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We develop a non-perturbative formalism for scalar metric fluctuations from a 5D extended version
of general relativity in vacuum. In this work we concentrate our efforts on calculations valid on
large cosmological scales, which are the dominant during the inflationary phase of the universe. The
resulting metric in this limit is obtained after implementing a planar coordinate transformation on
a 5D Ricci-flat metric solution. We calculate the spectrum of these fluctuations with an effective
4D Schwarzschild-de Sitter spacetime on cosmological scales, which is obtained after we make a
static foliation on the non-compact extra coordinate. Our results show how the squared metric
fluctuations of the primordial universe become scale invariant with the inflationary expansion.
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I. INTRODUCTION

In the last years the study of the early universe has raised the interest of cosmologists due to some new issues
on this topic as new inflationary cosmologies, quantum gravity, etc. Currently inflation is a well grounded theory
having an experimental status, that has a good interface with high-energy physics and provides various approaches
to topical problems of the fundamental physics, specifically to the problem of divergence in a quantum theory or
the singularity problem in the general theory of relativity. Furthermore, in some way it leads to the problem of
quantum-gravitational effects and their adequate description. These reasons, among others, make the investigation
of the early Universe of particular importance. Inflationary cosmology is one of the paradigms that will be confirmed
with new observational data coming from the PLANCK satellite. Inflation has become the standard paradigm for
explaining the homogeneity and the isotropy of our observed Universe [1, 2]. During this epoch the energy density
of the Universe was dominated by some scalar field (the inflaton), with negligible kinetic energy density, in such a
way that its corresponding vacuum energy density is responsible for the exponential growth of the scale factor of the
universe. Along this phase a small and smooth region of the order of size of the Hubble radius, grew so large that it
easily encompassed the comoving volume of the entire presently observed Universe, and consequently the observable
universe become so homogeneous and isotropic, spatially. Moreover, it is now clear that the structure in the Universe
has its origin primarily with an almost scale-invariant super-horizon curvature perturbation. Unfortunately, there
are plenty of inflationary models the majority of them in good concordance with observations, but none free of
problems, as for example the transplanckian problem, the hierarchy problem, etc [3]. This has lead cosmologists
to look for some new theoretical alternatives [4]. In particular the resort to extra dimensions has been of some success.

The extension of the 4D spacetime to N(≥ 5)D manifolds is the preferred route to a unification of the interactions
of particle physics with gravity. The basic extension to 5D describes a spin-2 graviton, a spin-1 photon and a spin-0
scalaron, which can be related, respectively, to the Einstein, Maxwell and Higgs fields [5]. In the cosmological
context the extra dimension is already known to be of great importance. There is a class of 5D cosmological
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models which reduce to the usual four dimensional ones, on hypersurfaces defined by establishing a foliation on
the fifth extra coordinate. In these models the matter is explained as a consequence of the geometry in five dimensions.

The idea that the equation of state for matter is ωm = −1 (and not ωm = 0) was previously explored in some
works using some ideas of the Space-Time-Matter (STM) theory, from the gravitational [6] and cosmological [7]
points of view. The origin of gravitational waves has been also considered for a large-scale repulsive gravitational
field from a 5D vacuum [8]. In this work we develop a non-perturbative formalism for scalar metric fluctuations from
a 5D extended Schwarzschild-de Sitter (SdS) cosmological metric. It can be seen that on cosmological scales gravity
becomes repulsive and these fluctuations behave as a longitudinal gauge [9]. Finally, we study the spectrum for the
squared fluctuations of the metric.

II. THE 5D FIELD EQUATIONS

On the coordinate chart {T,R, θ, φ, ψ}, let us consider the 5D line element

dS2
5 =

(

ψ

ψ0

)2 [

c2f(R)dT 2 − dR2

f(R)
−R2(dθ2 + sin2θdφ2)

]

− dψ2, (1)

describing a Ricci-flat metric [10]. Here, f(R) = 1 − [(2Gζψ0/(Rc
2)] − (R/ψ0)

2 is a dimensionless metric function,
ψ is the space-like and non-compact fifth extra coordinate1. This metric is an extension to 5D spaces of the 4D SdS
metric. T is a time-like coordinate, c is denoting the speed of light, R, θ, φ are the usual spherical polar coordinates,
ψ0 is an arbitrary constant with length units and the constant parameter ζ has units of (mass)(length)−1. The metric
(1) is static, however, it can be written on a dynamical coordinate chart {t, r, θ, φ, ψ} by implementing the planar
coordinate transformation [11]

R = ar

[

1 +
Gζψ0

2ar

]2

, T = t+H

∫ r

dR
R

f(R)

(

1− 2Gζψ0

R

)−1/2

, (2)

a(t) = a0e
t/ψ0 being the scale factor. After doing so, the line element (1) may be expressed in terms of the conformal

time τ in the form

dS2
5 =

(

ψ

ψ0

)2
[

F (τ, r)dτ2 − J(τ, r)(dr2 + r2(dθ2 + sin2θdφ2))
]

− dψ2, (3)

where the metric functions F (τ, r) and J(τ, r) are given by

F (τ, r) = a2(τ)

[

1− Gζψ0

2a(τ)r

]2 [

1 +
Gζψ0

2a(τ)r

]−2

, J(τ, r) = a2(τ)

[

1 +
Gζψ0

2a(τ)r

]4

, (4)

with dτ = a−1(τ)dt and a(τ) = −ψ0/τ , so that the constant Hubble parameter satisfies

H =
1

ψ0
= a−2 da

dτ
. (5)

As was shown in [10], for certain values of ζ and ψ0, the metric in (1) has two natural horizons. The inner one is the
analogous to the Schwarzschild horizon and the external one is the analogous to the Hubble horizon. In the metric
in (3) these horizons may be written in the new dynamical coordinate chart.

The non-perturbative metric fluctuations of the background (3), are introduced through the perturbed line element

dS2
5

∣

∣

pert
=

(

ψ

ψ0

)2
[

F (τ, r)e2Φdτ2 − J(τ, r)e−2Φ(dr2 + r2(dθ2 + sin2θdφ2))
]

− dψ2, (6)

1 In our notation conventions henceforth, latin indices a, b = run from 0 to 4, whereas the rest of latin indices i, j, n, l, ... = run from 1 to
3.
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where Φ(τ, r, θ, φ, ψ) is the metric function that describes the gauge-invariant scalar metric fluctuations. In cartesian
coordinates this perturbed line element reads

dS2
5

∣

∣

pert
=

(

ψ

ψ0

)2
[

F (τ, x, y, z)e2Φdτ2 − J(τ, x, y, z)e−2Φδijdx
idxj

]

− dψ2, (7)

being now Φ = Φ(τ, x, y, z, ψ). For simplicity, we will use (7) to obtain the Einstein field equations in 5D.

Now let us to consider a non-massive scalar field ϕ(xa) on the 5D spacetime (7). Its dynamics can be derived from
the action

(5)S =

∫ √
g5

[

(5)R

2κ5
− 1

2
gabϕ,aϕ,b

]

d4x dψ, (8)

where (5)R is the Ricci scalar, g5 is the determinant of the metric (7) and κ5 is the 5D gravitational coupling constant.
As the scalar field ϕ is purely kinetic there are no interactions of this field with its environment in 5D, however, in
4D this is not the case. Clearly, the energy-momentum tensor derived from (8) reads

(5)Tab = ϕ,aϕ,b −
1

2
gab ϕ,cϕ

,c, (9)

which is obviously symmetric. The dynamics of the scalar field ϕ derived from the action (8) on the perturbed metric
(7) is given by

ϕ̈+

[(

3

2

J̇

J
− 1

2

Ḟ

F

)

− 4Φ̇

]

ϕ̇−
√

F

J3
e4Φ~∇(

√
FJ ) · ~∇ϕ− F

J
e4Φ∇2ϕ+

(

ψ

ψ0

)2

Fe2Φ
[(

2
⋆

Φ− 4

ψ

)

⋆
ϕ− ⋆⋆

ϕ

]

= 0, (10)

where we denote (~∇Φ)2 ≡ ~∇Φ · ~∇Φ, the dot (·) denotes partial derivative with respect to the conformal time τ and
the star (⋆) is denoting partial derivative with respect to the extra coordinate ψ. The diagonal components of the 5D
field equations (5)Gab = k5

(5)Tab, on the background (7), have the form

−
3

4

(

J̇

J

)

2

+
3J̇

J
Φ̇− 3Φ̇2 +

[

3F

ψ2

0

− 3F

(

ψ

ψ0

)2

(
⋆⋆
Φ − 2

⋆
Φ

2

)−
12Fψ

ψ2

0

⋆
Φ

]

e2Φ −

[

3F

4J3
(~∇J)2 +

F

J2
(~∇J · ~∇Φ)−

F

J
(~∇Φ)2 +

2F

J
∇

2Φ−
F

J2
∇

2J

]

e4Φ

= −κ5

[

1

2
ϕ̇2 +

1

2

(

F

J

)

e4Φ(~∇ϕ)2 +
1

2

(

ψ

ψ0

)

2

Fe2Φ
⋆
ϕ
2

]

, (11)

3

4

(

~∇J

J

)

2

+
1

2

(

~∇F

F

)

2

−

(

~∇F · ~∇J

2FJ

)

−
∇2J

J
−

∇2F

F
−

~∇F · ~∇Φ

F
− (~∇Φ)2

+

[

−

(

9J

ψ2

0

)

− 6J

(

ψ

ψ0

)2 ⋆
Φ

2

+
12Jψ

ψ2

0

⋆
Φ+ 3J

(

ψ

ψ0

)2 ⋆⋆
Φ

]

e−2Φ

+

[(

3JḞ

F 2
−

12J̇

F

)

Φ̇−
3J̇2

4FJ
−

3Ḟ J̇

2F 2
+

3J̈

F
+

15J

F
Φ̇2

−
6J

F
Φ̈

]

e−4Φ

= −κ5

[

3J

2F
e−4Φϕ̇2

−
1

2
(~∇ϕ)2 −

3J

2

(

ψ

ψ0

)2

e−2Φ ⋆
ϕ
2

]

, (12)

−
6

ψ2
+

6

ψ

⋆
Φ +

(

ψ0

ψ

)

2
[

(~∇F )2

4JF 2
+

3(~∇J)2

4J3
−

~∇F · ~∇J

4FJ2
−

∇2J

J2
−

∇2F

2FJ
−

1

2

(

~∇F

FJ
−

~∇J

J2

)

· ~∇Φ−
(~∇Φ)2

J
+

∇2Φ

J

]

e2Φ

+

(

ψ0

ψ

)

2
[

−
3

4

Ḟ J̇

F 2J
+

3

2

J̈

FJ
−

3

2

(

5J̇

FJ
−

Ḟ

F 2

)

Φ̇ +
9

F
Φ̇2

−
3

F
Φ̈

]

e−2Φ

= −κ5

[

1

2F

(

ψ

ψ0

)

−2

e−2Φϕ̇2
−

1

2J

(

ψ

ψ0

)

−2

e2Φ(~∇ϕ)2 +
1

2

⋆
ϕ
2

]

, (13)
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while the non-diagonal 5D Einstein equations are given by

J̇,i

J
−

1

2

J̇F,i

JF
−

J̇J,i

J2
+ 2Φ,iΦ̇−

(

J̇

J

)

Φ,i − 2Φ̇,i +

(

F,i

F

)

Φ̇ = −κ5ϕ̇ϕ,i , (14)

6
⋆

ΦΦ̇− 3

(

J̇

J

)

⋆

Φ− 3
· ⋆

Φ = −κ5ϕ̇
⋆
ϕ, (15)

2Φ,i

⋆

Φ +

(

F,i

F

)

⋆

Φ−
⋆

Φ,i = −κ5ϕ,i
⋆
ϕ, (16)

2Φ,iΦ,j +
F,i

F
Φ,j +

F,j

F
Φ,i +

1

2

F,ij

F
−

1

4

F,iF,j

F 2
−

1

4

F,iJ,j

FJ
−

1

4

F,jJ,i

FJ
+

J,ij

2J
−

3

4

J,iJ,j

J2
= −κ5ϕ,iϕ,j for i 6= j. (17)

III. 5D GAUGE INVARIANT METRIC FLUCTUATIONS ON COSMOLOGICAL SCALES

On cosmological scales the following condition is satisfied:

Gζψ0

2a(τ)rH
≪ 1, (18)

where rH denotes the value of the radial coordinate at the horizon entry. This means that on cosmological scales the
functions F (τ, r) and J(τ, r) become independent of spatial coordinates [see eqs. in (4)], so that

F (τ, r)| Gξψ0
2a(τ)rH

≪1
→ a2(τ), J(τ, r)| Gξψ0

2a(τ)rH
≪1

→ a2(τ), (19)

and the metric (3) describes an universe which is nearly 3D spatially homogeneous and isotropic.
The perturbed field equations (11)-(13) with the condition (18), give us the diagonal Einstein equations on cosmo-

logical scales

3H2 − 6HΦ̇ + 3Φ̇2 − [(~∇Φ)2 − 2∇2Φ]e4Φ − 3a2

[

1

ψ2
0

−
(

ψ

ψ0

)2(⋆⋆

Φ − 2
⋆

Φ
2)

− 4ψ

ψ2
0

⋆

Φ

]

e2Φ

=
κ5
2

[

ϕ̇2 + e4Φ(~∇ϕ)2 +
(

ψ

ψ0

)2

a2e2Φ
⋆
ϕ
2

]

, (20)

−H2 − 2Ḣ+ 2Φ̈ + 6HΦ̇− 5Φ̇2 +
1

3
e4Φ(~∇Φ)2 + a2

[

3

ψ2
0

+ 2

(

ψ

ψ0

)2 ⋆

Φ
2

− 4ψ

ψ2
0

⋆

Φ−
(

ψ

ψ0

)2 ⋆⋆

Φ

]

e2Φ

=
κ5
2

[

ϕ̇2 − 1

3
e4Φ(~∇ϕ)2 −

(

ψ

ψ0

)2

a2e2Φ
⋆
ϕ
2

]

, (21)

−3(H2 + Ḣ) + 3(Φ̈ + 4HΦ̇− 3Φ̇2) +
[

(~∇Φ)2 −∇2Φ
]

e4Φ +
6a2

ψ2
0

(1 − ψ
⋆

Φ)e2Φ

=
κ5
2

[

ϕ̇2 − e4Φ(∇ϕ)2 +
(

ψ

ψ0

)2

a2e2Φ
⋆
ϕ
2

]

, (22)

whereas the non-diagonal equations (14) to (17) become

− 2Φ,iΦ̇ + 2HΦ,i + 2Φ̇,i = κ5ϕ̇ϕ,i, (23)

−6
⋆

ΦΦ̇ + 6H
⋆

Φ+ 3
· ⋆
Φ = κ5ϕ̇

⋆
ϕ, (24)

−2Φ,i
⋆

Φ +
⋆

Φ,i = κ5ϕ,i
⋆
ϕ, (25)

−2Φ,iΦ,j = κ5ϕ,iϕ,j for i 6= j. (26)
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Here, H = ȧ(τ)/a(τ) is the Hubble parameter in conformal time. From the linear combination [eq (22)- eq. (21) +
(1/4) × eq. (20)] results the expression

− 5

4
H2 − Ḣ+ Φ̈ +

9

2
HΦ̇− 13

4
Φ̇2 +

5

12
(~∇Φ)2e4Φ − 1

2
(∇2Φ)e4Φ + a2

[

9

4ψ2
0

− 7

2

(

ψ

ψ0

)2( ⋆

Φ
2

− 1

2

⋆⋆

Φ

)

+
ψ

ψ2
0

⋆

Φ

]

e2Φ

=
κ5
2

[

1

4
ϕ̇2 − 5

12
e4Φ(~∇ϕ)2 + 9

4

(

ψ

ψ0

)2

a2e2Φ
⋆
ϕ
2

]

. (27)

This equation describes the dynamics of the 5D scalar metric fluctuations Φ(τ, x, y, z, ψ) in terms of the 5D scalar field
ϕ(τ, x, y, z, ψ), which in 4D will be formally identified with the inflaton field. Finally, equation (10) for ϕ(τ, x, y, z, ψ)
yields

ϕ̈+ (2H− 4Φ̇)ϕ̇− e4Φ∇2ϕ+

(

ψ

ψ0

)2

a2e2Φ
[(

2
⋆

Φ− 4

ψ

)

⋆
ϕ− ⋆⋆

ϕ

]

= 0, (28)

which is the equation that describes the 5D dynamics of the scalar field ϕ on cosmological scales in the presence of
the scalar metric fluctuations.

IV. WEAK FIELD LIMIT OF 5D METRIC FLUCTUATIONS

In the previous section we have derived the 5D field equations describing the dynamics of the 5D gauge-invariant
scalar metric fluctuations Φ, in a non-perturbative manner. The amplitudes of these metric fluctuations have no
restrictions, neither on cosmological nor astrophysical scales. However, as is well known, such amplitudes are small
on cosmological scales and specially during an inflationary stage of the early universe. Due to this fact we shall
consider small amplitudes, in order to study the spectrum of these scalar metric fluctuations during inflation on
large-scales. We shall consider the weak field limit approximation: e±2Φ ≃ 1± 2Φ.

Let us start with the weak field limit of equation (28). Linearizing this equation respect to Φ we obtain

ϕ̈− (2H− 4Φ̇)ϕ̇− (1 + 4Φ)∇2ϕ+

(

ψ

ψ0

)2

a2
[(

2
⋆

Φ− 4

ψ

)

⋆
ϕ− (1 + 2Φ)

⋆⋆
ϕ − 8

ψ
Φ
⋆
ϕ

]

= 0. (29)

Now, implementing a semi-classical approximation for the scalar field: ϕ(τ, x, y, z, ψ) = ϕb(τ, ψ) + δϕ(τ, x, y, z, ψ), in
equation (29), we obtain separately the dynamics for both, the background part of the field ϕb and for the quantum
fluctuations δϕ

ϕ̈b + 2Hϕ̇b −
(

ψ

ψ0

)2

a2
[

4

ψ

⋆
ϕb +

⋆⋆
ϕb

]

= 0, (30)

δ̈ϕ+ 2H ˙δϕ−∇2δϕ−
(

ψ

ψ0

)2

a2
[

4

ψ

⋆

δϕ+
⋆⋆

δϕ

]

− 4ϕ̇bΦ̇ +

(

ψ

ψ0

)2

a2
[

2
⋆
ϕb

⋆

Φ−
(

8

ψ

⋆
ϕb + 2

⋆⋆
ϕb

)

Φ

]

= 0. (31)

Similarly, linearizing with respect to Φ equations (20) to (22), we obtain for the background field ϕb

3H2 − 3a2

ψ2
0

=
κ5
2

[

ϕ̇2
b +

(

ψ

ψ0

)2

a2
⋆
ϕ
2

b

]

, (32)

−H2 − 2Ḣ+
3a2

ψ2
0

=
κ5
2

[

ϕ̇2
b −

(

ψ

ψ0

)2

a2
⋆
ϕ
2

b

]

, (33)

−3(H2 + Ḣ) +
6a2

ψ2
0

=
κ5
2

[

ϕ̇2
b +

(

ψ

ψ0

)2

a2
⋆
ϕ
2

b

]

, (34)
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while for that for the field δϕ, we have

− 6HΦ̇ + 2∇2Φ+ 3a2

[

(

ψ

ψ0

)2 ⋆⋆

Φ +
4ψ

ψ2
0

⋆

Φ− 2

ψ2
0

Φ

]

= κ5

[

ϕ̇bδϕ̇+

(

ψ

ψ0

)2

a2
(

⋆
ϕb

⋆

δϕ+
⋆
ϕ
2

bΦ

)

]

, (35)

2Φ̈ + 6HΦ̇ + a2

[

6

ψ2
0

Φ−
(

ψ

ψ0

)2 ⋆⋆

Φ − 4ψ

ψ2
0

⋆

Φ

]

= κ5

[

ϕ̇b ˙δϕ−
(

ψ

ψ0

)2

a2
(

⋆
ϕb

⋆

δϕ+
⋆
ϕ
2

bΦ

)

]

, (36)

3(Φ̈ + 4HΦ̇)−∇2Φ +
6a2

ψ2
0

(

2Φ− ψ
⋆

Φ

)

= κ5

[

ϕ̇b ˙δϕ+

(

ψ

ψ0

)2

a2
(

⋆
ϕb

⋆

δϕ+
⋆
ϕ
2

bΦ

)

]

. (37)

On the other hand, linearizing the non-diagonal field Einstein equations (23) to (26), we obtain

2
(

HΦ,i + Φ̇,i

)

= κ5ϕ̇bδϕ,i (38)

6H
⋆

Φ+ 3
·⋆
Φ = κ5

(

ϕ̇b
⋆

δϕ+ ˙δϕ
⋆
ϕb

)

(39)

⋆

Φ,i = κ5
⋆
ϕbδϕ,i. (40)

Equation (27) after being linearized can be written as

− 5

4
H2 − Ḣ+

9a2

4ψ2
0

=
κ5
8

[

ϕ̇2
b + 9

(

ψ

ψ0

)2

a2
⋆
ϕ
2

b

]

, (41)

while that the dynamics of the field δϕ, is given by

Φ̈ +
9

2
HΦ̇− 1

2
∇2Φ + a2

[

9

2ψ2
0

Φ+
ψ

ψ2
0

⋆

Φ +
7

4

(

ψ

ψ0

)2 ⋆⋆

Φ

]

=
κ5
4

[

ϕ̇b ˙δϕ+ 9

(

ψ

ψ0

)2

a2
(

⋆
ϕb

⋆

δϕ+
⋆
ϕ
2

bΦ

)

]

. (42)

This last equation describes the 5D dynamics of the metric fluctuations Φ in terms of the scalar field fluctuations δϕ.
Clearly, this equation can be also derived as a linear combination of equations (35)-(37).

V. INDUCING THE 4D DYNAMICS FOR THE NON-PERTURBATIVE GAUGE INVARIANT

SCALAR METRIC FLUCTUATIONS

Since we know the 5D field equations of motion for both, the scalar field ϕ and the non-perturbative scalar metric
fluctuations Φ, we are in a position to derive their respective dynamics on our 4D universe. With this in mind, we
shall assume that the 5D spacetime can be foliated by a family of hypersurfaces Σ : ψ = constant. Our 4D universe
will be here represented by a generic hypersurface Σ0 : ψ = ψ0. Thus, on every leaf member of the family, the line
element induced by (3) has the form

ds24 = F (τ, r)dτ2 − J(τ, r)[dr2 + r2(dθ2 + sin2θdφ2)], (43)

with

F (τ, r) = a2(τ)

[

1− Gm

2ar

]2 [

1 +
Gm

2ar

]−2

, J(τ, r) = a2(τ)

[

1 +
Gm

2ar

]4

, (44)

where m = ζψ0 is the physical mass of a primordial black-hole which evolves during inflation and has a Schwarzschild
radius RH = 2Gm. It is clear that the condition (18) delimits the cosmological scales. On the 4D hypersurface, this
condition takes the form

Gm

2ar
≪ 1. (45)

The backgroundmetric in (43) describes on cosmological scales a de Sitter expansion of the early universe characterized
by an equation of state pb = −ρb = −3/(8πGψ2

0), where ρb and pb are the background energy density and the pressure.



7

The 5D perturbed line element in cartesian coordinates (7), induces on the hypersurface Σ0 the effective 4D line
element

ds24
∣

∣

pert
= F (τ, x̄)e2Ω(τ,x̄)dτ2 − J(τ, x̄)e−2Ω(τ,x̄)δijdx

idxj , (46)

where Ω(τ, x̄) ≡ Φ(τ, x, y, z, ψ0) describes the 4D scalar metric fluctuations induced on Σ0. Equations (20)-(22) induce
on our 4D spacetime Σ0, the field equations

3H2 − 6HΩ̇ + 3Ω̇2 − [(~∇Ω)2 − 2∇2Ω]e4Ω − 3a2e2Ω

[

1

ψ2
0

−
(

ψ

ψ0

)2(⋆⋆

Φ − 2
⋆

Φ
2)

− 4ψ

ψ2
0

⋆

Φ

]∣

∣

∣

∣

∣

ψ=ψ0

= 4πG

[

˙̄ϕ2 + e4Ω(~∇ϕ̄)2 + a2e2Ω
(

ψ2

ψ2
0

⋆
ϕ
2
)∣

∣

∣

∣

ψ=ψ0

]

, (47)

−H2 − 2Ḣ+ 2Ω̈ + 6HΩ̇− 5Ω̇2 +
1

3
e4Ω(~∇Ω)2 + a2e2Ω

[

3

ψ2
0

+ 2

(

ψ

ψ0

)2 ⋆

Φ
2

− 4
ψ

ψ2
0

⋆

Φ−
(

ψ

ψ0

)2 ⋆⋆

Φ

]∣

∣

∣

∣

∣

ψ=ψ0

= 4πG

[

˙̄ϕ2 − 1

3
e4Ω(~∇ϕ̄)2 − a2e2Ω

(

ψ2

ψ2
0

⋆
ϕ
2
)∣

∣

∣

∣

ψ=ψ0

]

, (48)

−3(H2 + Ḣ) + 3(Ω̈ + 4HΩ̇2 − 3Ω̇2) + [(~∇Ω)2 −∇2Ω]e4Ω + 6a2e2Ω
[

1

ψ2
0

− ψ

ψ2
0

⋆

Φ

]∣

∣

∣

∣

ψ=ψ0

= 4πG

[

˙̄ϕ2 − e4Ω(~∇ϕ̄)2 + a2e2Ω
(

ψ2

ψ2
0

⋆
ϕ
2
)∣

∣

∣

∣

ψ=ψ0

]

, (49)

where ϕ̄(τ, x, y, z) = ϕ(τ, x, y, z, ψ)|ψ=ψ0 is the massive scalar field induced on Σ0. The dynamics of the induced scalar
metric fluctuations Ω, derived from (27), is given by

− 5

4
H2 − Ḣ+ Ω̈ +

9

2
HΩ̇− 13

4
Ω̇2 +

5

12
(~∇Ω)2e4Ω − 1

2
(∇2Ω)e4Ω

+ a2e2Ω

[

9

4ψ2
0

− 7

2

(

ψ

ψ0

)2 ⋆

Φ
2

+
ψ

ψ2
0

⋆

Φ +
7

4

(

ψ

ψ0

)2 ⋆⋆

Φ

]∣

∣

∣

∣

∣

ψ=ψ0

=
8πG

2

[

1

4
˙̄ϕ2 − 5

12
e4Ω(~∇ϕ̄)2 + 9

4
a2e2Ω

(

ψ2

ψ2
0

⋆
ϕ
2
)
∣

∣

∣

∣

ψ=ψ0

]

, (50)

and the induced dynamics of ϕ̄ on the hypersurface 4D is given by the equation

¨̄ϕ+
[

2H− 4Ω̇
]

˙̄ϕ− e4Ω∇2ϕ̄+ ae2Ω
[(

2
⋆

Φ− 4

ψ

)

⋆
ϕ− ⋆⋆

ϕ

]∣

∣

∣

∣

ψ=ψ0

= 0, (51)

which is derived by evaluating (28) on Σ0.
The 5D action (8) induces on our 4D spacetime the effective action

(4)Seff =

∫

d4x
√
g4

[

(4)R

16πG
− 1

2
gµνϕ̄,µϕ̄,ν + V (ϕ̄)

]

, (52)

where g4 is the determinant of the 4D induced metric, which for the background reads g
(b)
4 = FJ3 while for the

perturbed metric g
(p)
4 = FJ3e−4Ω. The 4D Ricci scalar curvature (4)R is given by

(4)R =
2

a2

[

3(H2 + Ḣ − 4HΩ̇− Ω̈ + 3Ω̇2)e−2Ω + (∇2Ω− (∇Ω)2)e2Ω
]

, (53)

and the induced 4D effective potential V has the form

V (ϕ̄) = −1

2
gψψ

(

∂ϕ

∂ψ

)2
∣

∣

∣

∣

∣

ψ=ψ0

. (54)
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In our analysis the fields Ω and ϕ̄ are semi-classical fields, so they are constituted by a classical part plus a quantum
part. To study the dynamics of the former, a standard quantization procedure will be implemented. To do it, we
shall impose the commutation relations

[

ϕ̄(τ, x̄),Π0
(ϕ̄)(τ, x̄

′)
]

= iδ(3)(x̄− x̄′),
[

Ω(τ, x̄),Π0
(Ω)(τ, x̄

′)
]

= iδ(3)(x̄ − x̄′), (55)

where x̄ is denoting the 3D vector position in cartesian coordinates. Due to the fact that the conjugate momentum
to ϕ̄ and Ω are, respectively, given by Π0

(ϕ̄) =
√−g4F−1e−2Ω ˙̄ϕ and Π0

(Ω) = [12/(16πG)]a−2(3Ω̇− 2H)e−2Ω√−g4, the
expressions (55) yield

[ϕ̄(τ, x̄), ˙̄ϕ(τ, x̄′)] =
ie2Ω

F
√−g4

δ(3)(x̄− x̄′),
[

Ω(τ, x̄), Ω̇(τ, x̄′)
]

= i
4πGa2e2Ω

9
√−g4

δ(3)(x̄− x̄′). (56)

VI. INDUCED 4D DYNAMICS FOR THE INFLATON AND GAUGE INVARIANT METRIC

FLUCTUATIONS IN THE WEAK FIELD LIMIT

In the section IV we have obtained the weak field limit of the 5D field equations for both fields: the inflaton field ϕ
and the scale-invariant metric fluctuation field Φ. A similar mechanism can be applied in the case of the effective 4D
field equations of the section V. Thus, let us use the semiclassical approximation: ϕ̄(τ, r̄) = ϕ̄b(τ) + δϕ̄(τ, ~r), where
ϕ̄b(τ) ≡ ϕ̄b(τ, ψ)|ψ=ψ0

is the background 4D inflaton field and δϕ̄(τ, ~r) ≡ δϕ̄(τ, ~r, ψ)|ψ=ψ0
stands for the 4D inflaton

field quantum fluctuations. Taking this into account, the evaluation of equation (30) on Σ0 yields

¨̄ϕb + 2H ˙̄ϕb + a2m2ϕ̄b = 0, (57)

where we have used the relation: [(4/ψ)
⋆
ϕb+

⋆⋆
ϕb]|ψ=ψ0 = −m2ϕ̄b, such thatm is a separation constant. Now, according

to equation (47), the background field ϕ̄ must obey the Friedmann-like equation

(

∂ϕ̄b
∂τ

)2

+ a2
(

∂ϕb
∂ψ

)2

ψ=ψ0

= 0. (58)

A particular solution of (57), which also is satisfied when inflation begins, are the slow rolling conditions: ∂ϕ̄b/∂τ = 0,
where necessarily m = 0 [12]. Using this solution in (58), it yields

ϕ̄b = 0, (59)

which means that all the energy density on the 4D hypersurface is induced geometrically by the foliation
ψ = ψ0 = 1/H , because the background energy density related to the background inflaton field is null.

On the other hand, by using (39), (40) and (42), we find after some algebra that the scalar metric fluctuations Ω
on Σ0 obey the equation

Ω̈ +
9

2
HΩ̇− 1

2
∇2Ω +

[

9

2
a2H2 + λ2

]

Ω = 0. (60)

Here, we have used {(ψ/ψ2
0 − 9/ψ)

⋆

Φ + [(7/4)(ψ/ψ0)
2 − 9/4]

⋆⋆

Φ}ψ=ψ0 = λ2Ω, where λ is a separation constant with

mass units. Now it can be shown that equation (38), evaluated on Σ0, leads to the condition Ω̇ = −HΩ. Using this
last condition in equation (60), we obtain

Ω̈ + 2HΩ̇− 1

2
∇2Ω +

[

a2H2 + λ2
]

Ω = 0. (61)

If we introduce the auxiliary field χ(τ, r̄), through the formula

Ω(τ, r̄) = e−
∫
H(τ)dτχ(τ, r̄) (62)

the equation (61), becomes

χ̈− 1

2
∇2χ+

(

λ2 − Ḣ
)

χ = 0. (63)
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Now, in order to quantize the field χ, we shall expand it in Fourier modes

χ(τ, r̄) =
1

(2π)3/2

∫

d3k
[

ake
ik̄·r̄ξk(τ) + a†kξ

∗
k(τ)

]

, (64)

where the annihilation and creation operators ak and a†k satisfy the commutation algebra

[ak, a
†
k′ ] = δ(3)(k̄ − k̄′), [ak, ak′ ] = [a†k, a

†
k′ ] = 0. (65)

Inserting (64) in (63) and using (65), we find

ξ̈k +

(

k2eff −
2

τ2
+ λ2

)

ξk = 0, (66)

where k2eff = k2/2. Using (64) and (65) in the second expression of (56), the modes ξk must satisfy in the UV-sector
the normalization condition

ξk ξ̇
∗
k − ξ∗k ξ̇k = i

4πG

9a20
. (67)

Thus, choosing the Bunch-Davies vacuum condition, the normalized solution of (66) reads

ξk(τ) ≃
iπ

3a0

√
GH(2)

ν [z(τ)], (68)

where H(2)
ν [z(τ)] is the second kind Hankel function, ν = (1/2)

√
1 + 4β and z(τ) = keff τ . Notice that β = 2−λ2τ2 >

0, such that the conformal time at the beginning of inflation τ0 = −
√
2
λ is defined such that β0 = 2 − λ2τ20 = 0 and

the conformal time at the end of inflation complies with βe = 2 − λ2τ2e ≃ 2. Using the definition of β, it is easy to
show that the parameter ν ≃ 3/2 for τ2e ≪ 2/λ2, which assures that the spectral index 1 > ns > 0.96[13]. Using the
fact that 1− ns = 3− 2ν, we obtain that the range of acceptable values for τe is

0 < (−τe) <
0.245

λ
. (69)

Figure (1) shows the evolution of ns(τ) during inflation for λ = 10−10G−1/2. It is important to see how the universe
becomes scale invariant with the expansion of the universe. Notice that the temporal evolution of β, and hence of the
spectral index ns, is due to the existence of λ, which has a clear origin in the extra space-like coordinate ψ [see eqs.
(60) and below]. This result cannot be found in standard 4D inflationary models.

VII. FINAL COMMENTS

We have studied a non-perturbative formalism for scalar metric fluctuations from a 5D extended Schwarzschild-de
Sitter (SdS) cosmological metric. In particular, we have studied the large-scale cosmological limit, which is the relevant
for the study of large-scale structure formation in the early inflationary universe. In this limit the intensity of the
fluctuations are weak enough, so we can take a longitudinal gauge, and thus one can implement the approximation
e±2Φ ≃ 1 ± 2Φ. We have shown that the energy density on the 4D hypersurface is induced geometrically by the
foliation ψ = ψ0 = 1/H , in virtue of the background energy density coming from the inflaton field being null. This
is an important result because all the contributions of the inflaton field are in the quantum fluctuations. We have
calculated the spectral index for the scale-invariant metric fluctuations. Our results show how the universe becomes
gradually scale invariant. The time when inflation ends τe can be calculated from experimental data. The range of
possible values was obtained in (69). Finally, our 5D model resolves the problem of some 4D standard inflationary
models in which the background values of the inflaton field ϕ̄b are transplanckians. In our case ϕ̄b = 0, so that all the
background energy density is due to the 4D induced cosmological constant, which is induced on the 4D hypersurface
by the foliation ψ = ψ0 = 1/H .
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FIG. 1: Evolution of ns(τ ) during inflation for λ = 10−10 G−1/2. The universe becomes scale invariant with the growth of the
universe.
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