .

If S is not invertible, let

r = max{1 ≤ i ≤ d : λi �= 0} < min{1 ≤ j ≤ d : μj �= 0} − 1 . (15)

Then Hr = span{vi : i > r} = ker S0 , and S1 acts on Hr . The minimality of F in
Cop

a (F0) implies that G is a dP -local minimizer of Pf in the set (n = k + no)

Bk(Hr )
def= {G = {gi}ki=1 ∈ Hk

r : ‖gi‖2 = αi , 1 ≤ i ≤ k} ,

because λ(S0 + SG) = (λ , λ(SG) )↓ =⇒ Pf (F0 , G) = Pf (F0) + Pf (G)

for every G ∈ Bk(Hr ). By Lemma 5.4, we deduce that S1 is invertible in Hr ,
contradicting (15).

Remark 5.6 From an applied point of view, it would be desirable to verify that local
dP -minimizers are global minimizers of the convex potential Pf (notice that this is
a non-trivial fact for the Benedetto-Fickus’ frame potential in [2, 12]). Although our
techniques allow us to describe the geometrical and some of the spectral structure
of local dP -minimizers, at the present time we are not able to show that local dP -
minimizers are global minimizers. Nevertheless, we conjecture that this is always the
case for an arbitrary strictly convex function f : [0, ∞) → [0, ∞).

6 Structure and computation of global minimizers of Pf on Ca(F0)

In this section we obtain a description of the geometrical structure of global min-
imizers of Pf on Ca(F0). This geometrical structure of global minimizers allows
us to obtain a finite step algorithm that produces a finite set (that does not depend
on f ) which completely describes the optimal frame completions F ∈ Ca(F0) for
Pf .

6.1 On the structure of global minimizers of Pf on Ca(F0)

The goal of this section is the following theorem. We remark that our approach is
based on the decomposition into irreducible subfamilies of the completing sequence.
It turns out that the geometrical tools and results of Sections 4, 5 and Appendix I
are essential in the study of the structure of each irreducible subfamily (e.g., see
Proposition 5.3).



Optimal frame completions 1027

Theorem 6.1 Let (F0 , a , f ) be initial data for the CP as in 2.3. Denote by λ =
λ(SF0). Then

1. There exists a vector μ = μ(λ , a , f ) ∈ (Rd
≥0)

↑ such that a ≺ μ and

F = (F0 , G) ∈ Ca(F0)isaglobalminimizerofPf ⇐⇒ F ∈ Cop
a (F0)andλ↑(SG) = μ.

Assume now that F = (F0 , G) is a global minimizer of Pf on Cop
a (F0). Then

2. The frame operator SF = SF0 + SG is invertible, so that F is a frame. Let
{Gi}pi=1 be a partition of G into irreducible subfamilies, where Gi = {fj }j∈Ji for
a partition {Ji}pi=1 of the set of indices {i : no + 1 ≤ i ≤ n}. Then for each
1 ≤ i ≤ p

3. The frame operators SGi
and SF0 commute.

4. There exists ci ∈ R>0 such that SF fj = ci fj for every j ∈ Ji .

Proof Item 1 was shown in Theorem 4.6.

2. This fact follows from Proposition 5.5.
3. Assume now that F = (F0 , G) is a global minimizer of Pf on Cop

a (F0). Then

SG =
p⊕

i=1

SGi
=⇒ σ(SG) ∪ {0} =

p⋃

i=1

σ(SGi
) ∪ {0} .

Let P(α) (resp. Pi(α)) denote the spectral projection of SG (resp. SGi
)

associated with α ∈ σ(SG) (or Pi(α) = 0 in case α /∈ σ(SGi
)). Then, for every

1 ≤ i ≤ p we have that

SGi
=

∑

α∈σ(SG)

α Pi(α) with
p∑

i=1

Pi(α) = P(α) , α ∈ σ(SG) .

Thus, each Pi(α) is a sub-projection of P(α) for 1 ≤ i ≤ p . If we consider
α ∈ σ(SG), α �= 0, then Corollary 4.9 shows that Pi(α) commutes with SF0 ,
for every i ∈ Ip . This last fact implies that SGi

commutes with SF0 , for every
i ∈ Ip .

4. It is a consequence of item 3 of this theorem and Proposition 5.3.

6.2 A finite step algorithm to compute global minimizers

In this section we obtain, as a consequence of Theorem 6.1, an algorithmic solu-
tion of the optimal frame completion problem with prescribed norms with respect
to a general convex potential Pf . The key idea is the introduction of the following
finite set:

Remark 6.2 In order to find the minimizers for the CP with parameters (F0 , a) we
construct a finite set E(F0 , a) ⊆ (Rd

≥0)
↑ as follows:
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Set 1 ≤ r ≤ d . Consider a partition {Ki}pi=1 of the set {d − r + 1 , . . . , d} for
some 1 ≤ p ≤ r , and define the subsequences of λ = λ(SF0) given by

�i = {λj }j∈Ki ∈ R
|Ki |
≥0 , for every 1 ≤ i ≤ p .

Consider also a partition {Ji}pi=1 of the set {1, . . . , k} and define the subsequences of
a = (αi)

k
i=1 ∈ Rk given by

ai = {αj }j∈Ji ∈ R
|Ji |
>0 , for every 1 ≤ i ≤ p .

For each 1 ≤ i ≤ p define ci = |Ki |−1 · (tr �i + tr ai) and i = {ci − λj }j∈Ki . Let

μ ∈ R
d be given by μj = (i)j = ci − λj if j ∈ Ki , (16)

and μj = 0 if j ≤ d − r . We now check whether for every 1 ≤ i ≤ p it holds that:

i ∈ R
|Ki |
≥0 , ai ≺ i and that μ = μ↑ ∈ (Rd

≥0)
↑ . (17)

In this case we declare this μ as a member of E(F0 , a). Otherwise we drop this μ.
The set E(F0 , a) is then obtained by this procedure, as we vary 1 ≤ r ≤ d and the
partitions previously considered. Therefore, E(F0 , a) is a finite set.

A straightforward computation using Proposition 2.1 and (17) shows that for every
γ ∈ E(F0 , a) there exists a completion F ′ = (F0 , G ′) ∈ Cop

a (F0) such that
λ↑(SG ′) = γ and λ(SF ′) = (λ + γ )↓. We remark that the set E(F0 , a) can be
explicitly computed in a finite step algorithm, in terms of λ = λ(SF0) and a (see
Section 6.3 below for details). �

Theorem 6.3 Let (F0 , a , f ) be initial data for the CP as in 2.3 and let λ = λ(SF0).
Then

1. The vector μ = μ(λ , a , f ) ∈ (Rd
≥0)

↑ of Theorem 6.1 satisfies that μ ∈
E(F0 , a).

2. Moreover, this vector μ is uniquely determined by the equation

d∑

i=1

f (λi + μi) = min

{
d∑

i=1

f (λi + γi) : γ ∈ E(F0 , a)

}
, (18)

That is, a completion F = (F0 , G) ∈ Ca(F0) is a Pf global minimizer if and only if
F ∈ Cop

a (F0), μ = λ↑(SG) ∈ E(F0 , a) and it satisfies (18).

Proof Denote by μ = μ(λ , a , f ) ∈ (Rd
≥0)

↑ , the vector of Theorem 6.1. Let
F = (F0 , G) be a global minimizer of Pf on Ca(F0). In this case, by Proposition 4.2
and Theorem 4.4, SF0 and SG commute, λ↑(SG) = μ, and λ(SF ) = (λ + μ)↓.

Let {Gi}pi=1 be a partition of G into irreducible subfamilies, corresponding to the
partition {Ji}pi=1 of {no + 1 , . . . , n}, for some 1 ≤ p ≤ d . Notice that in this case
SG = ⊕p

i=1SGi
. This last fact shows that there exists a partition {Ki}pi=1 of {1, . . . , d}

such that λ(SGi
) = (i , 0i) where i = {μj }j∈Ki and 0i ∈ Rd−|Ki | for every

1 ≤ i ≤ p . Then μ = (⊕p

i=1i)
↑.

Fix i ∈ Ip . Theorem 6.1 implies that there exists ci > 0 such that SFfj = ci fj

for every j ∈ Ji and that SGi
and SF0 commute. This fact implies that SF |Ri = ci IRi ,
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where Ri = R(SGi
) and IRi denotes the identity operator on Ri . Therefore, we

conclude that ci = λj +μj for every j ∈ Ki . Hence i = (ci −λj)j∈Ki ∈ R
|Ki |
≥0 and

ci = |Ki |−1 ·
∑

j∈Ki

(λj + μj ) = |Ki |−1 · (tr �i + tr {αj−no}j∈Ji ) ,

since SGi
= ∑

j∈Ji
fj ⊗fj . This shows that tr SGi

= ∑
j∈Ji

‖fj‖2 = ∑
j∈Ji

αj−no .
Moreover, the previous identity and Proposition 2.1 imply that ai ≺ i , where
ai = {αj−no}j∈Ji . Hence, we conclude that the vector μ = λ↑(SG) ∈ E(F0 , a), as
defined in Remark 6.2.

As we mentioned before, for every γ ∈ E(F0 , a) there exists a completion
F ′ = (F0 , G ′) ∈ Cop

a (F0) such that λ↑(SG ′) = γ and λ(SF ′) = (λ + γ )↓. Hence
the vector μ satisfies (18). The converse implication now follows from item 1 and
Theorem 4.6.

Remark 6.4 Let E(F0 , a) ⊆ (Rd
≥0)

↑ be the finite set defined in Remark 6.2 and
assume that there exists μ ∈ E(F0 , a) such that λ + μ is a ≺-minimizer for the set
λ + E(F0 , a) i.e., such that

λ + μ ≺ λ + γ for every γ ∈ E(F0 , a) . (19)

Then, by Theorem 6.3 and Remark 2.2 we see that μ coincides with μ(λ , a , f ), the
vector of Theorem 6.1, for all strictly convex functions f : [0 , ∞) → [0 , ∞).

That is, given an arbitrary strictly convex function f : [0 , ∞) → [0 , ∞) then
a completion F = (F0 , G) ∈ Ca(F0) is a global minimizer of Pf in Ca(F0) if and
only if λ↑(SG) = μ. Moreover, a similar argument shows that in this case

λ(SF0) + μ is a ≺-minimizer in {λ(SF0)
↓ + μ↑ : μ ∈ R

d
≥0 and a ≺ μ} ,

Therefore μ (resp. λ(SF0) + μ) is an structural (spectral) solution to the problem of
minimizing Pf , in the sense that the solution does not depend of the particular choice
of the strictly convex function f . Such structural solutions exist if we assume that the
completion problem is feasible (see Remark 2.5). Numerical examples suggest that
such a majorization minimizer always exists (see Section 6.3). These facts induce the
following conjecture: �

Conjecture 6.5 Let (F0 , a) be initial data for the CP as in 2.3. Then there exists
μ ∈ E(F0 , a) such that λF0 + μ satisfies the majorization minimality of Eq. 19. �

6.3 Algorithmic implementation: some examples

As it was described in the previous section, an algorithm can be developed in order
to compute explicitly the set E(F0 , a) and the finite set of possible minimizers ν =
λ + μ, μ ∈ E(F0 , a) constructed from it. A proposed algorithm scheme is the
following:

6.6 Given the initial data λ ∈ (Rd
≥0)

↓ and a = (αi)
k
i=1 , we set n = k + no as before.
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Step 1. Let m = min{d, k}. For each 1 ≤ r ≤ m let λ(r) = (λj )
d
j=d−r+1 . For

every 1 ≤ p ≤ r ,

• We compute all possible partitions of λ(r) into p non-empty sets. We
do the same with a.

• Fixed a partition for λ(r) and one of a, we pair the sets of both parti-
tions and compute for every pair the constant c and check majorization
as it was described in Eq. 17.

• In case that the majorization conditions are satisfied for all pairs in
these partitions for λ(r) and a, the vector μ is constructed as in Eq. 16.

• If μ = μ↑ then is μ stored in the set E(F0 , a).

Step 2. The set N(F0 , a) = {λ + μ : μ ∈ E(F0 , a)} is constructed from that
stored data.

Step 3. We search for the vector ν ∈ N(F0 , a) of minimum Euclidean norm.
Then this ν is a minimizer for the map F(x) = ∑d

i=1 x2
i associated

to the frame potential on the set {λ(SF ) : F ∈ Ca(F0)}. Moreover
μ = ν − λ is the vector of Theorem 4.6, which allows to construct (via
the Schur-Horn algorithm) optimal completions in Cop

a (F0) with respect to
the Benedetto-Fickus’s frame potential. By Theorem 6.3, the global mini-
mizers corresponding to a different potential in Cop

a (F0) can be computed
similarly, i.e. by minimizing the corresponding convex function on the set
N(F0 , a).

Step 4. Finally, we test if the vector ν obtained in Step 3 is a minimizer for
majorization in N(F0 , a). In that case, the algorithm succeed in finding
the minimizer for every convex potential Pf . �

In all examples in which we have applied the previous algorithm, the Step 4 con-
firmed that the minimizer for the frame potential in N(F0 , a) is actually the
minimizer for majorization, which suggests a positive answer to the Conjecture 6.5
(see the comments in Remark 6.4).

Example 6.7 Consider the frame F0 ∈ F(7 , 5) whose synthesis operator is

T ∗
F0

=

⎡
⎢⎢⎣

0.9202 −0.7476 −0.4674 0.9164 0.1621 0.3172 −0.5815
0.4556 0.0164 0.0636 1.0372 −1.6172 0.3688 0.2559

−0.0885 −0.3495 −0.9103 0.3672 −0.6706 −0.9252 0.6281
0.1380 −0.4672 −0.6228 −0.1660 0.9419 1.0760 1.1687
0.7082 0.2412 −0.1579 −1.8922 −0.4026 0.1040 1.6648

⎤
⎥⎥⎦ . (20)

In this case λ = λ(SF0) = (9 , 5 , 4 , 2 , 1) and t0 = tr SF0 = 21. Fix the data
n = 9 (hence k = 2), a = (3.5 , 2) and notice that then t = t0 + tr a = 26.5 and
m = d − k = 3. Then, according to the results in [32] we know that the optimal
spectrum for Ut(S0 , m) is ν = νλ , m(26.5) = (9 , 5 , 4.25 , 4.25 , 4). Therefore, we
have that ν − λ = μ = (0 , 0 , 0.25 , 2.25 , 3) so that a �≺ μ, that is the completion
problem for (F0 , a) is not feasible.

Nevertheless, if we apply the algorithm described above, the optimal spectrum μ

and ν can be computed, since we can describe the set N(F0 , a).
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Indeed in this case N(F0 , a) = {(9 , 5 , 4.5 , 4 , 4) , (9 , 6.5 , 5 , 4 , 2)} so ν =
(9 , 5 , 4.5 , 4 , 4) (where μ = (0 , 0 , 0 , 2 , 3.5)) and an optimal completion is
given by:

T ∗
F1

=

⎡
⎢⎢⎣

0.0441 −1.3541
0.6901 0.5701

−1.2093 0.0887
−0.0569 0.8836

0.2371 −0.7435

⎤
⎥⎥⎦ . (21)

In this case, the vector μ is constructed with the partitions K1 = {2}, K2 = {1} of
the two smaller eigenvalues in λ = λ(SF0) = (9 , 5 , 4 , 2 , 1) which are paired with
J1 = {2} and J2 = {3.5} of a, using the notation introduced in Section 6.2.

If we now set a = (2 , 1
4 , 1

4 , 1
4 ), again the problem is not feasible (see [32]).

In this case the algorithm yields a N(F0 , a) with 23 elements with a minimizer for
majorization given by ν = (9 , 5 , 4 , 3 , 2.75). In this case, the partitions of λ are
K1 and K2 of previous example, and J1 = { 1

4 , 1
4 , 1

4 } and J2 = {2} is the partition
of a. Finally, an optimal completion of F0 with prescribed norms is given by:

T ∗
F1

=

⎡

⎢⎢⎣

0.0156 0.0156 0.0156 −1.0236
0.2440 0.2440 0.2440 0.4310

−0.4275 −0.4275 −0.4275 0.0670
−0.0201 −0.0201 −0.0201 0.6679

0.0838 0.0838 0.0838 −0.5620

⎤

⎥⎥⎦ . (22)

Example 6.8 If a = (5.35 , 4.66 , 3.2 , 2.5 , 1.2 , 1 , 0.65) and let F0 be any fam-
ily in F(no , 6) such that λ = λ(SF0) = (5.75 , 5.4 , 4.25 , 4.25 , 3 , 2), (this is
also a non-feasible example) then N(F0 , a) has 744 elements, and a minimizer
is ν = (7.505 , 7.505 , 7.45 , 6.9167 , 6.9167 , 6.9167). In this example, the parti-
tions for λ (r0 = 1) and a involved in the computation of the optimal μ are K1 =
{5.75 , 5.4 , 4.25}, K2 = {4.25} and K3 = {3 , 2} and J1 = {2.5 , 1.2 , 1 , 0.65},
J2 = {3.2} and J3 = {5.35 , 4.66} respectively. �

Remark 6.9 It is worth to say that, despite all possible partitions of the set {1, . . . , m}
into k non-empty subsets can be computed using known MATLAB routines, the num-
ber of iterations in Step 1 grows rapidly on m = min{d, k}. Indeed, this number can
be computed as

m∑

i=1

i∑

j=1

j ! S(i, j) S(k, j),

where m = min{k, d} and S(i, j) = 1

j !
j∑

p=0

(−1)j−p

(
j

p

)
pi is the so-called Stirling

number of the second kind, which is the number of ways to partition a set of i objects
into j non-empty subsets. Nevertheless, in the previous examples (and several others
considered for this work) it turned out that, besides the fact that Conjecture 6.5 is
verified in all examples, the partition of λ and a in the ≺-minimizer consist of sets of
consecutive elements, both for λ and a. Also, in all examples the partitions are paired
in such a way that the partitions with the greater elements of λ corresponds to those
of a with the smaller entries (see the description of �i and Ji in previous examples).
Moreover, in all examples considered, the minimizer has the property that the sets
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of vectors corresponding to the partitions with the greater norms of a are linearly
independent, with the exception of the last partition of a. This structure is consistent
with the solution for the classical completion problem with F0 = ∅ (see [2, 13, 29]).
Assuming that the partitions of λ and a corresponding to the optimal spectrum have
the properties described above, we can reduce the number of iterations in Step 1 of
our algorithm to

m∑

i=1

i∑

j=0

(
i

j

)
= 2m+1 − 2.

This allows to develop a faster algorithm (still exponential on m) which tests a smaller
set of partitions for λ and a which reduces considerably the time of computation and
data storage. Based on our numerical computations, we conjecture that the previously
mentioned properties for the construction of the ≺-minimizer always hold. For a
detailed formulation of these conjectures (which we omit here) see [33]. �

In the following example we compare the algorithm implemented following the
scheme in 6.6 and the simplified (and faster) version of this algorithm that assumes
some special features of the partitions of λ and a considered in Step 1 (as described in
Remark 6.9 above). In particular, we verify that they produce the same solution to the
optimal completion problem with respect to the Benedetto-Fickus’ frame potential.

Example 6.10 Given the initial data

λ = λ(SF0) = (7 , 6 , 5.5 , 4 , 2.5 , 1 , 0.5 , 0.3) and a = (5 , 4.5 , 1.2 , 1 , 0.8 , 0.5) ,

then applying the algorithm described in 6.6 we obtain that the optimal
completion with prescribed norms F = (F0 , G) has eigenvalues ν =
(7 , 6 , 5.5 , 5.3 , 5 , 4 , 3.5 , 3.5). If we assume the conjectures of Remark 6.9,
then we obtain the same optimal eigenvalues ν, with the partitions J1 =
{1.2 , 1 , 0.8 , 0.5}, J2 = {4.5}, J3 = {5} and K1 = {2.5 , 1}, K2 = {0.5},
K3 = {0.3} for a and λ respectively (r0 = 5). But there are only 5 cases constructed
from this kind of partitions in a set N(F0 , a) with 322 elements. �

Acknowledgments We would like to thank the referees of the manuscript for several suggestions that
improved the exposition of the results herein.

Appendix I: Geometry of irreducible dP -local minimizers

In what follows we consider a geometrical approach to the study of dP -local mini-
mizers on Cop

a (F0). Our results are based on a perturbation result for finite sequences
of vectors from [30]. In what follows we consider the unitary group of a complex and
finite dimensional inner product space R, denoted U(R), together with its natural
differential geometric (Lie) structure. Denote also with L(H) (resp. L(H)sa) the set
of linear (resp. selfadjoint operators) acting on the d-dimensional Hilbert space H.
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Let (F0 , a) be initial data for the CP as in 2.3. Fix F = (F0 , G) = {fi}ni=1 ∈
Ca(F0), where n = k +no , R = R(SG) = span{G} ⊆ H, and τ = tr a = ∑k

i=1 αi >

0. Consider the real vector space

Ld(R)saτ
def= {S ∈ L(H)sa : R(S) ⊆ R , tr S = τ } , (23)

the cone of positive operators in Ld(R)saτ is denoted as Ld(R)+τ , and the affine
manifold

SF0 + Ld(R)saτ = {SF0 + S : S ∈ Ld(R)saτ } ⊆ L(H)sa .

We define the smooth (and dP -continuous) map

�F : U(R)k → Ca(F0) ⊆ Hn given by �F (Ui)
k
i=1 = {fi}no

i=1 ∪{Uifi+no}ki=1 .

(24)
Finally,we consider the smooth map �F : U(R)k → SF0 + Ld(R)saτ given by

�F (Ui)
k
i=1 = SF0 +

n∑

i=no+1

Uifi ⊗ Uifi = SF ′ where F ′ = �F (Ui)
k
i=1 .

(25)
Let us denote by I k = (I, . . . , I ) ∈ U(R)k . It turns out that in several cases
(indeed, in a generic case) the map �F is an open map (in SF0 + Ld(R)saτ ) around
�F (I k) = SF . In order to characterize this situation we consider the notion of
irreducible sequence of vectors from Definition 5.1; recall that given a sequence
G = {gi}ki=1 in H we say that G is irreducible if it can not be partitioned into two
mutually orthogonal subsequences.

Remark 7.1 In [30] we have characterized when the map �F defined in Eq. 25 is a
submersion in terms of certain commutant. Recall that Ld(R) = {T ∈ L(H) : T =
PR T PR}, which is a (non unital) ∗-subalgebra of L(H).

Then, an immediate application of [30, Theorem 4.2.1.] shows that �F is a
submersion at I k ∈ U(R)k if and only if the local commutant

M(G)
def= {fi ⊗ fi : no + 1 ≤ i ≤ n} ′ ∩ Ld(R) = C · PR . (26)

It is easy to see that the orthogonal projections of M(G) can be identified with mutu-
ally orthogonal subsequences of G. Then M(G) = C · PR ⇐⇒ G is irreducible.
Thus, we have proved the following statement: �

Proposition 7.2 Let (F0 , a) be initial data for the CP as in 2.3. Fix F = (F0 , G) ∈
Ca(F0). Denote by n = k + no and R = R(SG) = span{G} ⊆ H. Then the following
statements are equivalent:

1. The map �F of Eq. 25 is a submersion at I k ∈ U(R)k .
2. The sequence G is irreducible.

In this case, the image of �F contains an open neighborhood of �F (I k) = SF in
SF0 + Ld(R)saτ . Hence, �F admits a smooth local cross section ψ around SF such
that ψ(SF ) = I k .
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Next we state a reformulation of Proposition 7.2, in terms of the distance dP . This
technical fact is necessary in order to prove Theorem 6.1 (through Lemma 7.5 below).

Corollary 7.3 Consider the smooth map

S : {F ′ = (F0 , G′) ∈ Ca(F0) : R(SG ′) ⊆ R } → SF0 + Ld(R)saτ (27)

given by S(F ′) = SF ′ = SF0 + SG ′ . Then

1. The image of S contains an open neighborhood of SF in SF0 + Ld(R)saτ .
2. The map S has a dP -continuous local cross section ϕ around SF such that

ϕ(SF ) = F .

Proof Just define the dP -continuous local cross section ϕ = �F ◦ψ , where ψ is the
smooth local cross section for �F of Proposition 7.2 and �F is the map of Eq. 24,
which takes values on the domain of S.

Remark 7.4 Let (F0 , a) be initial data for the CP as in 2.3 and let t = tr a. Denote
by S0 = SF0 and λ = λ(S0). Consider the set

Ut(S0, k) = {S0 + B : B ∈ L(H)) positive , rk B ≤ k , tr (S0 + B) = t } ,

As a consequence of [32, Theorem 3.12], there exist ≺-minimizers in Ut(S0, k).
Indeed, there exists a vector ν = νλ , k(t) ∈ (Rd

≥0)
↓ such that S ∈ Ut(S0, k)

is a ≺-minimizer if and only if λ(S) = ν. In this case, there exist c > 0 and
{vi : 1 ≤ i ≤ d}, an ONB such that S0 vi = λivi, ∀i such that

1. S − S0 = ∑d
i=1 ρi · vi ⊗ vi , where ρ = ρ(λ , m) = λ(S − S0)

↑;
2. ν = (λ + ρ↑)↓ and λi(S0) + ρi = c whenever ρi �= 0.

As a consequence of these facts we get Sf = c f for every f ∈ R(S−S0). Moreover,
if S ′ ∈ Ut(S0, k) is another matrix such that λ(S ′ − S0)

↑ = ρ and S ′ − S0 =∑d
i=1 ρi wi ⊗ wi , where {wi : 1 ≤ i ≤ d} is some ONB such that S0 wi = λi wi ,

then λ(S ′) = ν and S ′ is a ≺-minimizer in Ut(S0, k).
Assume now that F = (F0 , G) ∈ Ca(F0) is such that S0 and SG commute. Denote

by

R = R(SG) , μ = λ↑(SG) , k′ = rk SG , m′ = d−k′ = max{1 ≤ i ≤ d : μi = 0}
and τ = tr a. Note that R reduces SF0 . Write SR = SF0 |R ∈ L(R)+ . We get the
identity

SF0 + Ld(R)+τ = SF0 |R⊥ ⊕ (
SR + L(R)+τ

)
, (28)

where Ld(R)+τ is the space defined in Eq. 23. Then,

SR + L(R)+τ = Us(SR , k′) ⊆ L(R) ,

where s = τ + tr SR . By the previous comments there exists Sτ ∈ SR + L(R)+τ
such that λ(Sτ ) = νλ(SR) , k′(s) ∈ R

k′
≥0 , which is a ≺-minimizer in Us(SR , k′) =

SR + L(R)+τ . As a consequence of Eq. 28 and Remark 4.7, we conclude that

S1
def= SF0 |R⊥ ⊕ Sτ ∈ SF0 + Ld(R)+τ is a ≺ −minimizer inSF0 + Ld(R)+τ .
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Notice that λ(S1) = (
λ(SF0 |R⊥) , λ(Sτ )

)↓ ∈ Rd . Moreover, by items 1 and 2 above,

we see that in this case there exists an ONB (for R) {wi}k′
i=1 with SR wi = λi(SR) wi

such that

Sτ − SR =
k′∑

i=1

ρi wi ⊗ wi , where ρ = λ(Sτ − SR)↑ ∈ R
k′

(29)

and there exists c ∈ R>0 such that λi(SR)+ρi = c whenever ρi �= 0. Hence, in this
case we obtain that

S1f = c f for every f ∈ R(Sτ − SR) ⊆ R . (30)

�

Lemma 7.5 Fix a subspace R ⊆ Cd which reduces SF0 . Let F = (F0 , G) ∈
Ca(F0) be a dP -local minimizer of Pf on the set

{F ′ = (F0 , G′) ∈ Ca(F0) : R(SG ′) ⊆ R }
.

Assume further that S0 = SF0 and SG commute and that the sequence G is
irreducible. Then

1. The frame operator SF is a ≺-minimizer in SF0 + Ld(R)+τ .
2. The subspace R is contained in an eigenspace of SF .

In particular, there exists c ∈ R>0 such that SF fi = c fi , for no + 1 ≤ i ≤ n.

Proof Let k′ = rk SG , since by hypothesis S0 and SG commute, there exists an
orthonormal basis H of eigenvectors of SF and SG , denoted {vi}di=1, such that, if

SR
def= S0|R ∈ L(R)+τ then

SF =
d∑

i=1

αi · vi ⊗ vi , SR =
k′∑

i=1

λi(SR) · vi ⊗ vi and SG =
k′∑

i=1

βi · vi ⊗ vi ,

for some (αi)
d
i=1 ∈ R

d
≥0 and (βi)

k′
i=1 ∈ R

k′
≥0. Let s : [0, 1] → SF0 + Ld(R)+τ given

by

s(x) = SF0 +
k′∑

i=1

[x · βi + (1 − x) · ρi ] · vi ⊗ vi for x ∈ [0, 1] ,

where the ρi are those of Eq. 29, so that s(0) = S1 = SF0 |R⊥ ⊕ Sτ is a ≺-minimizer
in SF0 + Ld(R)+τ as in Remark 7.4. Notice that s(x) is a segment (so, in particular, a
continuous curve) joining s(0) = S1 = SF0 |R⊥ ⊕ Sτ and s(1) = SF . Consider now
the map h : [0, 1] → R given by

h(x) = tr f
(
s(x)

) = ∑d
i=1 f (λi(s(x)))

= ∑d
i=k′+1 f (αi) + ∑k′

i=1 f
(
λi(SR) + x · βi + (1 − x) · ρi

)

for every x ∈ [0, 1]. Since the sequence G is irreducible then Corollary 7.3, implies
that the map S : {F ′ = (F0 , G′) ∈ Ca(F0) : R(SG ′) ⊆ R } → S0 + Ld(R)+τ



1036 P.G. Massey et al.

defined in Eq. 27 has a dP -continuous local cross section ϕ around SF such that
ϕ(SF ) = F . Then, the fact that F is a dP -local minimizer of Pf implies that h has
a local minimizer at 1 ∈ [0, 1]. But this h is a strictly convex function on [0, 1] that
has a global minimum at x = 0, since s(0) is a ≺-minimizer in SF0 + Ld(R)+τ .

This implies that h is constant on [0, 1] and hence the segment λ(s(x)), x ∈ [0, 1],
reduces to a point (since h(0) is the global minimum of a strictly convex map on
a convex compact set of vectors). Thus βi = ρi for every 1 ≤ i ≤ k′ . Hence
SG = Sτ − SR and SF = SF0 |R⊥ ⊕ Sτ = S1 . By Eq. 30 of Remark 7.4, there
exists a c ∈ R≥0 such that SF fi = Sτ fi = c fi for no + 1 ≤ i ≤ n (since
fi ∈ R = R(SG) = R(Sτ − SR) for these indices). This last fact proves item 2 of
the statement.

Appendix II: Equality in Lidskii’s inequality

The purpose of this section is to further the study on Lidskii’s inequality. Since we
shall deal with Hermitian (resp. positive definite and semidefinite) matrices, we fix
first the notation used to indicate these sets of matrices. Denote by Md(C) the set of
d × d complex matrices. In particular, the results of this section will apply to linear
operators on H by fixing a canonical orthonormal basis in H, which allows a iden-
tification L(H) ∼ Md(C). By Md(C)sa we denote the R-subspace of selfadjoint
matrices and Md(C)+ is the set of positive semidefinite matrices.

In this section we characterize those matrices

S1 ∈ Md(C)+ such that λ(S0 + S1) =
(

λ↓(S0) + λ↑(S1)
)↓

. (31)

If S1 ∈ Md(C)+ satisfies (31) then we say that S1 is a Lidskii matching matrix
for S0 . Note that Lidskii matching matrices correspond to the cases of equality in
Lidskii’s inequality, as stated in Theorem 4.1.

Although we have defined this notion for positive matrices (since we are interested
in its application to frame operators) similar definitions and conclusions holds for
general hermitian matrices (by translations by convenient multiples of the identity).

A II.1 Lidskii matching matrices commute

In this section we study the case of equality in Lidskii’s inequality and show that if
S1 is a Lidskii matching for S0 (i.e., S1 is as in Eq. 31) then S0 S1 = S1 S0 .

We begin by revisiting some classical matrix analysis results. We shall give short
proofs of them in order to handle these proofs for the equality cases in which we are
interested here.

Lemma 8.1 (Weyl’s inequalities) Let A, B be d × d Hermitian matrices. Then,

λj (A + B) ≤ λi(A) + λj−i+1(B) for i ≤ j , (32)

λj (A + B) ≥ λi(A) + λj−i+d(B) for i ≥ j . (33)
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Moreover, if there exists i ≤ j (resp. i ≥ j ) such that

λj (A + B) = λi(A) + λj−i+1(B) (34)

(resp. λj (A + B) = λi(A) + λj−i+d (B)) then there exists a unit vector x such that

(A + B) x = λj (A + B) x , A x = λi(A) x , B x = λj−i+1(B) x ,

(resp. (A + B) x = λj (A + B) x , A x = λi(A) x , B x = λj−i+d (B) x).

Proof We begin by proving (32). Let uj , vj and wj denote the eigenvectors of A, B

and A + B respectively, corresponding to their eigenvalues arranged in decreasing
order. Let i ≤ j and consider the three subspaces spanned by the sets {w1, . . . , wj },
{ui, . . . , un} and {vj−i+1, . . . , vn}. Since the dimensions of these subspaces are j ,
n − i + 1 and n − j + i respectively, we see that they have a non trivial intersection.
If x is a unit vector in the intersection of these subspaces then

λj (A + B) ≤ 〈 (A + B) x , x〉 = 〈A x , x〉 + 〈B x , x〉 ≤ λi(A) + λj−i+1(B) .

If we further assume that equality (34) holds for these indices then we deduce that

〈 (A+B)x , x〉 = λj (A+B) , 〈A x , x〉 = λi(A) and 〈B x , x〉 = λj−i+1(B) .

Because x lies in the intersection of the previous subspaces, these last facts imply
that (A + B) x = λj (A + B) x, A x = λi(A) x and 〈B x, x〉 = λj−i+1(B) x. The
inequality (33) and the equality (34) for the case i ≥ j follow similarly.

Corollary 8.2 (Weyl’s monotonicity principle) Let A, B be d ×d matrices such that
A is Hermitian and B positive. Then

λj (A + B) ≥ λj (A) for every 1 ≤ j ≤ d . (35)

If there exists J ⊆ Id such that λj (A+B) = λj (A) for every j ∈ J , then there exists
an orthonormal system {xj }j∈J such that A xj = λj (A) xj and B xj = 0 for every
j ∈ J .

Proof Inequality (35) follows easily from Lemma 8.1 (with i = j ). The second part
follows by induction on the set |J |: Fix j0 ∈ J . By Eq. 33 with i = j = j0 , there
exists a unit vector xj0 such that A xj0 = λj0(A) xj0 and B xj0 = λd(B) xj0 = 0.

This proves the case |J | = 1. If |J | > 1, consider the space W = {xj0}⊥ ⊆ Cd

which reduces A, B and A + B . Let I = {j : j ∈ J , j < j0} ∪ {j − 1 :
j ∈ J , j > j0}. The operators A|W ∈ L(W)sa and B|W ∈ L(W)+ satisfy that
λj (A|W + B|W) = λj (A|W ) for every j ∈ I , with |I | = |J | − 1. By the inductive
hypothesis we can find an orthonormal system {xj }j∈I ⊆ W which satisfies the
desired properties.

Proposition 8.3 Let A, B be d × d Hermitian matrices. Then the equality
(
λ(A + B) − λ(A)

)↓ = λ(B) =⇒ A and B commute .

Proof We can assume that B is not a multiple of the identity. By hypothesis, there
exists permutation σ ∈ Sd such that λj (B) = λσ(j)(A + B) − λσ(j)(A) for every
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1 ≤ j ≤ d . Therefore, there exists an increasing sequence {Jk}dk=1 of subsets of
{1, . . . , d} such that |Jk| = k and

∑

j∈Jk

λj (A + B) − λj (A) =
k∑

j=1

λj (B) for every 1 ≤ k ≤ d . (36)

Let 1 ≤ k ≤ d be such that λk−1(B) > λk(B) (recall that B �= α I for α ∈ R).
Let us denote by Bk = B − λk(B) I and notice (36) also holds if we replace B by
Bk .

By construction λk(Bk) = 0 and the orthogonal projection onto the
kernel of the positive part B+

k ∈ Md(C)+ coincides with the spectral projec-
tion of the B associated to the interval (−∞, λk(B)]. Moreover, dim ker B+

k =
d − k + 1.

Since B+
k ∈ Md(C)+ and Bk ≤ B+

k then Weyl’s monotonicity principle implies
that

λj (A+Bk) ≤ λj (A+B+
k ) , 1 ≤ j ≤ d =⇒

∑

j∈Jk−1

λj (A+Bk) ≤
∑

j∈Jk−1

λj (A+B+
k ) .

Therefore
∑

j∈Jk−1

λj (A + Bk) − λj (A) ≤
∑

j∈Jk−1

λj (A + B+
k ) − λj (A)

≤
d∑

j=1

λj (A + B+
k ) − λj (A)

= tr (A + B+
k ) − tr A =

k−1∑

j=1

λj (Bk)

since λj(A+B+
k ) ≥ λj(A) for 1 ≤ j ≤ d - again by Weyl’s monotonicity principle -

and since, by hypothesis, λk(Bk) = 0. The inequalities above are the key part of
the proof of Lidskii’s Theorem 4.1 (λ(A + B) − λ(A) ≺ λ(B) ). But here they are
actually equalities, by Eq. 36.

Let J c
k−1 = {1, . . . , d} \ Jk−1. Then, from the above equalities we get that

λj (A + B+
k ) = λj (A) for every j ∈ J c

k−1 . By Corollary 8.2 there exists an ONS
{xj }j∈J c

k−1
such that A xj = λj (A) xj and B+

k xj = 0 for every j ∈ J c
k−1 . All these

facts together imply that

Pk
def=

∑

j∈J c
k−1

xj ⊗ xj = Pker B+
k

and Pk A = A Pk .

Recall that Pk is also the spectral projection of B associated to the interval
(−∞, λk(B)], for any 1 ≤ k ≤ d such that λk−1(B) > λk(B). Since the spectral pro-
jection of B associated with (−∞, λ1(B)] equals the identity operator, and B is a lin-
ear combination of the projections Pk and I , we conclude that A and B commute.

Now we are ready to prove that if S1 ∈ Md(C)+ is as in Eq. 31 then S0 S1 = S1 S0 .
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Theorem 8.4 Let S0 , S1 be Hermitian such that λ(S0 + S1) = (
λ(S0) + λ↑(S1)

)↓
.

Then S0 and S1 commute.

Proof Take B = S0 + S1 and A = −S1 . Therefore −λ(A) = λ↑(−A) = λ↑(S1), so
that λ(A + B) − λ(A) = λ(S0) + λ↑(S1). Hence A and B satisfy the assumptions in
Proposition 8.3 and they must commute. In this case S0 and S1 also commute.

A II.2 Characterization of Lidskii matching matrices

Let S0 ∈ Md(C)+ and let S1 ∈ Md(C)+ be a Lidskii matching matrix for S0. Then,
Theorem 8.4 implies that S0 S1 = S1 S0 and hence there exists a common ONB of
eigenvectors for S0 and S1. In order to completely describe S0 and S1 we first consider
some technical results.

We begin by fixing some notations. Let λ ∈ R
d
>0 . For every 1 ≤ j ≤ d we define

the set
L(λ , j) = {1 ≤ i ≤ d : λi = λj } .

If we assume that λ = λ↓ or λ = λ↑ then the sets L(λ , j) are formed by consecutive
integers. In the first case we have that λi < λj =⇒ k > l for every k ∈ L(λ , i)

and l ∈ L(λ , j).
Given a permutation σ ∈ Sd and λ ∈ R

d
>0 we denote by λσ =

(λσ(1) , . . . , λσ(d)). Observe that

λ = λσ ⇐⇒ λ = λσ−1 ⇐⇒ σ
(
L(λ , j)

) = L(λ , j) for every 1 ≤ j ≤ d .

(37)
The following inequality is well known (see for example [3, II.5.15]):

Proposition 8.5 (Rearrangement inequality for products of sums) Let λ , μ ∈ R
d
>0

be such that λ = λ↓ and μ = μ↑. Then
∏d

i=1(λi +μi) ≥ ∏d
i=1(λi +μσ(i)) for every

permutation σ ∈ Sd .

The following result deals with the case of equality in the last inequality.

Proposition 8.6 Let λ, μ ∈ R
d
>0 be such that λ = λ↓ and μ = μ↑. Let σ ∈ Sd be

such that
(λ + μ)↓ = (λ + μσ )↓ .

Moreover, assume that σ also satisfies that:

if 1 ≤ r , s ≤ d are such that μσ(r) = μσ(s) with σ(r) < σ(s) then r < s .
(38)

Then the permutation σ satisfies that λ = λσ .

Proof For every τ ∈ Sd let F(τ) = ∏d
i=1(λi + μτ(i)). By the hypothesis and

Proposition 8.5,
F(σ) = F(id) = max

τ∈Sd

F (τ) .

Assume that λ �= λσ−1 . In this case there exists 1 ≤ j , k ≤ d such that

μj < μk and λσ−1(j) < λσ−1(k) . (39)
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Indeed, let j0 be the smallest index such that σ−1 does not restrict to a permutation
on L(λ , j0). Then, there exists j ∈ L(λ , j0) such that σ−1(j) /∈ L(λ , j0). As
σ−1(L(λ , j0) \ {j}) �= L(λ , j0) there also exists k /∈ L(λ , j0) such that σ−1(k) ∈
L(λ , j0). They have the required properties:

• First note that λσ−1(j) < λj0 = λσ−1(k) (and then also σ−1(j) > σ−1(k) )
because σ−1(j) can not be in L(λ , j0) nor in L(λ , r) for any r < j0 (where
σ−1 acts as a permutation).

• A similar argument shows that j < k. We have used in both cases that the sets
L(λ , j) are formed by consecutive integers, since the vector λ is decreasingly
ordered.

• Observe that j < k =⇒ μj ≤ μk . So it suffices to show that μj �= μk . Let us
denote by r = σ−1(j) and s = σ−1(k). The previous items show that r > s and
σ(r) < σ(s). Hence the equality μj = μσ(r) = μσ(s) = μk is forbidden by our
hypothesis (38).

So Eq. 39 is proved. Consider now the permutation τ = σ−1◦(j , k), where (j , k)
stands for the transposition of the indices j and k. Straightforward computations
show that

(λσ−1(j)+μj ) (λσ−1(k)+μk)−(λσ−1(j)+μk) (λσ−1(k)+μj ) = (λσ−1(j)−λσ−1(k)) (μk−μj )
(39)
< 0 .

From the previous inequality we conclude that F(id) = F(σ) < F(τ) ≤ F(id). This

contradiction arises from the assumption λ �= λσ−1 . Therefore λ = λσ−1
(37)= λσ as

desired.

Remark 8.7 Let λ , μ ∈ R
d
>0 be such that λ = λ↓ and μ = μ↑. Let τ ∈ Sd be

such that (λ + μ)↓ = (λ + μτ )↓. Then, by considering convenient permutations of
the sets L(μ , j) we can always replace τ by σ in such a way that μσ = μτ and
such that this σ satisfies the condition (38) of Proposition 8.6. Hence, in this case
(λ + μ)↓ = (λ + μσ )↓ and the previous result applies. �

Theorem 8.8 (Equality in Lidskii’s inequality) Let S0 , S1 be d×d positive matrices
such that S1 is a Lidskii matching matrix for S0 . Let λ = λ(S0) and μ = λ↑(S1).
Then there exists an orthonormal basis {vi}di=1 such that

S1 =
d∑

i=1

μi · vi ⊗ vi and S0 + S1 =
d∑

i=1

(λi + μi) vi ⊗ vi . (40)

Proof Let us assume further that S0 , S1 are invertible matrices so that λ , μ ∈ R
d
>0 .

By Theorem 8.4 we see that S0 and S1 commute. Then, there exists an orthonormal
basis B = {wi}di=1 such that S0 wi = λi wi and S1 wi = μτ(i) wi for every 1 ≤ i ≤
d , and for some permutation τ ∈ Sd . Therefore

(
λ + μ

)↓ (31)= λ(S0 + S1) = (
λ + μτ

)↓
.



Optimal frame completions 1041

By Remark 8.7 we can replace τ by σ ∈ Sd in such a way that μτ = μσ ,
(λ+μ)↓ = (λ+μσ )↓ and σ satisfies the hypothesis (38). Hence, by Proposition 8.6,
we deduce that λσ−1 = λ. Therefore one easily checks that the ONB formed by the
vectors vi = wσ−1(i) for 1 ≤ i ≤ d (i.e., the rearrangement Bσ−1 of B) is still a ONB
for S0 and λ, but it now satisfies (40).

In case S0 or S1 are not invertible, we can argue as above with the matrices S̃0 =
S0 + I and S̃1 = S1 + I . These matrices are invertible and such that S̃1 is a Lidskii
matching for S̃0 . Further, λi(S̃0) = λi(S0)+1 and λi(S̃1) = λi(S1)+1, ∀1 ≤ i ≤ d .
Hence, if {vi}di=1 has the desired properties for S̃0 and S̃1 then this ONB also has the
desired properties for S0 and S1 .
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