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Plants rely on a sophisticated light sensing and signaling
system that allows them to respond to environmental changes.
Photosensory protein systems -phytochromes, cryptochromes,
phototropins, and ultraviolet (UV)-B photoreceptors- have
evolved to let plants monitor light conditions and regulate
different levels of gene expression and developmental
processes. However, even though photoreceptor proteins are
best characterized and deeply studied, it is also known that
chloroplasts are able to sense light conditions and
communicate the variations to the nucleus that adjust its
transcriptome to the changing environment. The redox state of
components of the photosynthetic electron transport chain
works as a sensor of photosynthetic activity and can affect
nuclear gene expression by a retrograde signaling pathway.
Recently, our groups showed that a retrograde signaling
pathway can modulate the alternative splicing process,
revealing a novel layer of gene expression control by
chloroplast retrograde signaling.

Light and Plants

Plants utilize light to sustain their life. As sessile organisms, in
order to grow and develop successfully, plants have evolved
extremely plastic adaptation and survival strategies. In this sense,
light is a crucial factor for 2 reasons: it is the source of energy and it
represents a rich source of information about plant surroundings.
Plant strategies rely on a sophisticated light sensing and signaling sys-
tem able to react to changes in the quantity, quality and duration of
this environmental cue.1 Photosensory protein systems have evolved
to allow plants to monitor light and to regulate developmental pro-
cesses of plant cells in response to light variations.

Photosensor proteins are the phytochromes, cryptochromes,
phototropins, and UV-B photoreceptors, whereby phytochromes
mainly perceive red and far-red light wavelengths, and blue/UV-
A light is perceived by cryptochromes and phototropins. Light
perception by these photoreceptors triggers many biological pro-
cesses by affecting gene expression. Besides the light signaling
pathways involving the canonical photoreceptor proteins, the
chloroplast, the organelle that carries out photosynthesis, has
evolved ways to communicate to the nucleus. By using different
mechanisms known as retrograde signaling pathways, the chloro-
plast is able to modulate nuclear gene expression.

Global gene expression is rapidly altered in response to light
changes. Accumulated data suggest that light regulation can
occur at many stages of gene expression. Light regulates the chro-
matin state,2 transcription factor action,3,4 translation,5 and pro-
tein stability.6 Among the multitude of steps that give rise to
mature messenger mRNAs (mRNAs) and proteins, alternative
splicing is a booster of transcript diversity, increasing the number
of differential transcripts and protein isoforms a cell can produce
from a single gene. In Arabidopsis, around 61% of multi-exonic
genes encode pre-mRNAs that are alternatively spliced under
normal growth conditions,7 and light seems to drive alternative
splicing regulation of several genes in plants as revealed by recent
publications.8,9 For example, Wu and colleagues8 have shown
that photoreceptor pathways regulate alternative splicing
genome-wide in the moss Physcomitrella patens. More recently,
we have demonstrated that chloroplasts are able to regulate
nuclear alternative splicing in response to changes in the redox
state of the photosynthetic electron transport components.9 Here
we summarize the results of the latest reports linking light to
gene expression and alternative splicing modulation in plants.

Light Signals and Photoreceptor Proteins

Probably, the most dramatic process controlled by light in
plants is photomorphogenesis. This includes all the developmen-
tal changes that take place during the first encounter of a growing
seedling with light. When seedlings grow in darkness they are eti-
olated (yellowish, with closed cotyledons and long hypocotyls).
Once exposed to light, they open their cotyledons and become
photosynthetically competent and green, and hypocotyl elonga-
tion stops.10 Light is perceived by distinct families of
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photoreceptors that absorb, interpret, and transduce light-derived
signals via distinct intracellular signaling pathways to generate a
wide range of responses. Cryptochromes and phytochromes,
which can localize in the nucleus, are involved in the control of
light-regulated nuclear gene expression that ultimately leads to
adaptive changes at the cellular and organismic levels.3

By the end of the 1990s, plant biologists had identified more
than 100 individual genes whose expression is regulated by light
via photoreceptor systems.11,12 However, the dramatic develop-
mental transitions during complex processes like seed germina-
tion and plant photomorphogenesis suggest that a much larger
number of genes are involved in light control of plant develop-
ment.13 Consequently, enhanced by the advance of genome-wide
technologies, it was shown that 20% of Arabidopsis and rice
genomes are responsive to white light,14 and this value rises to
about 33% when tested using a customized microarray with
»9000 Arabidopsis expressed sequence tags (ESTs).15

The activation of photoreceptor proteins significantly affects
transcription through signal transduction pathways and direct effects
on transcription factors. Transcriptional regulation, post-transla-
tional modification and degradation of transcription factors are all
important in the light-regulated control of development.1 Light-
mediated transcriptional control involves also chromatin remodel-
ing. For instance, one of the cryptochromes (CRY2) associates with
chromatin16 and a phytochrome interacting factor (PIF3) associates
with a histone deacetylase.17 Moreover, photoreceptor proteins are
also able tomodulate alternative splicing. Recent report on P. patens8

showed that alternative splicing is rapidly fine-tuned by light to
modulate gene expression and reorganize metabolic processes in a
way that might be dependent on red-light photoreceptors.

Even though the role of photoreceptor proteins in gene
expression modulation by light is better understood, there are
alternative ways for plants to sense light conditions and adjust
their transcriptomes in response to these changes.

Retrograde Signals

Chloroplasts were once free living photosynthetic bacteria, and
their gradual conversion to organelles has been accompanied by a
dramatic reduction in genome size as a consequence of either loss
or transfer of most of the endosymbiont genes to the nucleus. The
right function of the plastid and the location of genes encoding
chloroplast proteins in 2 different cellular compartments fosters
coordination in the expression of the 2 different genomes, explain-
ing why mechanisms ensuring fluid communication have
evolved.18,19 Signaling between chloroplasts and the nucleus is
bidirectional.20 Anterograde signaling involves flow of information
from the nucleus to the organelle. In contrast, in retrograde signal-
ing, information is transmitted from chloroplasts to the nucleus.21

Retrograde signaling is important to inform the nucleus about the
developmental and also the functional state of the chloroplast.20,21

Retrograde signaling defects that have been well-characterized
include genome uncoupled (gun) mutants.22 In these mutants,
communication between chloroplasts and the nucleus is disrupted.
Two main signaling pathways are affected in the gun mutants,

both of them acting in the tetrapyrrole biosynthetic pathway.
Despite this genetic evidence, the nature of the signal itself is still
not well-understood.21 Mg-protoporphyrin IX, a tetrapyrrole
pathway intermediate, has been proposed as a retrograde sig-
nal.23,24 However, recent studies have shown that the effect on
nuclear gene expression in gun mutants is not due to the accumu-
lation of this metabolite but, most likely, to perturbation of the
tetrapyrrole biosynthetic pathway that may alter the redox state of
the plastid, which would, in turn, act as a retrograde signal.25

Reactive oxygen species, which are byproducts of several organel-
lar processes, can also modulate nuclear gene expression.26 Seedlings
grown in the light and treated with norflurazon (an inhibitor of
carotenoid biosynthesis) show an increase in singlet oxygen (1O2)
production and photo-oxidative stress in the chloroplasts. Concomi-
tantly, expression of 1O2-responsive marker genes increases in these
seedlings,27 suggesting that reactive oxygen species can act as retro-
grade signals. Recently, other examples of retrograde signaling mole-
cules have been proposed. For instance, in the SAL1-PAP retrograde
pathway, a phosphonucleotide that accumulates in response to
drought and high light stress inside chloroplasts and mitochondria,
was proposed to move from the chloroplast to the nucleus and to
alter nuclear gene expression by affecting RNA metabolism.28

Another example is related to a chloroplast envelope-bound plant
homeodomain transcription factor that is activated by proteolytic
cleavage and would be able to transmit multiple retrograde signals
from the chloroplast to the nucleus.29 Although several retrograde
events have been reported to date, it has been proposed that a single
metabolite may not always be enough to act as a retrograde signal. In
contrast, a variety of metabolites (a metabolite signature) could gen-
erate a “signal” that does not require any further components than
those already known.21

Photosynthesis plays a role in retrograde signaling. The redox
state of the plastoquinone (PQ) pool, that transfers electrons
from Photosystem II to the cytochrome b6f complex, works as a
sensor of photosynthetic activity. The redox state of the PQ pool
was suggested to modulate the expression of 2 cytosolic ascorbate
peroxidase during excess light.30 Interestingly, this mechanism of
regulation through the PQ pool is also important under normal
physiological conditions like in light and darkness fluctuations
that happen during day and night transitions, as has been
reported for the Lhcb locus and its transcriptional regulation.31

Recently, our groups showed that the redox state of the PQ pool
can also modulate alternative splicing, describing a novel level of
gene expression regulation through retrograde signaling.9

Chloroplast and Nuclear Alternative Splicing

As pointed out, there is evidence that the chloroplast commu-
nicates its energy status to the nucleus. When considering the
strategies used by the 2 organelles to mutually regulate gene
expression a problem emerges: the chloroplast is an organelle of
prokaryotic origin, without neither spliceosomes nor alternative
splicing, whereas the nucleus possesses a genome that makes
extensive use of alternative splicing,7 giving rise to different
mRNA variants, leading to proteins with different functions or
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to the regulation of total levels of the protein expressed.32-36 This
might prompt the chloroplast to “communicate its needs” in a
“language” that the nucleus “understands” to specify the appro-
priate mRNA isoforms or those to be favored or down-regulated
in different light conditions. We were recently able to show that
the chloroplast can, in fact, regulate nuclear alternative splicing.
Among the analyzed alternative splicing events in our study,
those for the genes encoding the Ser/Arg-rich (SR) proteins At-
RS31 and At-SR30, and the splicing factor At-U2AF65, are the
most affected.9 In particular, alternative splicing events in At-
RS31 involve the intron at the conserved position in the first
RNA recognition motif of this SR protein. These events are
highly conserved from green single-celled algae to angiosperms
implicating an ancient regulatory function.37 We determined
that alternative splicing of At-RS31 is modulated by the chloro-
plast resulting in changes of mRNA1 isoform levels.9 This is the
only At-RS31 splice variant that is translated into the protein.37

The other 2 transcript isoforms of At-RS31 are mRNA2, that is
actively degraded by nonsense-mediated mRNA decay
(NMD),36,38 and mRNA3, that is being accumulated in the
nucleus.9,38 Alternative splicing of At-RS31 is affected in a way
that mRNA3 isoform is relatively more abundant in low light
intensities and in dark, likely reducing At-RS31 protein levels in
these conditions.9 Similar alternative splicing patterns to those of
dark treated seedlings are observed when DCMU (3-(3,4-
dichlorophenyl)-1,1-dimethylurea) -a drug that blocks photosyn-
thetic electron transport from Photosystem II (PSII) to plastoqui-
none, generating an increase in the oxidation of the PQ pool– is
added under normal light conditions, indicating that a functional
chloroplast with an active photosynthetic electron transport chain
is needed to generate the At-RS31 alternative splicing response to
light.9 Furthermore, by the use of DBMIB (2,5-Dibromo-3-
methyl-6-isopropyl-p-benzoquinone) -that blocks electron trans-
port downstream of the PQ pool, keeping it reduced- we
observed an enhancement in the effect of light: upon DBMIB
treatment, lower light intensities modulate At-RS31 alternative
splicing as higher light intensities do. Interestingly, this drug also
showed effects in dark-incubated seedlings, arguing for a direct
role as a quinone analog. Altogether, these results suggest the
redox state of the PQ pool –the next electron transport compo-
nent downstream of PSII- to be the main candidate to be linked
to nuclear alternative splicing regulation.9,39

Retrograde signaling can occur between chloroplast (and
mitochondria) and the nucleus inside the same cell. Interestingly,
our data revealed as well the existence of a chloroplast-derived
light triggered signal that is able to travel through the plant. This
signal can be the same that acts in the leaves (at the intracellular
level) or be a different one, but it is able to move from leaves to
roots affecting the alternative splicing pattern of At-RS31 in the
nuclei of root cells (see Fig. 1).9,39

Perspectives

Despite all the advances in the understanding of retrograde
signaling pathways, we are far from fully understanding the way

they work and even farther from the comprehension of the inter-
actions they might have with other cellular signaling mecha-
nisms. Future research in this field might solve these questions if
we are able to determine the components involved in these retro-
grade light signaling pathways and the nature of the signal(s). In
particular, in the emerging field of alternative splicing regulation
by retrograde signaling it would be fascinating to identify the
nature of the mobile retrograde signal that affects the alternative
splicing process in the roots9 and also to determine whether
mitochondria are able to modulate alternative splicing in a simi-
lar manner as chloroplasts. Finally, besides light variations, chlor-
oplasts are also able to integrate information related to
temperature, availability of CO2, water and nutrients, plus infor-
mation about their own developmental stage,40 which turns
them into very sensitive and smart remote controls for the regula-
tion of nuclear gene expression at different levels and with long
distance effects, since some of the retrograde signals are mobile
and can communicate environmental fluctuations through the
whole plant.9,41,42
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Figure 1. Plants use chloroplasts as light sensors that generate signals
able to fine-tune nuclear gene expression. Light perceived in the chloro-
plast, the photosynthetically specialized organelle in the plant cell, trig-
gers a signal that reaches the nucleus and affects alternative splicing,
one important step in gene expression regulation able to generate sev-
eral messages and proteins from a single gene. The light induced signal,
or a derived one, is able to travel through the plant to non-photosyn-
thetic tissue (i.e.: roots) affecting the alternative splicing there.
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