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Abstract

For a fixed n > 2, we study the set Λ of generalized idempotents, which are operators
satisfying Tn+1 = T . Also the subsets Λ†, of operators such that Tn−1 is the Moore-Penrose
pseudo-inverse of T , and Λ∗, of operators such that Tn−1 = T ∗ (known as generalized
projections) are studied. The local smooth structure of these sets is examined.
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1 Introduction

Let H be a Hilbert space and B(H) the algebra of all bounded operators on H. For a fixed
integer n ≥ 3, we consider the following subsets of B(H):

Λ = {T ∈ B(H) : Tn+1 = T},

Λ∗ = {T ∈ B(H) : Tn−1 = T ∗},

and
Λ† = {T ∈ B(H) : Tn−1 = T †},

where T † denotes the Moore-Penrose pseudo-inverse of T ; observe that T † is bounded if and
only if R(T ), the range of T , is closed; therefore operators in Λ† have closed ranges. This paper
is devoted to a topological and geometrical study of the sets Λ, Λ∗ and Λ†, which are all smooth
submanifolds of B(H). We show that Λ∗ ⊂ Λ† ⊂ Λ and that all inclusions are proper and
smooth.

These submanifolds have interesting characterizations, which relate them to the sets of idem-
potents, operators with ascent and descent not greater than 1, and their intersections with the
sets of self-adjoints, normal, or quasi-nilpotent operators are relevant.

The group Gl(H) of invertible operators acts locally transitively by similarity on Λ, and the
orbits of the action are the connected components of Λ. Analogously, the group U(H) of unitary
operators acts locally transitively on Λ∗. However, though U(H) acts on Λ†, the action is not
locally transitive there. These facts allow the determination of the (arc) connected components
of Λ, Λ∗, Λ†.

The operator norm defines Finsler metrics on these manifolds, and the range map (see
definition below)

Λ→ P(H)

1

Manuscript
Click here to download Manuscript: Generalized Idempotents.pdf 

http://www.editorialmanager.com/cejm/download.aspx?id=10280&guid=2e14d9e5-c866-4b52-9b5c-c972db80db4a&scheme=1


is a smooth submersion. When restricted to Λ†, the range map decreases norms between the
tangent spaces. We also study the geodesic distance in Λ† and Λ∗, and compare it to the distance
given by the usual norm.

The sets Λ, Λ∗ and Λ† have been studied before, under different names, by several authors.
Kovarik and Sherif [15], [16], [17] studied, for a Banach space X , the geometry of the set

E = {(E1, . . . , En+1) : Ek ∈ B(X ), EkEi = δkiEi,

n+1∑
k=1

Ek = 1}.

Corach, Porta and Recht [8] observed, in a Banach algebra setting, that E is diffeomorphic to
the submanifold {T : p(T ) = 0}, where p is a complex polynomial of degree n + 1 with simple
roots. Thus, for p(T ) = Tn+1 − T , this set is precisely Λ. In 1997, Gross and Trenkler [13]
initiated the study of matrices A ∈ Cn×n such that A2 = A∗ (or A2 = A†). J.K. Baksalary,
O.M. Baksalary and X. Liu [4], [5], [6] extended their results. Benitez and Thome [7] started
the study of the set of matrices {A : Ak = A†} and {A : Ak = A∗}. Du and Li [11] found
a spectral characterization of operators A ∈ B(H) such that A2 = A∗ and G.W. Stewart [20],
independently, extended, for matrices, the spectral characterization of A such that Ak = A∗ or
Ak = A†. Lebtahi and Thome [18] generalized these spectral descriptions to operators. In [12]
Du, Wang and Duan proved some connectedness results for {A : Ak = A∗}.

The contents of the paper are the following. Section 2 contains notations, preliminaries and a
short description of the spectral properties of T ∈ Λ. Section 3 is devoted to prove the inclusions
Λ∗ ⊂ Λ† ⊂ Λ, and several characteristic properties of elements of Λ∗ and Λ†. The intersections

Q(H) ∩ Λ† = P(H),Λ ∩Gl(H) = Λ† ∩Gl(H) = {T ∈ B(H) : Tn = 1},

Λ ∩ U(H) = Λ† ∩Gl(H) = {T ∈ N (H) : Tn = 1},

Λ† ∩ Bh(H) = Λ ∩ Bh(H) = Λ ∩ B+(H) = P(H),

Λ ∩N (H) = Λ† ∩N (H) = Λ∗,

Λ ∩QN(H) = {0} and Λ ∩ C(H) = Λ ∩ I(H) = Λ∗

are determined, where Q(H) denotes the idempotents, P(H) the orthogonal projectors, Bh(H)
the self-adjoint operators, B+(H) the positive operators, N (H) the normals, QN(H) the quasi-
nilpotents, C(H) the contractions and I(H) the partial isometries. Section 4 deals with the
action of Gl(H) (resp. U(H)) over Λ (resp. Λ† and Λ∗), and the description of the submanifold
structures. It is proved that for T ∈ Λ, Tn is an idempotent with the same range as T ; Tn is
the orthogonal projection onto the range of T if and only if T ∈ Λ†. The map

ν : Λ† → P(H), ν(T ) = Tn

is called the range map. Section 5 is devoted to the proof that the tangent map of ν is norm-
decreasing. This result is applied to show the existence of curves of minimal length in Λ†.
Finally, in section 6 the geodesic metric and the norm metric in Λ∗ are shown to be equivalent.
Clearly, if d denotes the geodesic metric (computed as the infimum of the lengths of the curves
joining the given points), then d(T0, T1) ≥ ‖T0 − T1‖. We compute a constant for the reverse
inequality, depending on n.
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2 Preliminary facts

If T ∈ Λ, T is a root of the polynomial p(t) = tn+1 − t, therefore its spectrum is contained in
the set Ωn = {0} ∪ {z : zn = 1}. Fix a primitive root of 1, for instance w = ei

2π
n . There exist

polynomials p0, p1, . . . , pn of degree n+ 1, such that pk(T ) are idempotent operators, and

T =
n∑
k=1

wkpk(T ) and p0(T ) = 1−
n∑
k=1

pk(T ).

That is, pk(T ) are the spectral idempotents corresponding to the eigenvalues 0, wk (by convention
pk(T ) = 0 if wk is not in σ(T )) . Note that p0(t) = 1− tn (and thus

∑n
k=1 pk(t) = tn), and that

for k = 1, . . . , n,

pk(t) = t
∏
j:j 6=k

t− wj

wk − wj
.

Moreover, a straightforward verification shows that pn(t) = 1
n

∑n
j=1 t

j . Also it is clear that for
k ≥ 1,

pk(t) = pn(w−kt) =
n∑
j=1

wj−ktj .

In this paper, if T ∈ B(H), R(T ) denotes the range of T , and for a given subspace S ⊂ H, PS
denotes the orthogonal projection onto S.

3 Characterizations of Λ, Λ† and Λ∗

Let us prove first the following inclusions

Proposition 3.1. Λ∗ ⊂ Λ† ⊂ Λ.

Proof. If Tn−1 = T ∗, then T is normal and (T ∗)n−1 = T . Then

(T ∗T )n−1 = (T ∗)n−1Tn−1 = TT ∗ = T ∗T.

Since T ∗T is apositive operator and a root of the polynomial tn−1−t, therefore σ(T ∗T ) ⊆ {0, 1}.
Note that

Tn = Tn−1T = T ∗T,

and therefore σ(T ) ⊆ {0} ∪ {z : zn = 1}. Then T =
∑n

k=1w
kpk(T ) and Tn+1 = T .

Now, TT ∗T = TTn−1T = Tn+1 = T , and also T ∗TT ∗ = (TT ∗T )∗ = T ∗. Thus T ∗ is a
pseudo-inverse for T . Clearly the idempotent T ∗T = TT ∗ is self-adjoint. Then Tn−1 = T ∗ = T †.

If Tn−1 = T †, then PR(T ) = TT † = TTn−1 = Tn. Thus T = PR(T )T = TnT = Tn+1.

Let us collect in the next remark several elementary observations. Recall that an operator
T has finite ascent if there exists k ∈ N such that N(T k) = N(T k+1). The smallest k with this
property is called a(T ), the ascent of T . An operator T has finite descent if there exists k such
that R(T k) = R(T k+1), an the smallest such k is called de descent d(T ) of T .

Remark 3.2.
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1. As remarked above,

(i) if T ∈ Λ, Tn and 1− Tn are idempotents onto R(T ) and N(T ), respectively. It follows
that R(T )+̇N(T ) = H.

(ii) If a(T ), d(T ) denote the ascent the descent of T , then

Λ = {T ;Tn ∈ Q(H) and a(T ) ≤ 1} = {T ;Tn ∈ Q(H) and d(T ) ≤ 1}

2. Apparently Q(H) ⊂ Λ and P(H) ⊂ Λ∗ (in both cases, all the eigenspaces corrresponding
to the eigenvalues wj for 1 ≤ j ≤ n− 1 are trivial). Moreover Q(H) ∩ Λ† = P(H).

3. Λ† = {T ∈ Λ; R(T ) ⊆ R(T ∗)} = {T ∈ Λ; R(T ∗) ⊆ R(T )} = {T ∈ Λ; R(T ) = R(T ∗)} =
{T ∈ Λ; N(T ) ⊆ N(T ∗)} = {T ∈ Λ; N(T ∗) ⊆ N(T )} = {T ∈ Λ; N(T ) = N(T ∗)}

4. When the kernel is trivial, we have the following straightforward identities:

Λ ∩Gl(H) = Λ† ∩Gl(H) = { n-roots of 1},

and
Λ ∩ U(H) = Λ∗ ∩Gl(H) = { normal n-roots of 1}.

5. Recall that Bh(H) denotes the set of self-adjoint operators, and B+(H) denotes the set of
positive operators. Then

P(H) = Λ† ∩ Bh(H) = Λ ∩ Bh(H) = Λ ∩ B+(H).

Since P(H) is a subset of all other sets involved, it suffices to show that Λ∩Bh(H) ⊂ P(H).
If T ∈ Λ is self-adjoint, then in particular it is normal, and thus all eigenspaces are
orthogonal. Therefore, the fact that it is self-adjoint implies that the projections onto the
eigenspaces pj(T ), 1 ≤ j ≤ n − 1 , corresponding to the non-real eigenvalues, are trivial.
Thus T = p1(T ) ∈ P(H).

6. If N (H) denotes the set of normal operators, then

Λ ∩N (H) = Λ† ∩N (H) = Λ∗

7. If QN (H) denotes the set of quasi-nilpotent operators, then

Λ ∩QN (H) = {0}

Proposition 3.3. Let T ∈ Λ. Then:

1. T ∈ Λ† if and only if R(T ) and N(T ) are orthogonal. In that case, Tn = PR(T ).

2. T ∈ Λ∗ if and only if all the eigenspaces of T are mutually orthogonal.

Proof. If T ∈ Λ†, Tn = TT † = PR(T ), and then 1− Tn is a self-adjoint idempotent onto N(T ),
and thus p0(T ) = 1 − Tn = PN(T ). Conversely, if R(T ) ⊥ N(T ), then Tn is an idempotent
whose range and null-space are orthogonal. Therefore it is a self-adjoint projection. Then the
pseudo-inverse Tn−1 of T verifies Tn−1T = TTn−1 = PR(T ), i.e. Tn−1 = T †.
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If T ∈ Λ∗, then T is normal, and therefore all n + 1 idempotents pj(T ), 0 ≤ j ≤ n are
normal, thus self-adjoint. Conversely, if the eigenspaces are orthogonal, these idempotents are
self-adjoint. Then

T ∗ = (
n∑
j=1

wjpj(T ))∗ =
n∑
j=1

w̄jpj(T ) =
n∑
j=1

(wj)n−1pj(T ) = Tn−1.

If C(H) denotes the set of contractive operators in H, then

Proposition 3.4.
Λ ∩ C(H) = Λ∗.

Proof. The elements of Λ∗ are clearly contractive (in fact, they are partial isometries). Con-
versely, if T ∈ Λ is contractive, then pk(T ) are contractive idempotents, thus self-adjoint pro-
jections. Indeed, for 1 ≤ k ≤ n

‖pk(T )‖ =
1
n
‖

n∑
j=1

w−jT j‖ ≤ 1
n
{
n∑
j=1

‖T‖j) ≤ 1.

Then also p0(T ) = 1−
∑n

j=1 pj(T ) is self-adjoint. It follows that T ∈ Λ∗.

Let us examine how these sets relate to partial isometries. We denote by I the set of partial
isometries. As noted above, Λ∗ ⊂ I. Then apparently

Corollary 3.5.
Λ ∩ I = Λ∗.

4 Actions of the unitary and invertible groups

As remarked above, if T ∈ Λ, it can be diagonalized,

T =
n∑
j=1

wjpj(T ).

If G ∈ Gl(H), then clearly GTG−1 ∈ Λ, and

GTG−1 =
n∑
j=1

wjGpj(T )G−1 =
n∑
j=1

wjpj(GTG−1)

Fix T ∈ Λ, and consider

πT : Gl(H)→ Λ, πT (G) = GTG−1.

Let us recall some facts from [9] and [3], concerning similarity orbits of operators.
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Remark 4.1.
Let (Q0, . . . , Qn) be an n+1-tuple of idempotents such that QiQj = 0 if i 6= j and

∑n
j=0Qj =

1. Then there exists an invertible operator G such that GQiG−1 are orthogonal projections.
This fact is well known. It was proved in [9]. In [2] it was proved by a procedure similar to the
Gram-Schmidt orthogonalization process.

This implies that T ∈ Λ is similar to an element S ∈ Λ∗. Indeed, consider the n+ 1-tuple of
idempotents (p0(T ), . . . , pn(T )) (which verifies the above hypothesis), and pick G ∈ Gl(H) such
that Gpi(T )G−1 are self-adjoint. Then clearly S = GTG−1 ∈ Λ∗. Since S is normal and has
finite spectrum, it is what D. Herrero [14] called a nice Jordan operator. In [3] it was proved
that this implies several properties for the map πT :

1. The map πT has local cross sections: for each T0 ∈ Λ there exists a neighbourhood V of
T0 in Λ and a continuous map σT0 : V → Gl(H) such that πT (σT0(S)) = S for all S ∈ V.

2. In particular, the action of Gl(H) is locally trivial (close elements in Λ are conjugate by
the action). Therefore, the connected comoponent of T in Λ coincides with the orbit
{GTG−1 : G ∈ Gl(H)}.

3. Each connected component of Λ is an analytic submanifold of B(H), and the map πT onto
the component containing T is an analytic submersion.

4. Pick now T ∈ Λ∗, and denote by πuT the restriction of πT to the unitary group U(H).
Apparently it takes values on the unitary orbit of T , which lies inside Λ∗. Then also
πuT has (unitary) continuous local cross sections. The connected component of T in Λ∗
coincides with the unitary orbit of T , and is a C∞ submanifold of B(H). The corresponding
map πuT : U(H)→ Λ∗ (or rather, the connected component of T in Λ∗) is a C∞ submersion.

5. We remark that U(H) acts on Λ†, but the action is not locally transitive (as with Λ∗).
Indeed, the unitary action fixes the angles between the eigenspaces, and this is not a local
property of Λ†

In particular, the similarity orbit of a single idempotent Q ∈ Q(H), verifies these conditions.
In this case the analytic cross sections can be explicitely computed [9]. Namely, if R ∈ Q(H) such
that ‖R−Q‖ < 1, then σ(R) = RQ+ (1−R)(1−Q) is invertible, and verifies σ(R)Q = Rσ(R),
thus providing a local cross section for πQ on a neighbourhood of Q. It is apparently analytic.
A cross section near Q′ = GQG−1 is obtained by translating σQ: put σQ′(R) = GσQ(G−1RG),
defined on the set {R ∈ Q(H) : ‖G−1RG−Q′‖ < 1}, which is clearly open in Q(H).

Recall that if T ∈ Λ, then Tn is an idempotent onto the range of T , and that Tn is the
orthogonal projection onto the range of T if and only if T ∈ Λ†.

Proposition 4.2. The map
ν : Λ→ Q(H) , ν(T ) = Tn

is a analytic submersion.

Proof. It suffices to show that this map has analytic local cross sections. Fix T0 ∈ Λ, and let
W be a neighbourhood of Q0 = Tn0 in Q(H) on which the cross section for πQ0 is defined. Let
V = {T ∈ Λ : Tn ∈ W}, and define

sT0 : V → Λ, sT0(T ) = σQ0(Tn)T0σ
−1
Q0

(Tn).
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It is clearly well defined and analytic. Moreover

(sT0(T ))n = σQ0(Tn)Tn0 σ
−1
Q0

(Tn) = σQ0(Tn)Q0σ
−1
Q0

(Tn) = Tn,

i.e. it is a local cross section for the map T 7→ Tn.

Corollary 4.3. The set Λ† is a C∞ submanifold of Λ (and of B(H)).

Proof. As seen in the previous section, T ∈ Λ belongs to Λ† if and only if the idempotent Tn is
a self-adjoint projection. Then

Λ† = ν−1(P(H)).

Since P(H) is a C∞ submanifold of Q(H) and ν is a submersion, it follows that Λ† is a C∞

submanifold of Λ.

Since the map πT : Gl(H)→ Λ, πT (G) = GTG−1 is a submersion, it follows that continuous
curves in Λ can be lifted to continuous curves in Gl(H). Let us describe a natural procedure
to lift smooth curves, borrowed essentially form [9]. Suppose that T (t) ∈ Λ varies smoothly for
t ∈ I, where smooth means Ck, 1 ≤ k ≤ ∞. It follows that pj(T (t)), 0 ≤ j ≤ n, are smooth
curves in Q(H). Then the curve

Σt = −
n∑
j=0

pj(T (t))
d

dt
pj(T (t)) (1)

is continuous (in fact Ck−1). Consider the following linear differential equation in B(H), which
we shall call the transport equation: fix t0 ∈ I{

Γ̇ = ΣtΓ
Γ(t0) = 1

(2)

It is a standard fact that an operator linear equation as above, with invertible initial condition,
remains invertible for all t ∈ I. The solutions of this equation, which are smooth curves in
Gl(H), lift the curve T (t):

Proposition 4.4. Fix t0 ∈ I and let Γ be the solution of (2). Then

Γ(t)T (t0)Γ−1(t) = T (t),

for all t ∈ I. Moreover, if T (t) ∈ Λ∗, then Γ(t) ∈ U(H).

Proof. Fix 0 ≤ j ≤ n, denote pj = pj(T (t)), and differentiate Γ−1pjΓ,

−Γ−1Γ̇Γ−1pjΓ + Γ−1ṗjΓ + Γ−1pjΓ̇

= Γ−1 (−Σtpj + ṗj + pjΣt) Γ.

Note that since pipj = 0 if i 6= j, then pjΣt = −pj ṗj . Also differentiating pipj = 0, gives
ṗipj = −piṗj if i 6= j. If i = j, differentiating p2

j = pj one obtains ṗjpj + pj ṗj = 0 and thus
pj ṗjpj = 0. Then

Σtpj = −
∑
i 6=j

piṗj = (1− pj)ṗj = −ṗj + pj ṗj .
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Therefore −Σtpj + ṗj + pjΣt = 0, and thus Γ−1pjΓ is constant, and thus

Γ−1pjΓ = Γ−1(t0)pj(t0)Γ(t0) = pj(t0).

Then

T (t) = Γ

 n∑
j=1

wjpj(T )

Γ−1 = ΓT (t0)Γ−1.

If T (t) ∈ Λ∗, then Σt is anti-self-adjoint. Indeed, pj is self-adoint, and using again that
ṗjpj + pj ṗj , one has

Σ∗t = −
n∑
i=0

ṗipi =
n∑
i=0

piṗi −
n∑

=0

ṗi = −Σt,

because
∑n

=0 ṗi = 0 (since
∑n

=0 pi = 1). Therefore in this case the solution Γ consists of unitary
operators.

The actions of the unitary and invertible groups allow the easy characterization of the con-
nected components of these sets. The case for Λ and Λ∗ is apparent. We state them in the
following result. We use the following notation. If T ∈ Λ, 0 ≤ i ≤ n,

µi(T ) = dim(R(pi(T ))).

Proposition 4.5. The n+1-tuple ~µ(T ) = (µ0(T ), µ1(T ), . . . , µn(T )) characterizes the connected
components of Λ (resp. Λ†, resp. Λ∗). That is, T, T ′ ∈ Λ (resp. Λ†, resp. Λ∗) lie in the same
connected component of this set if and only if ~µ(T ) = ~µ(T ′).

Proof. Only the assertion on Λ† needs a proof. If T and T ′ lie in the same component of Λ†,
then in particular they can be connected in Λ, and thus ~µ(T ) = ~µ(T ′). Conversely, suppose that
T, T ′ ∈ Λ† verify ~µ(T ) = ~µ(T ′). Then Tn and (T ′)n are self-adjoint projections whose range and
kernels have the same dimensions. Therefore they are unitarily equivalent. Pick U ∈ U(H) such
that UTnU∗ = (T ′)n. Note that U∗T ′U ∈ Λ† and ~µ(U∗T ′U) = ~µ(T ). Thus we are reduced to
the case when T and T ′ have the same range and kernel. This case is trivial: they can be joined
via a continuous curve of invertibles G(t), which leave invariant the fixed kernels and ranges, by
means of T (t) = G(t)TG−1(t). Apparently this curve lies inside Λ†.

Remark 4.6. Denote Λk = {T ∈ B(H) : T k+1 = T}. Apparently Λk ⊂ Λm if and only if
k divides m. Moreover, from the above result characterizing the connected components, it is
also apparent that if m = kl, then Λk consists of the connected components of Λm such that
µj(T ) = 0 if j is not a power of l. In particular, Λk is a submanifold of Λm.

5 The range projections decrease distances

In this section we endow the tangent spaces of Λ, Λ† and Λ∗ with the metric induced by the
usual norm of operators. First let us describe these tangent spaces. Since the maps πT and πuT
are submersions, their differentials are onto. Therefore if T0 ∈ Λ,

(TΛ)T0 = {XT0 − T0X : X ∈ B(H)}.
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Indeed, a typical smooth curve T (t) in Λ with T (0) = T0 is of the form T (t) = G(t)T0G
−1(t), for

G(t) a smooth curve in Gl(H), with G(0) = 1 and Ġ(0) = X. Since Ṫ = ĠT0G−GT0G
−1ĠG−1,

it follows that Ṫ (0) = XT0−T0X. Analogously, reasoning with the action of the unitary group,
if T0 ∈ Λ∗,

(TΛ∗)T0 = {XT0 − T0X : X ∈ Bah(H)}.

Finally:

Proposition 5.1. If T0 ∈ Λ†, a tangent vector XT0 − T0X ∈ (TΛ)T0 is tangent to Λ† if and
only if XTn0 − Tn0 X is self-adjoint, i.e.

(TΛ†)T0 = {XT0 − T0X : X ∈ B(H) such that XTn0 − Tn0 X ∈ Bh(H)}.

Proof. Consider the smooth submersion

κ = ν ◦ πT0 : Gl(H)→ Q(H), κ(G) = GTn0 G
−1.

Then S = κ−1(P(H)) is a closed submanifold of Gl(H), such that πT0(S) = Λ†. Therefore,

(TΛ†)T0 = (dπT0)T0((TS)1).

Note that (TS)1 = {X ∈ B(H) : XTn0 − Tn0 X ∈ Bh(H)} and that (dπT0)T0(X) = XT0 − T0X,
and therefore our claim follows.

We shall need the following lemma, which states that the most efficient way to complete a
co-diagonal 2 × 2 self-adjoint block matrix order that its norm remains minimal, is by putting
zeros in the diagonal. It is the simple case in the theory of operator extensions ([10]). We include
the proof of this fact.

Lemma 5.2. Let P be an orthogonal projection, and A ∈ B(H) self-adjoint. Then

‖PA(1− P )− (1− P )AP‖ ≤ ‖A‖.

Proof. Given P , one can write operators in B(H) as 2× 2 matrices in terms of P ,

A =
(
A11 A12

A∗12 A22

)
,

with Aii self-adjoint. Then

PA(1− P )− (1− P )AP =
(

0 A12

A∗12 0

)
.

Note that

(PA(1− P )− (1− P )AP )2 =
(
A12A

∗
12 0

0 A∗12A12

)
,

and that

A2 =
(
A2

11 +A12A
∗
12 B

B∗ A2
22 +A∗12A12

)
.

The linear map X 7→ PXP + (1− P )X(1− P ) is contractive. Thus

‖PA2P + (1− P )A2(1− P )‖ ≤ ‖A‖2.
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On the other hand, it is clear that

PA2P + (1− P )A2(1− P ) =
(
A2

11 +A12A
∗
12 0

0 A2
22 +A∗12A12

)
≥
(
A12A

∗
12 0

0 A∗12A12

)
= (PA(1− P )− (1− P )AP )2

Therefore

‖(PA(1−P )−(1−P )AP )‖2 = ‖(PA(1−P )−(1−P )AP )2‖ ≤ ‖PA2P+(1−P )A2(1−P )‖ ≤ ‖A‖2.

Theorem 5.3. The differential of the map ν : Λ† → P(H), ν(T ) = Tn = PR(T ) is norm-
decreasing between the tangent spaces, i.e. for any Z ∈ (TΛ†)T0

‖(dν)T0(Z)‖ ≤ ‖Z‖.

Proof. Pick Z = XT0 − T0X ∈ (TΛ†)T0 . Then there exists a smooth curve Gt ∈ Gl(H) such
that G0 = 1, Ġ(0) = X and GtT0G

−1
t ∈ Λ†. Then ν(GtT0G

−1
t ) = GtT

n
0 G
−1
t ∈ P(H). Thus

((dν)T0dν)T0(Z) = Y =
d

dt
|t=0ν(GtT0G

−1
t ) = XTn0 − Tn0 X.

Note that Y ∗ = Y . Let Pj = pj(T0), j = 0, . . . , n. Then for i ≥ 1,

PjZPk = PjXT0Pk − PjT0XPk = (wk − wj)PjXPk,

and, analogously using that Tn0 =
∑n

i=1 Pi,

PjY Pk = PjX(
n∑
i=1

Pi)Pk − Pj(
n∑
i=1

Pi)XPk = PjXPk − PjXPk = 0.

Also it is apparent that P0ZP0 = P0Y P0 = 0. Moreover, for j ≥ 1, by similar computations

P0ZPj = wjP0XPj , PjZP0 = −wjPjXP0

and
P0Y Pj = P0XPj , PjY P0 = −PjXP0.

Thus Y is self-adjoint and P0 co-diagonal. Using these computations let us write Y and Z in
matrix form in terms of the decomposition P0, P1, . . . , Pn. Then

Y =


0 P0XP1 P0XP2 . . . P0XPn
P1XP0 0 0 . . . 0
P2XP0 0 0 . . . 0
. . . . . . . . . . . . . . .
PnXP0 0 0 . . . 0

 . (3)
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Put ∆jk = wj − wk. Then

Z =


0 wP0XP1 w2P0XP2 . . . wnP0XPn
−wP1XP0 0 ∆12P1XP2 . . . ∆1nP1XPn
−w2P2XP0 ∆21P2XP1 0 . . . ∆2nP2XPn
. . . . . . . . . . . . . . .
−wnPnXP0 ∆n1PnXP1 . . . ∆n(n−1)PnXPn−1 0

 . (4)

Consider the unitary (diagonal) operator W =
∑n

i=0w
−iPi. Then clearly ‖Z‖ = ‖WZW‖. A

straightforward matrix computation shows that the first row and the first column of WZW
coincide (respectively) with the first row and column of Y . Since Y is self-adjoint, this implies
that these coincide with the first row and column of 1

2(WZW + (WZW )∗). Clearly

‖Z‖ = ‖WZW‖ ≥ ‖1
2

(WZW + (WZW )∗)‖.

On the other hand, this last (self-adjoint) operator is a completion of the matrix Y (which as
a 2× 2 matrix in terms of P0, has zeros in the diagonal). It follows that, by the above lemma,
that

‖1
2

(WZW + (WZ∗W ))‖ ≥ ‖Y ‖,

which completes the proof.

Corollary 5.4. The tangent map of ρ0 : Λ† → P(H), ρ0(T ) = PN(T ) = 1 − Tn is norm-
decreasing at any point.

Proof. The proof follows using that ρ0(T ) = 1− ν(T ), and thus (dρ0)T = −(dνT ).

If T (t) ∈ Λ, t ∈ I is a smooth curve, one computes the length `(T ) of T (t) (with the Finsler
metric considered here) as

`(T ) =
∫
I
‖Ṫ (t)‖dt.

Corollary 5.5. If T (t) ∈ Λ† is a smooth curve, then

`(ν(T )) ≤ `(T ) and `(ρ0(T )) ≤ `(T ).

In [19] it was shown that if X∗ −X is co-diagonal with respect to a self-adjoint projection
P , i.e. PXP = (1 − P )X(1 − P ) = 0, then the curve etXPe−tX in P has minimal length
along its path, in any interval such that |t|‖X‖ ≤ π/2 (by this we mean that this path has
minimal length among all possible smooth curves joining any given pair of points in the path).
A straightforward consequence of this fact is the following.

Proposition 5.6. Let T ∈ Λ† and P = ν(T ) = PR(T ). Let X ∈ Bah(H) such that PXP =
(1−P )X(1−P ) = 0. Then the curve τ(t) = etXTe−tX has minimal length in Λ† along its path
on any interval I such that |I| ≤ π

2‖X‖ .
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Proof. Let γ(t) ∈ Λ†, be a smooth curve, which is parametrized in the interval I = [t0, t1], and
verifies γ(t0) = τ(t0) and γ(t1) = τ(t1). By the above corollary (measuring the lengths of both
curves in the common interval I),

`(ν(γ)) ≤ `(γ).

On the other hand, ν(τ(t)) = (etXTe−tX)n = etXPe−tX , i.e. ν(τ) is a minimal geodesic in I.
Then, by the result from [19],

`(ν(τ)) ≤ `(ν(γ)).

We claim that `(τ) = `(ν(τ)), a fact which would conclude the proof. Indeed, note that

`(ν(τ)) =
∫
I
‖τ̇(t)‖dt =

∫
I
‖etZXPe−tX − etXPe−tXX‖dt = ‖XP − PX‖ |I|.

Similarly `(τ) = ‖XT − TX‖ |I|. Thus we need to show that ‖XP − PX‖ = ‖XT − TX‖.
Recall from the proof of Theorem 5.3, the matrix forms (3) and (4) (in terms of P0, P1, . . . , Pn)
of the conmutators XP −XP and XT − TX.

XP − PX =


0 P0XP1 P0XP2 . . . P0XPn
P1XP0 0 0 . . . 0
P2XP0 0 0 . . . 0
. . . . . . . . . . . . . . .
PnXP0 0 0 . . . 0

 .

In the case of XT − TX, note that since P =
∑n

j=1 Pj , for 1 ≤ j ≤ n,

PjXPk = PjPXPPk = 0.

Therefore

XT − TX =


0 wP0XP1 w2P0XP2 . . . wnP0XPn
−wP1XP0 0 0 . . . 0
−w2P2XP0 0 0 . . . 0
. . . . . . . . . . . . . . .
−wnPnXP0 0 . . . 0 0

 .

Using the unitary operator W as in the proof of Theorem 5.3, it is apparent that ‖XP −PX‖ =
‖XT − TX‖.

If S ⊂ H is a closed subspace, denote by ΛS (resp. ΛS† , ΛS∗ ) the set of elements T in Λ (resp.
Λ†, Λ∗) such that R(T ) = S. In other words, ΛS = ν−1(pS).

Corollary 5.7. Let T0, T1 ∈ Λ†, such that ‖PR(T0) − PR(T1)‖ < 1. Then there exists a curve
τ(t) ∈ Λ†, t ∈ [0, 1], of the form τ(t) = etXT0e

−tX , with X∗ = −X and ‖X‖ < π/2, such that

1. τ has minimal length in Λ† along its path.

2. τ has minimal length among all smooth curves in Λ† joining T0 and ΛS† .

12



Proof. If ‖PR(T0) − PR(T1)‖ < 1, then PR(T0) and PR(T1) can be joined with a minimal geodesic
of P, which is given by a PR(T0)-co-diagonal anti-hermitic operator X with ‖X‖ < π/2. Then,
by the above result, τ(t) = etXT0e

−tX has minimal length along its path in Λ†. Suppose that γ
is another smooth curve in Λ† with γ(0) = T0, γ(1) ∈ ΛS† . Then ν(γ) joins PR(T0) and PR(T1).
Thus

`(ν(γ)) ≥ `(ν(τ)) = `(τ)

by the computation in the preceding Proposition. By Corollary 5.5,

`(ν(γ)) ≤ `(γ),

and the result follows.

Remark 5.8.

1. Let us denote by d(A,B) the rectifiable distance, obtained as the infimum of the lengths
of curves joining A and B (either in Λ or P). Then ‖PR(T0) − PR(T1)‖ < 1 is equivalent to
d(PR(T0), PR(T1)) < π/2 (see [19] or [1]). By Corollary 5.5, if T0, T1 ∈ Λ†,

d(PR(T0), PR(T1)) ≤ d(T0, T1).

Thus the hypothesis ‖PR(T0) − PR(T1)‖ < 1 of the above Corollary, could be replaced by:
there exists a smooth curve in Λ† joining T0 and T1, of length less than π/2.

2. Let S0,S1 be closed subspaces of H such that ‖PS0 − PS1‖ < 1, then

d(ΛS0† ,Λ
S1
† ) = d(PS0 , PS1) = arcsin(‖PS0 − PS1‖).

For the last equality, see for instance [1]. Pick X such that X∗ = −X, ‖X‖ < π/2
and X is PS0-co-diagonal, such that eXPS0e

−X = PS1 . Pick any T0 ∈ Λ† such that
R(T0) = S0. Then τ(t) = etXT0e

−tX , t ∈ [0, 1], is minimal in Λ†, and its length is
‖XT0 − T0X‖ = ‖XPS0 − PS0X‖ = d(PS0 , PS1). This number does not depend on the
choice of T0 ∈ ΛS0† .

3. Otherwise, if ‖PR(T0) − PR(T1)‖ = 1, an easy approximation argument shows that

d(ΛS0† ,Λ
S1
† ) = π/2.

6 Comparison between the norm and the geodesic metric in Λ∗

In this section we examine the metric d in Λ, given by the infima of lengths of curves in Λ∗. The
metric at the tangent spaces is given by the usual operator norm, therefore any curve joining T0

and T1 in Λ∗ will be longer than the line segment. Therefore

d(T0, T1) ≥ ‖T0 − T1‖.

In this section, we shall estimate a constant for the reverse inequality. We shall use the local
cross section of the action of the unitary group in Λ∗. First note that
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Lemma 6.1. Let T0, T1 ∈ Λ, and pj(Ti), i = 0, 1, j = 0, . . . , n the spectral projections given in
section 1.

1. In general,

‖pj(T0)− pj(T1)‖ ≤ n+ 1
2
‖T0 − T1‖.

2. If, additionally, T0, T1 ∈ Λ∗, then, for 1 ≤ j ≤ n,

‖pj(T0)− pj(T1)‖ ≤ κ(n)‖T0 − T1‖,

where κ(n) = max{2 sin(πn), 1
sin(π

n
)}. For j = 0,

‖p0(T0)− P0(T )‖ ≤ 2‖T0 − T‖.

Proof. If T0, T1 ∈ Λ, then

T j0 − T
j
1 = T j0 − T

j−1
0 T1 + T j−1

0 T1 − . . .+ T0T
j−1
1 − T j1

=
j−1∑
k=0

T k0 (T0 − T1).

Therefore ‖T j0 − T
j
1 ‖ ≤ j‖T0 − T1‖. Using this inequality in the formula

pk(t) = pn(w−kt) =
n∑
j=1

wj−ktj

one obtains

‖pk(T0)− Pk(T1)‖ ≤ 1
n

n∑
j=1

j‖T0 − T1‖ =
n+ 1

2
‖T0 − T1‖.

If T0, T1 ∈ Λ∗, then the resolvent operators of T0 and T1 are normal. Using the Riesz integral
form of the spectral projection,

pj(T0)−pj(T1) =
1

2πi

∫
Cj

(z1−T0)−1−(z1−T1)−1dz =
1

2πi

∫
Cj

(z1−T0)−1(T1−T0)(z1−T1)−1dz,

where Cj is a circle centered at wj if j 6= 0, with radius equal to the minimum between 1/2
and sin(πn) (which is half the distance between wj and the nearest eigenvalue). For j = 0, C0 is
centered at 0, with radius 1/2. Therefore, for j ≥ 1

‖pj(T0)− pj(T1)‖ ≤ 1
2π

∫
Cj

‖(z1− T0)−1‖‖(z1− T0)−1‖dz‖T0 − T1‖.

Using that the resolvents are normal,

‖(z1− Ti)−1‖ =
1

d(z,Ωn)
=

1
min{1/2, sin(πn)}

.
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Thus

‖pj(T0)− pj(T1)‖ ≤ 1
2π

(max{2, 1
sin(πn)

})22π sin(
π

n
)‖T0 − T1‖ = κ(n)‖T0 − T1‖.

For j = 0, if z ∈ C0 (i.e. |z| = 1/2), d(z,Ωn) ≥ 1/2, and therefore

‖p0(T0)− p0(T )‖ ≤ 2‖T0 − T‖.

Let us recall the formula for the local cross section of the unitary action on systems of self-
adjoint projections [9], which serves as the local cross sections for action on Λ∗. Fix T0 ∈ Λ∗,
and let T ∈ Λ∗ such that ‖pk(T0)− pk(T )‖ < 1 (for instance, if ‖T0 − T‖ < 1

κ(n)). Then

G =
n∑
j=0

pj(T )pj(T0)

is invertible. Indeed, put Pj = pj(T0) and Qj = pj(T ). Then G∗G =
∑n

j=0 PjQjPj . Note that
each PjQjPj is an invertible operator acting in R(Pj), beacause ‖PjQjPj−Pj‖ ≤ ‖Pj−Qj‖ < 1.
Therefore G∗G is invertible in H, which is the direct sum of the ranges R(Pj). Analogously GG∗

is invertible, and thus G is invertible.
Let G = U |G| be the polar decomposition of G, i.e. UT0(T ) = U = G|G|−1. Then this

unitary operator UT0(T ) verifies
UT0(T )T0U

∗
T0

(T ) = T.

We shall need the following elementary estimate:

Lemma 6.2. Let T,Z ∈ B(H). Then

‖[T, eZ ]‖ ≥ ‖[T,Z]‖(1− ‖Z‖e‖Z‖).

Proof. Note that

[T, eZ ] = [T,Z] +
1
2

[T,Z2] +
1
6

[T,Z3] + . . .

On the other hand

[T,Zk] = TZk − ZTZk−1 + ZTZk−1 − Z2TZk−2 + . . .+ Zk−1TZ − ZkT =
k∑
j=1

Zk−j [T,Z]Zj ,

and thus
‖[T,Zk]‖ ≤ k‖Z‖k‖[T,Z]‖.

Therefore

‖[T, eZ ]‖ ≥ ‖[T,Z]‖ − ‖[T,Z]‖
∞∑
k=1

1
k!
k‖Z‖k = ‖[T,Z]‖(1− ‖Z‖e‖Z‖).
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Let T, T0 in Λ∗ as above. We estimate now ‖U − 1‖, where U = UT0(T ).

Lemma 6.3. With the current notations,

‖U − 1‖ < 2r
1− r

,

where r = max0≤j≤n ‖pj(T0)− pj(T )‖.

Proof. Denote by Pj = pj(T0) and Qj = pj(T ). Then U = G(G∗G)−1/2, where G =
∑n

j=0QjPj .
Thus

U = (
n∑
j=0

QjPj)(
n∑
l=0

PlQlPl)−1/2.

Note that since ‖Pl − Ql‖ < 1, PlQlPl is a positive invertible operator in B(R(Pl)) (we shall
denote by (PlQlPl)−1 its inverse there, note that also the square root is computed there). In
particular, note that QlPl(PlQlPl)−1/2 = Ql(PlQlPl)−1/2. Thus

U − 1 = (G− (G∗G)1/2)(G∗G)−1/2

Then
‖U − 1‖ ≤ ‖G− (G∗G)1/2‖‖(G∗G)−1/2‖.

Note that

‖G− (G∗G)1/2‖ = ‖
n∑
j=0

QjPj − (PjQjPj)1/2‖ ≤ ‖
∑
j=0

QjPj − Pj‖+ ‖
n∑
j=0

Pj − (PjQjPj)1/2‖.

The first term is bounded by r. The second term is bounded by max0≤j≤n ‖Pj − (PjQjPj)1/2‖.
Note that if an operator A verifies 0 ≤ A ≤ 1, then ‖1−A1/2‖ ≤ ‖1−A‖. Using this fact with
PjQjPj in B(R(Pj)), one has that the second term is also bounded by r.

It remains to consider

‖(G∗G)−1/2‖ = ‖(G∗G)−1‖1/2 = ‖
n∑
j=0

(PjQjPj)−1‖1/2 = max
0≤j≤n

‖(PjQjPj)−1‖1/2.

Since ‖PjQjPj −Pj‖ ≤ ‖Qj −Pj‖ < 1, it follows that (PjQjPj)−1 =
∑

l≥0(Pj −PjQjPj)l. Thus

‖(PjQjPj)−1‖ ≤
∑
l≥0

‖Pj − PjQjPj‖l ≤
∑
l≥0

‖Pj −Qj‖l ≤
1

1− r
.

If U = eZ , with Z∗ = −Z, and U is close to 1 in order that Z can be chosen (unique) with
‖Z‖ < π, then it is a straightforward fact that

‖U − 1‖ = 2 sin(
‖Z‖

2
).

Putting these facts together, we have the following
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Lemma 6.4. Let T0, T ∈ Λ∗ such that ‖pj(T0) − pj(T )‖ < r < 1. Put UT0(T ) = eZ , with
Z∗ = −Z and ‖Z‖ < π. Then

‖[T0, UT0(T )]‖ ≥ ‖[T0, Z]‖
(

1− 2 arcsin(
r

1− r
)e2 arcsin( r

1−r )

)
.

With the above notations, note that

‖T − T0‖ = ‖eZT0e
−Z − T0‖ = ‖[T0, e

Z ]‖ ≥ ‖[T0, Z]‖C(r),

where C(r) = 1− 2 arcsin( r
1−r )e2 arcsin( r

1−r ). On the other hand, the curve γ(t) = etZT0e
−tZ is a

smooth curve in Λ∗ joining γ(0) = T0 and γ(1) = T . Therefore

d(T, T0) ≤ `(γ) =
∫ 1

0
‖γ̇(t)‖dt =

∫ 1

0
‖etZZT0e

−tZ − etZT0Ze
−tZ‖ = ‖[T0, Z]‖.

Thus we have proved the following corollary:

Corollary 6.5. Let T, T0 ∈ Λ∗ such that ‖T − T0‖ < r
κ(n) . Then

d(T, T0) ≤ C(r)‖T − T0‖.
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