Central European Journal of Mathematics
 A note on the differentiable structure of generalized idempotents.
 --Manuscript Draft--

Manuscript Number:	
Full Title:	A note on the differentiable structure of generalized idempotents.
Article Type:	Research Article
Section/Category:	Functional Analysis
Keywords:	generalized idempotents; generalized projections
Corresponding Author:	Esteban Andruchow Universidad Nacional de General Sarmiento Los Polvorines, Buenos Aires ARGENTINA
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Universidad Nacional de General Sarmiento
Corresponding Author's Secondary Institution:	
First Author:	Esteban Andruchow
First Author Secondary Information:	
Order of Authors:	Esteban Andruchow
	Gustavo Corach, Dr.
	Mostafa Mbekhta, Dr.
Order of Authors Secondary Information:	
Abstract:	For a fixed $\mathrm{n}>2$, we study the set of generalized idempotents, which are operators satisfying $T^{\wedge}\{n+1\}=T$. Also the subsets of operators such that $T^{\wedge}\{n-1\}$ is the MoorePenrose pseudo-inverse of T, and the subset of operators such that $T^{\wedge}\{n-1\}=T^{\wedge *}$ (known as generalized projections) are studied. The local smooth structure of these sets is examined.
Suggested Reviewers:	Ilya Spitkovsky College of William and Mary ilya@math.wm.edu We would value his opinion.
Opposed Reviewers:	

A note on the differentiable structure of generalized idempotents

E. Andruchow, G. Corach, M. Mbekhta

April 24, 2012

Abstract

For a fixed $n>2$, we study the set Λ of generalized idempotents, which are operators satisfying $T^{n+1}=T$. Also the subsets Λ_{\dagger}, of operators such that T^{n-1} is the Moore-Penrose pseudo-inverse of T, and Λ_{*}, of operators such that $T^{n-1}=T^{*}$ (known as generalized projections) are studied. The local smooth structure of these sets is examined.

2010 MSC: 47A05, 47B15.
Keywords: generalized idempotents, generalized projections.

1 Introduction

Let \mathcal{H} be a Hilbert space and $\mathcal{B}(\mathcal{H})$ the algebra of all bounded operators on \mathcal{H}. For a fixed integer $n \geq 3$, we consider the following subsets of $\mathcal{B}(\mathcal{H})$:

$$
\begin{aligned}
\Lambda & =\left\{T \in \mathcal{B}(\mathcal{H}): T^{n+1}=T\right\}, \\
\Lambda_{*} & =\left\{T \in \mathcal{B}(\mathcal{H}): T^{n-1}=T^{*}\right\},
\end{aligned}
$$

and

$$
\Lambda_{\dagger}=\left\{T \in \mathcal{B}(\mathcal{H}): T^{n-1}=T^{\dagger}\right\},
$$

where T^{\dagger} denotes the Moore-Penrose pseudo-inverse of T; observe that T^{\dagger} is bounded if and only if $R(T)$, the range of T, is closed; therefore operators in Λ_{\dagger} have closed ranges. This paper is devoted to a topological and geometrical study of the sets Λ, Λ_{*} and Λ_{\dagger}, which are all smooth submanifolds of $\mathcal{B}(\mathcal{H})$. We show that $\Lambda_{*} \subset \Lambda_{\dagger} \subset \Lambda$ and that all inclusions are proper and smooth.

These submanifolds have interesting characterizations, which relate them to the sets of idempotents, operators with ascent and descent not greater than 1 , and their intersections with the sets of self-adjoints, normal, or quasi-nilpotent operators are relevant.

The group $G l(\mathcal{H})$ of invertible operators acts locally transitively by similarity on Λ, and the orbits of the action are the connected components of Λ. Analogously, the group $U(\mathcal{H})$ of unitary operators acts locally transitively on Λ_{*}. However, though $U(\mathcal{H})$ acts on Λ_{\dagger}, the action is not locally transitive there. These facts allow the determination of the (arc) connected components of $\Lambda, \Lambda_{*}, \Lambda_{\dagger}$.

The operator norm defines Finsler metrics on these manifolds, and the range map (see definition below)

$$
\Lambda \rightarrow \mathcal{P}(\mathcal{H})
$$

is a smooth submersion. When restricted to Λ_{\dagger}, the range map decreases norms between the tangent spaces. We also study the geodesic distance in Λ_{\dagger} and Λ_{*}, and compare it to the distance given by the usual norm.

The sets Λ, Λ_{*} and Λ_{\dagger} have been studied before, under different names, by several authors. Kovarik and Sherif [15], [16], [17] studied, for a Banach space \mathcal{X}, the geometry of the set

$$
\mathcal{E}=\left\{\left(E_{1}, \ldots, E_{n+1}\right): E_{k} \in \mathcal{B}(\mathcal{X}), E_{k} E_{i}=\delta_{k i} E_{i}, \sum_{k=1}^{n+1} E_{k}=1\right\}
$$

Corach, Porta and Recht [8] observed, in a Banach algebra setting, that \mathcal{E} is diffeomorphic to the submanifold $\{T: p(T)=0\}$, where p is a complex polynomial of degree $n+1$ with simple roots. Thus, for $p(T)=T^{n+1}-T$, this set is precisely Λ. In 1997, Gross and Trenkler [13] initiated the study of matrices $A \in \mathbb{C}^{n \times n}$ such that $A^{2}=A^{*}$ (or $A^{2}=A^{\dagger}$). J.K. Baksalary, O.M. Baksalary and X. Liu [4], [5], [6] extended their results. Benitez and Thome [7] started the study of the set of matrices $\left\{A: A^{k}=A^{\dagger}\right\}$ and $\left\{A: A^{k}=A^{*}\right\}$. Du and Li [11] found a spectral characterization of operators $A \in \mathcal{B}(\mathcal{H})$ such that $A^{2}=A^{*}$ and G.W. Stewart [20], independently, extended, for matrices, the spectral characterization of A such that $A^{k}=A^{*}$ or $A^{k}=A^{\dagger}$. Lebtahi and Thome [18] generalized these spectral descriptions to operators. In [12] Du, Wang and Duan proved some connectedness results for $\left\{A: A^{k}=A^{*}\right\}$.

The contents of the paper are the following. Section 2 contains notations, preliminaries and a short description of the spectral properties of $T \in \Lambda$. Section 3 is devoted to prove the inclusions $\Lambda_{*} \subset \Lambda_{\dagger} \subset \Lambda$, and several characteristic properties of elements of Λ_{*} and Λ_{\dagger}. The intersections

$$
\begin{gathered}
\mathcal{Q}(\mathcal{H}) \cap \Lambda_{\dagger}=\mathcal{P}(\mathcal{H}), \Lambda \cap G l(\mathcal{H})=\Lambda_{\dagger} \cap G l(\mathcal{H})=\left\{T \in \mathcal{B}(\mathcal{H}): T^{n}=1\right\}, \\
\Lambda \cap U(\mathcal{H})=\Lambda_{\dagger} \cap G l(\mathcal{H})=\left\{T \in \mathcal{N}(\mathcal{H}): T^{n}=1\right\}, \\
\Lambda_{\dagger} \cap \mathcal{B}_{h}(\mathcal{H})=\Lambda \cap \mathcal{B}_{h}(\mathcal{H})=\Lambda \cap \mathcal{B}^{+}(\mathcal{H})=\mathcal{P}(\mathcal{H}), \\
\Lambda \cap \mathcal{N}(\mathcal{H})=\Lambda_{\dagger} \cap \mathcal{N}(\mathcal{H})=\Lambda_{*}, \\
\Lambda \cap Q N(\mathcal{H})=\{0\} \text { and } \Lambda \cap \mathcal{C}(\mathcal{H})=\Lambda \cap \mathcal{I}(\mathcal{H})=\Lambda_{*}
\end{gathered}
$$

are determined, where $\mathcal{Q}(\mathcal{H})$ denotes the idempotents, $\mathcal{P}(\mathcal{H})$ the orthogonal projectors, $\mathcal{B}_{h}(\mathcal{H})$ the self-adjoint operators, $\mathcal{B}^{+}(\mathcal{H})$ the positive operators, $\mathcal{N}(\mathcal{H})$ the normals, $Q N(\mathcal{H})$ the quasinilpotents, $\mathcal{C}(\mathcal{H})$ the contractions and $\mathcal{I}(\mathcal{H})$ the partial isometries. Section 4 deals with the action of $G l(\mathcal{H})\left(\right.$ resp. $U(\mathcal{H})$) over Λ (resp. Λ_{\dagger} and Λ_{*}), and the description of the submanifold structures. It is proved that for $T \in \Lambda, T^{n}$ is an idempotent with the same range as $T ; T^{n}$ is the orthogonal projection onto the range of T if and only if $T \in \Lambda_{\dagger}$. The map

$$
\nu: \Lambda_{\dagger} \rightarrow \mathcal{P}(\mathcal{H}), \nu(T)=T^{n}
$$

is called the range map. Section 5 is devoted to the proof that the tangent map of ν is normdecreasing. This result is applied to show the existence of curves of minimal length in Λ_{\dagger}. Finally, in section 6 the geodesic metric and the norm metric in Λ_{*} are shown to be equivalent. Clearly, if d denotes the geodesic metric (computed as the infimum of the lengths of the curves joining the given points), then $d\left(T_{0}, T_{1}\right) \geq\left\|T_{0}-T_{1}\right\|$. We compute a constant for the reverse inequality, depending on n.

2 Preliminary facts

If $T \in \Lambda, T$ is a root of the polynomial $p(t)=t^{n+1}-t$, therefore its spectrum is contained in the set $\Omega_{n}=\{0\} \cup\left\{z: z^{n}=1\right\}$. Fix a primitive root of 1 , for instance $w=e^{i \frac{2 \pi}{n}}$. There exist polynomials $p_{0}, p_{1}, \ldots, p_{n}$ of degree $n+1$, such that $p_{k}(T)$ are idempotent operators, and

$$
T=\sum_{k=1}^{n} w^{k} p_{k}(T) \text { and } p_{0}(T)=1-\sum_{k=1}^{n} p_{k}(T)
$$

That is, $p_{k}(T)$ are the spectral idempotents corresponding to the eigenvalues $0, w^{k}$ (by convention $p_{k}(T)=0$ if w^{k} is not in $\left.\sigma(T)\right)$. Note that $p_{0}(t)=1-t^{n}$ (and thus $\sum_{k=1}^{n} p_{k}(t)=t^{n}$), and that for $k=1, \ldots, n$,

$$
p_{k}(t)=t \prod_{j: j \neq k} \frac{t-w^{j}}{w^{k}-w^{j}}
$$

Moreover, a straightforward verification shows that $p_{n}(t)=\frac{1}{n} \sum_{j=1}^{n} t^{j}$. Also it is clear that for $k \geq 1$,

$$
p_{k}(t)=p_{n}\left(w^{-k} t\right)=\sum_{j=1}^{n} w^{j-k} t^{j}
$$

In this paper, if $T \in \mathcal{B}(\mathcal{H}), R(T)$ denotes the range of T, and for a given subspace $\mathcal{S} \subset \mathcal{H}, P_{\mathcal{S}}$ denotes the orthogonal projection onto \mathcal{S}.

3 Characterizations of $\Lambda, \Lambda_{\dagger}$ and Λ_{*}

Let us prove first the following inclusions
Proposition 3.1. $\Lambda_{*} \subset \Lambda_{\dagger} \subset \Lambda$.
Proof. If $T^{n-1}=T^{*}$, then T is normal and $\left(T^{*}\right)^{n-1}=T$. Then

$$
\left(T^{*} T\right)^{n-1}=\left(T^{*}\right)^{n-1} T^{n-1}=T T^{*}=T^{*} T
$$

Since $T^{*} T$ is apositive operator and a root of the polynomial $t^{n-1}-t$, therefore $\sigma\left(T^{*} T\right) \subseteq\{0,1\}$. Note that

$$
T^{n}=T^{n-1} T=T^{*} T
$$

and therefore $\sigma(T) \subseteq\{0\} \cup\left\{z: z^{n}=1\right\}$. Then $T=\sum_{k=1}^{n} w^{k} p_{k}(T)$ and $T^{n+1}=T$.
Now, $T T^{*} T=T T^{n-1} T=T^{n+1}=T$, and also $T^{*} T T^{*}=\left(T T^{*} T\right)^{*}=T^{*}$. Thus T^{*} is a pseudo-inverse for T. Clearly the idempotent $T^{*} T=T T^{*}$ is self-adjoint. Then $T^{n-1}=T^{*}=T^{\dagger}$.

If $T^{n-1}=T^{\dagger}$, then $P_{R(T)}=T T^{\dagger}=T T^{n-1}=T^{n}$. Thus $T=P_{R(T)} T=T^{n} T=T^{n+1}$.
Let us collect in the next remark several elementary observations. Recall that an operator T has finite ascent if there exists $k \in \mathbb{N}$ such that $N\left(T^{k}\right)=N\left(T^{k+1}\right)$. The smallest k with this property is called $a(T)$, the ascent of T. An operator T has finite descent if there exists k such that $R\left(T^{k}\right)=R\left(T^{k+1}\right)$, an the smallest such k is called de descent $d(T)$ of T.

Remark 3.2.

1. As remarked above,
(i) if $T \in \Lambda, T^{n}$ and $1-T^{n}$ are idempotents onto $R(T)$ and $N(T)$, respectively. It follows that $R(T)+N(T)=\mathcal{H}$.
(ii) If $a(T), d(T)$ denote the ascent the descent of T, then

$$
\Lambda=\left\{T ; T^{n} \in \mathcal{Q}(\mathcal{H}) \text { and } a(T) \leq 1\right\}=\left\{T ; T^{n} \in \mathcal{Q}(\mathcal{H}) \text { and } d(T) \leq 1\right\}
$$

2. Apparently $\mathcal{Q}(\mathcal{H}) \subset \Lambda$ and $\mathcal{P}(\mathcal{H}) \subset \Lambda_{*}$ (in both cases, all the eigenspaces corrresponding to the eigenvalues w^{j} for $1 \leq j \leq n-1$ are trivial). Moreover $\mathcal{Q}(\mathcal{H}) \cap \Lambda_{\dagger}=\mathcal{P}(\mathcal{H})$.
3. $\Lambda_{\dagger}=\left\{T \in \Lambda ; R(T) \subseteq R\left(T^{*}\right)\right\}=\left\{T \in \Lambda ; R\left(T^{*}\right) \subseteq R(T)\right\}=\left\{T \in \Lambda ; R(T)=R\left(T^{*}\right)\right\}=$ $\left\{T \in \Lambda ; N(T) \subseteq N\left(T^{*}\right)\right\}=\left\{T \in \Lambda ; N\left(T^{*}\right) \subseteq N(T)\right\}=\left\{T \in \Lambda ; N(T)=N\left(T^{*}\right)\right\}$
4. When the kernel is trivial, we have the following straightforward identities:

$$
\Lambda \cap G l(\mathcal{H})=\Lambda_{\dagger} \cap G l(\mathcal{H})=\{n \text {-roots of } 1\}
$$

and

$$
\Lambda \cap U(\mathcal{H})=\Lambda_{*} \cap G l(\mathcal{H})=\{\text { normal } n \text {-roots of } 1\} .
$$

5. Recall that $\mathcal{B}_{h}(\mathcal{H})$ denotes the set of self-adjoint operators, and $\mathcal{B}^{+}(\mathcal{H})$ denotes the set of positive operators. Then

$$
\mathcal{P}(\mathcal{H})=\Lambda_{\dagger} \cap \mathcal{B}_{h}(\mathcal{H})=\Lambda \cap \mathcal{B}_{h}(\mathcal{H})=\Lambda \cap \mathcal{B}^{+}(\mathcal{H}) .
$$

Since $\mathcal{P}(\mathcal{H})$ is a subset of all other sets involved, it suffices to show that $\Lambda \cap \mathcal{B}_{h}(\mathcal{H}) \subset \mathcal{P}(\mathcal{H})$. If $T \in \Lambda$ is self-adjoint, then in particular it is normal, and thus all eigenspaces are orthogonal. Therefore, the fact that it is self-adjoint implies that the projections onto the eigenspaces $p_{j}(T), 1 \leq j \leq n-1$, corresponding to the non-real eigenvalues, are trivial. Thus $T=p_{1}(T) \in \mathcal{P}(\mathcal{H})$.
6. If $\mathcal{N}(\mathcal{H})$ denotes the set of normal operators, then

$$
\Lambda \cap \mathcal{N}(\mathcal{H})=\Lambda_{\dagger} \cap \mathcal{N}(\mathcal{H})=\Lambda_{*}
$$

7. If $\mathcal{Q} \mathcal{N}(\mathcal{H})$ denotes the set of quasi-nilpotent operators, then

$$
\Lambda \cap \mathcal{Q N}(\mathcal{H})=\{0\}
$$

Proposition 3.3. Let $T \in \Lambda$. Then:

1. $T \in \Lambda_{\dagger}$ if and only if $R(T)$ and $N(T)$ are orthogonal. In that case, $T^{n}=P_{R(T)}$.
2. $T \in \Lambda_{*}$ if and only if all the eigenspaces of T are mutually orthogonal.

Proof. If $T \in \Lambda_{\dagger}, T^{n}=T T^{\dagger}=P_{R(T)}$, and then $1-T^{n}$ is a self-adjoint idempotent onto $N(T)$, and thus $p_{0}(T)=1-T^{n}=P_{N(T)}$. Conversely, if $R(T) \perp N(T)$, then T^{n} is an idempotent whose range and null-space are orthogonal. Therefore it is a self-adjoint projection. Then the pseudo-inverse T^{n-1} of T verifies $T^{n-1} T=T T^{n-1}=P_{R(T)}$, i.e. $T^{n-1}=T^{\dagger}$.

If $T \in \Lambda_{*}$, then T is normal, and therefore all $n+1$ idempotents $p_{j}(T), 0 \leq j \leq n$ are normal, thus self-adjoint. Conversely, if the eigenspaces are orthogonal, these idempotents are self-adjoint. Then

$$
T^{*}=\left(\sum_{j=1}^{n} w^{j} p_{j}(T)\right)^{*}=\sum_{j=1}^{n} \bar{w}^{j} p_{j}(T)=\sum_{j=1}^{n}\left(w^{j}\right)^{n-1} p_{j}(T)=T^{n-1} .
$$

If $\mathcal{C}(\mathcal{H})$ denotes the set of contractive operators in \mathcal{H}, then

Proposition 3.4.

$$
\Lambda \cap \mathcal{C}(\mathcal{H})=\Lambda_{*}
$$

Proof. The elements of Λ_{*} are clearly contractive (in fact, they are partial isometries). Conversely, if $T \in \Lambda$ is contractive, then $p_{k}(T)$ are contractive idempotents, thus self-adjoint projections. Indeed, for $1 \leq k \leq n$

$$
\left\|p_{k}(T)\right\|=\frac{1}{n}\left\|\sum_{j=1}^{n} w^{-j} T^{j}\right\| \leq \frac{1}{n}\left\{\sum_{j=1}^{n}\|T\|^{j}\right) \leq 1
$$

Then also $p_{0}(T)=1-\sum_{j=1}^{n} p_{j}(T)$ is self-adjoint. It follows that $T \in \Lambda_{*}$.
Let us examine how these sets relate to partial isometries. We denote by \mathcal{I} the set of partial isometries. As noted above, $\Lambda_{*} \subset \mathcal{I}$. Then apparently

Corollary 3.5.

$$
\Lambda \cap \mathcal{I}=\Lambda_{*}
$$

4 Actions of the unitary and invertible groups

As remarked above, if $T \in \Lambda$, it can be diagonalized,

$$
T=\sum_{j=1}^{n} w^{j} p_{j}(T) .
$$

If $G \in G l(\mathcal{H})$, then clearly $G T G^{-1} \in \Lambda$, and

$$
G T G^{-1}=\sum_{j=1}^{n} w^{j} G p_{j}(T) G^{-1}=\sum_{j=1}^{n} w^{j} p_{j}\left(G T G^{-1}\right)
$$

Fix $T \in \Lambda$, and consider

$$
\pi_{T}: G l(\mathcal{H}) \rightarrow \Lambda, \pi_{T}(G)=G T G^{-1}
$$

Let us recall some facts from [9] and [3], concerning similarity orbits of operators.

Remark 4.1.

Let $\left(Q_{0}, \ldots, Q_{n}\right)$ be an $n+1$-tuple of idempotents such that $Q_{i} Q_{j}=0$ if $i \neq j$ and $\sum_{j=0}^{n} Q_{j}=$ 1. Then there exists an invertible operator G such that $G Q_{i} G^{-1}$ are orthogonal projections. This fact is well known. It was proved in [9]. In [2] it was proved by a procedure similar to the Gram-Schmidt orthogonalization process.

This implies that $T \in \Lambda$ is similar to an element $S \in \Lambda_{*}$. Indeed, consider the $n+1$-tuple of idempotents $\left(p_{0}(T), \ldots, p_{n}(T)\right)$ (which verifies the above hypothesis), and pick $G \in G l(\mathcal{H})$ such that $G p_{i}(T) G^{-1}$ are self-adjoint. Then clearly $S=G T G^{-1} \in \Lambda_{*}$. Since S is normal and has finite spectrum, it is what D. Herrero [14] called a nice Jordan operator. In [3] it was proved that this implies several properties for the map π_{T} :

1. The map π_{T} has local cross sections: for each $T_{0} \in \Lambda$ there exists a neighbourhood \mathcal{V} of T_{0} in Λ and a continuous map $\sigma_{T_{0}}: \mathcal{V} \rightarrow G l(\mathcal{H})$ such that $\pi_{T}\left(\sigma_{T_{0}}(S)\right)=S$ for all $S \in \mathcal{V}$.
2. In particular, the action of $G l(\mathcal{H})$ is locally trivial (close elements in Λ are conjugate by the action). Therefore, the connected comoponent of T in Λ coincides with the orbit $\left\{G T G^{-1}: G \in G l(\mathcal{H})\right\}$.
3. Each connected component of Λ is an analytic submanifold of $\mathcal{B}(\mathcal{H})$, and the map π_{T} onto the component containing T is an analytic submersion.
4. Pick now $T \in \Lambda_{*}$, and denote by π_{T}^{u} the restriction of π_{T} to the unitary group $U(\mathcal{H})$. Apparently it takes values on the unitary orbit of T, which lies inside Λ_{*}. Then also π_{T}^{u} has (unitary) continuous local cross sections. The connected component of T in Λ_{*} coincides with the unitary orbit of T, and is a C^{∞} submanifold of $\mathcal{B}(\mathcal{H})$. The corresponding map $\pi_{T}^{u}: U(\mathcal{H}) \rightarrow \Lambda_{*}$ (or rather, the connected component of T in Λ_{*}) is a C^{∞} submersion.
5. We remark that $U(\mathcal{H})$ acts on Λ_{\dagger}, but the action is not locally transitive (as with Λ_{*}). Indeed, the unitary action fixes the angles between the eigenspaces, and this is not a local property of Λ_{\dagger}

In particular, the similarity orbit of a single idempotent $Q \in \mathcal{Q}(\mathcal{H})$, verifies these conditions. In this case the analytic cross sections can be explicitely computed [9]. Namely, if $R \in \mathcal{Q}(\mathcal{H})$ such that $\|R-Q\|<1$, then $\sigma(R)=R Q+(1-R)(1-Q)$ is invertible, and verifies $\sigma(R) Q=R \sigma(R)$, thus providing a local cross section for π_{Q} on a neighbourhood of Q. It is apparently analytic. A cross section near $Q^{\prime}=G Q G^{-1}$ is obtained by translating σ_{Q} : put $\sigma_{Q^{\prime}}(R)=G \sigma_{Q}\left(G^{-1} R G\right)$, defined on the set $\left\{R \in \mathcal{Q}(\mathcal{H}):\left\|G^{-1} R G-Q^{\prime}\right\|<1\right\}$, which is clearly open in $\mathcal{Q}(\mathcal{H})$.

Recall that if $T \in \Lambda$, then T^{n} is an idempotent onto the range of T, and that T^{n} is the orthogonal projection onto the range of T if and only if $T \in \Lambda_{\dagger}$.

Proposition 4.2. The map

$$
\nu: \Lambda \rightarrow \mathcal{Q}(\mathcal{H}), \quad \nu(T)=T^{n}
$$

is a analytic submersion.
Proof. It suffices to show that this map has analytic local cross sections. Fix $T_{0} \in \Lambda$, and let \mathcal{W} be a neighbourhood of $Q_{0}=T_{0}^{n}$ in $\mathcal{Q}(\mathcal{H})$ on which the cross section for $\pi_{Q_{0}}$ is defined. Let $\mathcal{V}=\left\{T \in \Lambda: T^{n} \in \mathcal{W}\right\}$, and define

$$
s_{T_{0}}: \mathcal{V} \rightarrow \Lambda, \quad s_{T_{0}}(T)=\sigma_{Q_{0}}\left(T^{n}\right) T_{0} \sigma_{Q_{0}}^{-1}\left(T^{n}\right)
$$

It is clearly well defined and analytic. Moreover

$$
\left(s_{T_{0}}(T)\right)^{n}=\sigma_{Q_{0}}\left(T^{n}\right) T_{0}^{n} \sigma_{Q_{0}}^{-1}\left(T^{n}\right)=\sigma_{Q_{0}}\left(T^{n}\right) Q_{0} \sigma_{Q_{0}}^{-1}\left(T^{n}\right)=T^{n}
$$

i.e. it is a local cross section for the map $T \mapsto T^{n}$.

Corollary 4.3. The set Λ_{\dagger} is a C^{∞} submanifold of Λ (and of $\mathcal{B}(\mathcal{H})$).
Proof. As seen in the previous section, $T \in \Lambda$ belongs to Λ_{\dagger} if and only if the idempotent T^{n} is a self-adjoint projection. Then

$$
\Lambda_{\dagger}=\nu^{-1}(\mathcal{P}(\mathcal{H}))
$$

Since $\mathcal{P}(\mathcal{H})$ is a C^{∞} submanifold of $\mathcal{Q}(\mathcal{H})$ and ν is a submersion, it follows that Λ_{\dagger} is a C^{∞} submanifold of Λ.

Since the $\operatorname{map} \pi_{T}: G l(\mathcal{H}) \rightarrow \Lambda, \pi_{T}(G)=G T G^{-1}$ is a submersion, it follows that continuous curves in Λ can be lifted to continuous curves in $G l(\mathcal{H})$. Let us describe a natural procedure to lift smooth curves, borrowed essentially form [9]. Suppose that $T(t) \in \Lambda$ varies smoothly for $t \in I$, where smooth means $C^{k}, 1 \leq k \leq \infty$. It follows that $p_{j}(T(t)), 0 \leq j \leq n$, are smooth curves in $\mathcal{Q}(\mathcal{H})$. Then the curve

$$
\begin{equation*}
\Sigma_{t}=-\sum_{j=0}^{n} p_{j}(T(t)) \frac{d}{d t} p_{j}(T(t)) \tag{1}
\end{equation*}
$$

is continuous (in fact C^{k-1}). Consider the following linear differential equation in $\mathcal{B}(\mathcal{H})$, which we shall call the transport equation: fix $t_{0} \in I$

$$
\left\{\begin{array}{l}
\dot{\Gamma}=\Sigma_{t} \Gamma \tag{2}\\
\Gamma\left(t_{0}\right)=1
\end{array}\right.
$$

It is a standard fact that an operator linear equation as above, with invertible initial condition, remains invertible for all $t \in I$. The solutions of this equation, which are smooth curves in $G l(\mathcal{H})$, lift the curve $T(t)$:

Proposition 4.4. Fix $t_{0} \in I$ and let Γ be the solution of (2). Then

$$
\Gamma(t) T\left(t_{0}\right) \Gamma^{-1}(t)=T(t)
$$

for all $t \in I$. Moreover, if $T(t) \in \Lambda_{*}$, then $\Gamma(t) \in U(\mathcal{H})$.
Proof. Fix $0 \leq j \leq n$, denote $p_{j}=p_{j}(T(t))$, and differentiate $\Gamma^{-1} p_{j} \Gamma$,

$$
\begin{aligned}
& -\Gamma^{-1} \dot{\Gamma} \Gamma^{-1} p_{j} \Gamma+\Gamma^{-1} \dot{p}_{j} \Gamma+\Gamma^{-1} p_{j} \dot{\Gamma} \\
& \quad=\Gamma^{-1}\left(-\Sigma_{t} p_{j}+\dot{p}_{j}+p_{j} \Sigma_{t}\right) \Gamma .
\end{aligned}
$$

Note that since $p_{i} p_{j}=0$ if $i \neq j$, then $p_{j} \Sigma_{t}=-p_{j} \dot{p}_{j}$. Also differentiating $p_{i} p_{j}=0$, gives $\dot{p}_{i} p_{j}=-p_{i} \dot{p}_{j}$ if $i \neq j$. If $i=j$, differentiating $p_{j}^{2}=p_{j}$ one obtains $\dot{p}_{j} p_{j}+p_{j} \dot{p}_{j}=0$ and thus $p_{j} \dot{p}_{j} p_{j}=0$. Then

$$
\Sigma_{t} p_{j}=-\sum_{i \neq j} p_{i} \dot{p}_{j}=\left(1-p_{j}\right) \dot{p}_{j}=-\dot{p}_{j}+p_{j} \dot{p}_{j}
$$

Therefore $-\Sigma_{t} p_{j}+\dot{p}_{j}+p_{j} \Sigma_{t}=0$, and thus $\Gamma^{-1} p_{j} \Gamma$ is constant, and thus

$$
\Gamma^{-1} p_{j} \Gamma=\Gamma^{-1}\left(t_{0}\right) p_{j}\left(t_{0}\right) \Gamma\left(t_{0}\right)=p_{j}\left(t_{0}\right) .
$$

Then

$$
T(t)=\Gamma\left(\sum_{j=1}^{n} w^{j} p_{j}(T)\right) \Gamma^{-1}=\Gamma T\left(t_{0}\right) \Gamma^{-1} .
$$

If $T(t) \in \Lambda_{*}$, then Σ_{t} is anti-self-adjoint. Indeed, p_{j} is self-adoint, and using again that $\dot{p}_{j} p_{j}+p_{j} \dot{p}_{j}$, one has

$$
\Sigma_{t}^{*}=-\sum_{i=0}^{n} \dot{p}_{i} p_{i}=\sum_{i=0}^{n} p_{i} \dot{p}_{i}-\sum_{=0}^{n} \dot{p}_{i}=-\Sigma_{t},
$$

because $\sum_{=0}^{n} \dot{p}_{i}=0$ (since $\sum_{=0}^{n} p_{i}=1$). Therefore in this case the solution Γ consists of unitary operators.

The actions of the unitary and invertible groups allow the easy characterization of the connected components of these sets. The case for Λ and Λ_{*} is apparent. We state them in the following result. We use the following notation. If $T \in \Lambda, 0 \leq i \leq n$,

$$
\mu_{i}(T)=\operatorname{dim}\left(R\left(p_{i}(T)\right)\right) .
$$

Proposition 4.5. The $n+1$-tuple $\vec{\mu}(T)=\left(\mu_{0}(T), \mu_{1}(T), \ldots, \mu_{n}(T)\right)$ characterizes the connected components of Λ (resp. Λ_{\dagger}, resp. Λ_{*}). That is, $T, T^{\prime} \in \Lambda$ (resp. Λ_{\dagger}, resp. Λ_{*}) lie in the same connected component of this set if and only if $\vec{\mu}(T)=\vec{\mu}\left(T^{\prime}\right)$.

Proof. Only the assertion on Λ_{\dagger} needs a proof. If T and T^{\prime} lie in the same component of Λ_{\dagger}, then in particular they can be connected in Λ, and thus $\vec{\mu}(T)=\vec{\mu}\left(T^{\prime}\right)$. Conversely, suppose that $T, T^{\prime} \in \Lambda_{\dagger}$ verify $\vec{\mu}(T)=\vec{\mu}\left(T^{\prime}\right)$. Then T^{n} and $\left(T^{\prime}\right)^{n}$ are self-adjoint projections whose range and kernels have the same dimensions. Therefore they are unitarily equivalent. Pick $U \in U(\mathcal{H})$ such that $U T^{n} U^{*}=\left(T^{\prime}\right)^{n}$. Note that $U^{*} T^{\prime} U \in \Lambda_{\dagger}$ and $\vec{\mu}\left(U^{*} T^{\prime} U\right)=\vec{\mu}(T)$. Thus we are reduced to the case when T and T^{\prime} have the same range and kernel. This case is trivial: they can be joined via a continuous curve of invertibles $G(t)$, which leave invariant the fixed kernels and ranges, by means of $T(t)=G(t) T G^{-1}(t)$. Apparently this curve lies inside Λ_{\dagger}.

Remark 4.6. Denote $\Lambda^{k}=\left\{T \in \mathcal{B}(\mathcal{H}): T^{k+1}=T\right\}$. Apparently $\Lambda^{k} \subset \Lambda^{m}$ if and only if k divides m. Moreover, from the above result characterizing the connected components, it is also apparent that if $m=k l$, then Λ^{k} consists of the connected components of Λ^{m} such that $\mu_{j}(T)=0$ if j is not a power of l. In particular, Λ^{k} is a submanifold of Λ^{m}.

5 The range projections decrease distances

In this section we endow the tangent spaces of $\Lambda, \Lambda_{\dagger}$ and Λ_{*} with the metric induced by the usual norm of operators. First let us describe these tangent spaces. Since the maps π_{T} and π_{T}^{u} are submersions, their differentials are onto. Therefore if $T_{0} \in \Lambda$,

$$
(T \Lambda)_{T_{0}}=\left\{X T_{0}-T_{0} X: X \in \mathcal{B}(\mathcal{H})\right\} .
$$

Indeed, a typical smooth curve $T(t)$ in Λ with $T(0)=T_{0}$ is of the form $T(t)=G(t) T_{0} G^{-1}(t)$, for $G(t)$ a smooth curve in $G l(\mathcal{H})$, with $G(0)=1$ and $\dot{G}(0)=X$. Since $\dot{T}=\dot{G} T_{0} G-G T_{0} G^{-1} \dot{G} G^{-1}$, it follows that $\dot{T}(0)=X T_{0}-T_{0} X$. Analogously, reasoning with the action of the unitary group, if $T_{0} \in \Lambda_{*}$,

$$
\left(T \Lambda_{*}\right)_{T_{0}}=\left\{X T_{0}-T_{0} X: X \in \mathcal{B}_{a h}(\mathcal{H})\right\}
$$

Finally:
Proposition 5.1. If $T_{0} \in \Lambda_{\dagger}$, a tangent vector $X T_{0}-T_{0} X \in(T \Lambda)_{T_{0}}$ is tangent to Λ_{\dagger} if and only if $X T_{0}^{n}-T_{0}^{n} X$ is self-adjoint, i.e.

$$
\left(T \Lambda_{\dagger}\right)_{T_{0}}=\left\{X T_{0}-T_{0} X: X \in \mathcal{B}(\mathcal{H}) \text { such that } X T_{0}^{n}-T_{0}^{n} X \in \mathcal{B}_{h}(\mathcal{H})\right\}
$$

Proof. Consider the smooth submersion

$$
\kappa=\nu \circ \pi_{T_{0}}: G l(\mathcal{H}) \rightarrow \mathcal{Q}(\mathcal{H}), \kappa(G)=G T_{0}^{n} G^{-1}
$$

Then $\mathcal{S}=\kappa^{-1}(\mathcal{P}(\mathcal{H}))$ is a closed submanifold of $G l(\mathcal{H})$, such that $\pi_{T_{0}}(\mathcal{S})=\Lambda_{\dagger}$. Therefore,

$$
\left(T \Lambda_{\dagger}\right)_{T_{0}}=\left(d \pi_{T_{0}}\right)_{T_{0}}\left((T \mathcal{S})_{1}\right)
$$

Note that $(T \mathcal{S})_{1}=\left\{X \in \mathcal{B}(\mathcal{H}): X T_{0}^{n}-T_{0}^{n} X \in \mathcal{B}_{h}(\mathcal{H})\right\}$ and that $\left(d \pi_{T_{0}}\right)_{T_{0}}(X)=X T_{0}-T_{0} X$, and therefore our claim follows.

We shall need the following lemma, which states that the most efficient way to complete a co-diagonal 2×2 self-adjoint block matrix order that its norm remains minimal, is by putting zeros in the diagonal. It is the simple case in the theory of operator extensions ([10]). We include the proof of this fact.

Lemma 5.2. Let P be an orthogonal projection, and $A \in \mathcal{B}(\mathcal{H})$ self-adjoint. Then

$$
\|P A(1-P)-(1-P) A P\| \leq\|A\|
$$

Proof. Given P, one can write operators in $\mathcal{B}(\mathcal{H})$ as 2×2 matrices in terms of P,

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{12}^{*} & A_{22}
\end{array}\right)
$$

with $A_{i i}$ self-adjoint. Then

$$
P A(1-P)-(1-P) A P=\left(\begin{array}{ll}
0 & A_{12} \\
A_{12}^{*} & 0
\end{array}\right)
$$

Note that

$$
(P A(1-P)-(1-P) A P)^{2}=\left(\begin{array}{ll}
A_{12} A_{12}^{*} & 0 \\
0 & A_{12}^{*} A_{12}
\end{array}\right)
$$

and that

$$
A^{2}=\left(\begin{array}{ll}
A_{11}^{2}+A_{12} A_{12}^{*} & B \\
B^{*} & A_{22}^{2}+A_{12}^{*} A_{12}
\end{array}\right)
$$

The linear map $X \mapsto P X P+(1-P) X(1-P)$ is contractive. Thus

$$
\left\|P A^{2} P+(1-P) A^{2}(1-P)\right\| \leq\|A\|^{2}
$$

On the other hand, it is clear that

$$
\begin{aligned}
P A^{2} P+(1-P) A^{2}(1-P)= & \left(\begin{array}{ll}
A_{11}^{2}+A_{12} A_{12}^{*} & 0 \\
0 & A_{22}^{2}+A_{12}^{*} A_{12}
\end{array}\right) \geq\left(\begin{array}{ll}
A_{12} A_{12}^{*} & 0 \\
0 & A_{12}^{*} A_{12}
\end{array}\right) \\
& =(P A(1-P)-(1-P) A P)^{2}
\end{aligned}
$$

Therefore

$$
\|(P A(1-P)-(1-P) A P)\|^{2}=\left\|(P A(1-P)-(1-P) A P)^{2}\right\| \leq\left\|P A^{2} P+(1-P) A^{2}(1-P)\right\| \leq\|A\|^{2}
$$

Theorem 5.3. The differential of the map $\nu: \Lambda_{\dagger} \rightarrow \mathcal{P}(\mathcal{H}), \nu(T)=T^{n}=P_{R(T)}$ is normdecreasing between the tangent spaces, i.e. for any $Z \in\left(T \Lambda_{\dagger}\right)_{T_{0}}$

$$
\left\|(d \nu)_{T_{0}}(Z)\right\| \leq\|Z\|
$$

Proof. Pick $Z=X T_{0}-T_{0} X \in\left(T \Lambda_{\dagger}\right)_{T_{0}}$. Then there exists a smooth curve $G_{t} \in G l(\mathcal{H})$ such that $G_{0}=1, \dot{G}(0)=X$ and $G_{t} T_{0} G_{t}^{-1} \in \Lambda_{\dagger}$. Then $\nu\left(G_{t} T_{0} G_{t}^{-1}\right)=G_{t} T_{0}^{n} G_{t}^{-1} \in \mathcal{P}(\mathcal{H})$. Thus

$$
\left((d \nu)_{T_{0}} d \nu\right)_{T_{0}}(Z)=Y=\left.\frac{d}{d t}\right|_{t=0} \nu\left(G_{t} T_{0} G_{t}^{-1}\right)=X T_{0}^{n}-T_{0}^{n} X
$$

Note that $Y^{*}=Y$. Let $P_{j}=p_{j}\left(T_{0}\right), j=0, \ldots, n$. Then for $i \geq 1$,

$$
P_{j} Z P_{k}=P_{j} X T_{0} P_{k}-P_{j} T_{0} X P_{k}=\left(w^{k}-w^{j}\right) P_{j} X P_{k}
$$

and, analogously using that $T_{0}^{n}=\sum_{i=1}^{n} P_{i}$,

$$
P_{j} Y P_{k}=P_{j} X\left(\sum_{i=1}^{n} P_{i}\right) P_{k}-P_{j}\left(\sum_{i=1}^{n} P_{i}\right) X P_{k}=P_{j} X P_{k}-P_{j} X P_{k}=0
$$

Also it is apparent that $P_{0} Z P_{0}=P_{0} Y P_{0}=0$. Moreover, for $j \geq 1$, by similar computations

$$
P_{0} Z P_{j}=w^{j} P_{0} X P_{j}, \quad P_{j} Z P_{0}=-w^{j} P_{j} X P_{0}
$$

and

$$
P_{0} Y P_{j}=P_{0} X P_{j}, \quad P_{j} Y P_{0}=-P_{j} X P_{0}
$$

Thus Y is self-adjoint and P_{0} co-diagonal. Using these computations let us write Y and Z in matrix form in terms of the decomposition $P_{0}, P_{1}, \ldots, P_{n}$. Then

$$
Y=\left(\begin{array}{lllll}
0 & P_{0} X P_{1} & P_{0} X P_{2} & \ldots & P_{0} X P_{n} \tag{3}\\
P_{1} X P_{0} & 0 & 0 & \ldots & 0 \\
P_{2} X P_{0} & 0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
P_{n} X P_{0} & 0 & 0 & \ldots & 0
\end{array}\right)
$$

Put $\Delta_{j k}=w^{j}-w^{k}$. Then

$$
Z=\left(\begin{array}{lllll}
0 & w P_{0} X P_{1} & w^{2} P_{0} X P_{2} & \ldots & w^{n} P_{0} X P_{n} \tag{4}\\
-w P_{1} X P_{0} & 0 & \Delta_{12} P_{1} X P_{2} & \ldots & \Delta_{1 n} P_{1} X P_{n} \\
-w^{2} P_{2} X P_{0} & \Delta_{21} P_{2} X P_{1} & 0 & \ldots & \Delta_{2 n} P_{2} X P_{n} \\
\cdots & \ldots & \cdots & \ldots & \ldots \\
-w^{n} P_{n} X P_{0} & \Delta_{n 1} P_{n} X P_{1} & \cdots & \Delta_{n(n-1)} P_{n} X P_{n-1} & 0
\end{array}\right)
$$

Consider the unitary (diagonal) operator $W=\sum_{i=0}^{n} w^{-i} P_{i}$. Then clearly $\|Z\|=\|W Z W\|$. A straightforward matrix computation shows that the first row and the first column of $W Z W$ coincide (respectively) with the first row and column of Y. Since Y is self-adjoint, this implies that these coincide with the first row and column of $\frac{1}{2}\left(W Z W+(W Z W)^{*}\right)$. Clearly

$$
\|Z\|=\|W Z W\| \geq\left\|\frac{1}{2}\left(W Z W+(W Z W)^{*}\right)\right\|
$$

On the other hand, this last (self-adjoint) operator is a completion of the matrix Y (which as a 2×2 matrix in terms of P_{0}, has zeros in the diagonal). It follows that, by the above lemma, that

$$
\left\|\frac{1}{2}\left(W Z W+\left(W Z^{*} W\right)\right)\right\| \geq\|Y\|
$$

which completes the proof.
Corollary 5.4. The tangent map of $\rho_{0}: \Lambda_{\dagger} \rightarrow \mathcal{P}(\mathcal{H}), \rho_{0}(T)=P_{N(T)}=1-T^{n}$ is normdecreasing at any point.

Proof. The proof follows using that $\rho_{0}(T)=1-\nu(T)$, and thus $\left(d \rho_{0}\right)_{T}=-\left(d \nu_{T}\right)$.
If $T(t) \in \Lambda, t \in I$ is a smooth curve, one computes the length $\ell(T)$ of $T(t)$ (with the Finsler metric considered here) as

$$
\ell(T)=\int_{I}\|\dot{T}(t)\| d t
$$

Corollary 5.5. If $T(t) \in \Lambda_{\dagger}$ is a smooth curve, then

$$
\ell(\nu(T)) \leq \ell(T) \quad \text { and } \ell\left(\rho_{0}(T)\right) \leq \ell(T)
$$

In [19] it was shown that if $X^{*}-X$ is co-diagonal with respect to a self-adjoint projection P, i.e. $P X P=(1-P) X(1-P)=0$, then the curve $e^{t X} P e^{-t X}$ in \mathcal{P} has minimal length along its path, in any interval such that $|t|\|X\| \leq \pi / 2$ (by this we mean that this path has minimal length among all possible smooth curves joining any given pair of points in the path). A straightforward consequence of this fact is the following.

Proposition 5.6. Let $T \in \Lambda_{\dagger}$ and $P=\nu(T)=P_{R(T)}$. Let $X \in \mathcal{B}_{a h}(\mathcal{H})$ such that $P X P=$ $(1-P) X(1-P)=0$. Then the curve $\tau(t)=e^{t X} T e^{-t X}$ has minimal length in Λ_{\dagger} along its path on any interval I such that $|I| \leq \frac{\pi}{2\|X\|}$.

Proof. Let $\gamma(t) \in \Lambda_{\dagger}$, be a smooth curve, which is parametrized in the interval $I=\left[t_{0}, t_{1}\right]$, and verifies $\gamma\left(t_{0}\right)=\tau\left(t_{0}\right)$ and $\gamma\left(t_{1}\right)=\tau\left(t_{1}\right)$. By the above corollary (measuring the lengths of both curves in the common interval I),

$$
\ell(\nu(\gamma)) \leq \ell(\gamma)
$$

On the other hand, $\nu(\tau(t))=\left(e^{t X} T e^{-t X}\right)^{n}=e^{t X} P e^{-t X}$, i.e. $\nu(\tau)$ is a minimal geodesic in I. Then, by the result from [19],

$$
\ell(\nu(\tau)) \leq \ell(\nu(\gamma))
$$

We claim that $\ell(\tau)=\ell(\nu(\tau))$, a fact which would conclude the proof. Indeed, note that

$$
\ell(\nu(\tau))=\int_{I}\|\dot{\tau}(t)\| d t=\int_{I}\left\|e^{t Z} X P e^{-t X}-e^{t X} P e^{-t X} X\right\| d t=\|X P-P X\||I|
$$

Similarly $\ell(\tau)=\|X T-T X\||I|$. Thus we need to show that $\|X P-P X\|=\|X T-T X\|$. Recall from the proof of Theorem 5.3, the matrix forms (3) and (4) (in terms of $P_{0}, P_{1}, \ldots, P_{n}$) of the conmutators $X P-X P$ and $X T-T X$.

$$
X P-P X=\left(\begin{array}{lllll}
0 & P_{0} X P_{1} & P_{0} X P_{2} & \ldots & P_{0} X P_{n} \\
P_{1} X P_{0} & 0 & 0 & \ldots & 0 \\
P_{2} X P_{0} & 0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
P_{n} X P_{0} & 0 & 0 & \ldots & 0
\end{array}\right)
$$

In the case of $X T-T X$, note that since $P=\sum_{j=1}^{n} P_{j}$, for $1 \leq j \leq n$,

$$
P_{j} X P_{k}=P_{j} P X P P_{k}=0
$$

Therefore

$$
X T-T X=\left(\begin{array}{lllll}
0 & w P_{0} X P_{1} & w^{2} P_{0} X P_{2} & \ldots & w^{n} P_{0} X P_{n} \\
-w P_{1} X P_{0} & 0 & 0 & \ldots & 0 \\
-w^{2} P_{2} X P_{0} & 0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
-w^{n} P_{n} X P_{0} & 0 & \ldots & 0 & 0
\end{array}\right)
$$

Using the unitary operator W as in the proof of Theorem 5.3 , it is apparent that $\|X P-P X\|=$ $\|X T-T X\|$.

If $\mathcal{S} \subset \mathcal{H}$ is a closed subspace, denote by $\Lambda^{\mathcal{S}}\left(\right.$ resp. $\left.\Lambda_{\dagger}^{\mathcal{S}}, \Lambda_{*}^{\mathcal{S}}\right)$ the set of elements T in Λ (resp. $\left.\Lambda_{\dagger}, \Lambda_{*}\right)$ such that $R(T)=\mathcal{S}$. In other words, $\Lambda^{\mathcal{S}}=\nu^{-1}\left(p_{\mathcal{S}}\right)$.

Corollary 5.7. Let $T_{0}, T_{1} \in \Lambda_{\dagger}$, such that $\left\|P_{R\left(T_{0}\right)}-P_{R\left(T_{1}\right)}\right\|<1$. Then there exists a curve $\tau(t) \in \Lambda_{\dagger}, t \in[0,1]$, of the form $\tau(t)=e^{t X} T_{0} e^{-t X}$, with $X^{*}=-X$ and $\|X\|<\pi / 2$, such that

1. τ has minimal length in Λ_{\dagger} along its path.
2. τ has minimal length among all smooth curves in Λ_{\dagger} joining T_{0} and $\Lambda_{\dagger}^{\mathcal{S}}$.

Proof. If $\left\|P_{R\left(T_{0}\right)}-P_{R\left(T_{1}\right)}\right\|<1$, then $P_{R\left(T_{0}\right)}$ and $P_{R\left(T_{1}\right)}$ can be joined with a minimal geodesic of \mathcal{P}, which is given by a $P_{R\left(T_{0}\right)}$-co-diagonal anti-hermitic operator X with $\|X\|<\pi / 2$. Then, by the above result, $\tau(t)=e^{t X} T_{0} e^{-t X}$ has minimal length along its path in Λ_{\dagger}. Suppose that γ is another smooth curve in Λ_{\dagger} with $\gamma(0)=T_{0}, \gamma(1) \in \Lambda_{\dagger}^{\mathcal{S}}$. Then $\nu(\gamma)$ joins $P_{R\left(T_{0}\right)}$ and $P_{R\left(T_{1}\right)}$. Thus

$$
\ell(\nu(\gamma)) \geq \ell(\nu(\tau))=\ell(\tau)
$$

by the computation in the preceding Proposition. By Corollary 5.5,

$$
\ell(\nu(\gamma)) \leq \ell(\gamma),
$$

and the result follows.

Remark 5.8.

1. Let us denote by $d(A, B)$ the rectifiable distance, obtained as the infimum of the lengths of curves joining A and B (either in Λ or \mathcal{P}). Then $\left\|P_{R\left(T_{0}\right)}-P_{R\left(T_{1}\right)}\right\|<1$ is equivalent to $d\left(P_{R\left(T_{0}\right)}, P_{R\left(T_{1}\right)}\right)<\pi / 2$ (see [19] or [1]). By Corollary 5.5, if $T_{0}, T_{1} \in \Lambda_{\dagger}$,

$$
d\left(P_{R\left(T_{0}\right)}, P_{R\left(T_{1}\right)}\right) \leq d\left(T_{0}, T_{1}\right) .
$$

Thus the hypothesis $\left\|P_{R\left(T_{0}\right)}-P_{R\left(T_{1}\right)}\right\|<1$ of the above Corollary, could be replaced by: there exists a smooth curve in Λ_{\dagger} joining T_{0} and T_{1}, of length less than $\pi / 2$.
2. Let $\mathcal{S}_{0}, \mathcal{S}_{1}$ be closed subspaces of \mathcal{H} such that $\left\|P_{\mathcal{S}_{0}}-P_{\mathcal{S}_{1}}\right\|<1$, then

$$
d\left(\Lambda_{\dagger}^{\mathcal{S}_{0}}, \Lambda_{\dagger}^{\mathcal{S}_{1}}\right)=d\left(P_{\mathcal{S}_{0}}, P_{\mathcal{S}_{1}}\right)=\arcsin \left(\left\|P_{\mathcal{S}_{0}}-P_{\mathcal{S}_{1}}\right\|\right) .
$$

For the last equality, see for instance [1]. Pick X such that $X^{*}=-X,\|X\|<\pi / 2$ and X is $P_{\mathcal{S}_{0}}$-co-diagonal, such that $e^{X} P_{\mathcal{S}_{0}} e^{-X}=P_{\mathcal{S}_{1}}$. Pick any $T_{0} \in \Lambda_{\dagger}$ such that $R\left(T_{0}\right)=\mathcal{S}_{0}$. Then $\tau(t)=e^{t X} T_{0} e^{-t X}, t \in[0,1]$, is minimal in Λ_{\dagger}, and its length is $\left\|X T_{0}-T_{0} X\right\|=\left\|X P_{\mathcal{S}_{0}}-P_{\mathcal{S}_{0}} X\right\|=d\left(P_{\mathcal{S}_{0}}, P_{\mathcal{S}_{1}}\right)$. This number does not depend on the choice of $T_{0} \in \Lambda_{\dagger}^{\mathcal{S}_{0}}$.
3. Otherwise, if $\left\|P_{R\left(T_{0}\right)}-P_{R\left(T_{1}\right)}\right\|=1$, an easy approximation argument shows that

$$
d\left(\Lambda_{\dagger}^{\mathcal{S}_{0}}, \Lambda_{\dagger}^{\mathcal{S}_{1}}\right)=\pi / 2 .
$$

6 Comparison between the norm and the geodesic metric in Λ_{*}

In this section we examine the metric d in Λ, given by the infima of lengths of curves in Λ_{*}. The metric at the tangent spaces is given by the usual operator norm, therefore any curve joining T_{0} and T_{1} in Λ_{*} will be longer than the line segment. Therefore

$$
d\left(T_{0}, T_{1}\right) \geq\left\|T_{0}-T_{1}\right\| .
$$

In this section, we shall estimate a constant for the reverse inequality. We shall use the local cross section of the action of the unitary group in Λ_{*}. First note that

Lemma 6.1. Let $T_{0}, T_{1} \in \Lambda$, and $p_{j}\left(T_{i}\right), i=0,1, j=0, \ldots, n$ the spectral projections given in section 1.

1. In general,

$$
\left\|p_{j}\left(T_{0}\right)-p_{j}\left(T_{1}\right)\right\| \leq \frac{n+1}{2}\left\|T_{0}-T_{1}\right\| .
$$

2. If, additionally, $T_{0}, T_{1} \in \Lambda_{*}$, then, for $1 \leq j \leq n$,

$$
\left\|p_{j}\left(T_{0}\right)-p_{j}\left(T_{1}\right)\right\| \leq \kappa(n)\left\|T_{0}-T_{1}\right\|,
$$

where $\kappa(n)=\max \left\{2 \sin \left(\frac{\pi}{n}\right), \frac{1}{\sin \left(\frac{\pi}{n}\right)}\right\}$. For $j=0$,

$$
\left\|p_{0}\left(T_{0}\right)-P_{0}(T)\right\| \leq 2\left\|T_{0}-T\right\| .
$$

Proof. If $T_{0}, T_{1} \in \Lambda$, then

$$
\begin{gathered}
T_{0}^{j}-T_{1}^{j}=T_{0}^{j}-T_{0}^{j-1} T_{1}+T_{0}^{j-1} T_{1}-\ldots+T_{0} T_{1}^{j-1}-T_{1}^{j} \\
=\sum_{k=0}^{j-1} T_{0}^{k}\left(T_{0}-T_{1}\right) .
\end{gathered}
$$

Therefore $\left\|T_{0}^{j}-T_{1}^{j}\right\| \leq j\left\|T_{0}-T_{1}\right\|$. Using this inequality in the formula

$$
p_{k}(t)=p_{n}\left(w^{-k} t\right)=\sum_{j=1}^{n} w^{j-k} t^{j}
$$

one obtains

$$
\left\|p_{k}\left(T_{0}\right)-P_{k}\left(T_{1}\right)\right\| \leq \frac{1}{n} \sum_{j=1}^{n} j\left\|T_{0}-T_{1}\right\|=\frac{n+1}{2}\left\|T_{0}-T_{1}\right\| .
$$

If $T_{0}, T_{1} \in \Lambda_{*}$, then the resolvent operators of T_{0} and T_{1} are normal. Using the Riesz integral form of the spectral projection,
$p_{j}\left(T_{0}\right)-p_{j}\left(T_{1}\right)=\frac{1}{2 \pi i} \int_{C_{j}}\left(z 1-T_{0}\right)^{-1}-\left(z 1-T_{1}\right)^{-1} d z=\frac{1}{2 \pi i} \int_{C_{j}}\left(z 1-T_{0}\right)^{-1}\left(T_{1}-T_{0}\right)\left(z 1-T_{1}\right)^{-1} d z$,
where C_{j} is a circle centered at w^{j} if $j \neq 0$, with radius equal to the minimum between $1 / 2$ and $\sin \left(\frac{\pi}{n}\right)$ (which is half the distance between w^{j} and the nearest eigenvalue). For $j=0, C_{0}$ is centered at 0 , with radius $1 / 2$. Therefore, for $j \geq 1$

$$
\left\|p_{j}\left(T_{0}\right)-p_{j}\left(T_{1}\right)\right\| \leq \frac{1}{2 \pi} \int_{C_{j}}\left\|\left(z 1-T_{0}\right)^{-1}\right\|\left\|\left(z 1-T_{0}\right)^{-1}\right\| d z\left\|T_{0}-T_{1}\right\| .
$$

Using that the resolvents are normal,

$$
\left\|\left(z 1-T_{i}\right)^{-1}\right\|=\frac{1}{d\left(z, \Omega_{n}\right)}=\frac{1}{\min \left\{1 / 2, \sin \left(\frac{\pi}{n}\right)\right\}}
$$

Thus

$$
\left\|p_{j}\left(T_{0}\right)-p_{j}\left(T_{1}\right)\right\| \leq \frac{1}{2 \pi}\left(\max \left\{2, \frac{1}{\sin \left(\frac{\pi}{n}\right)}\right\}\right)^{2} 2 \pi \sin \left(\frac{\pi}{n}\right)\left\|T_{0}-T_{1}\right\|=\kappa(n)\left\|T_{0}-T_{1}\right\|
$$

For $j=0$, if $z \in C_{0}$ (i.e. $\left.|z|=1 / 2\right), d\left(z, \Omega_{n}\right) \geq 1 / 2$, and therefore

$$
\left\|p_{0}\left(T_{0}\right)-p_{0}(T)\right\| \leq 2\left\|T_{0}-T\right\|
$$

Let us recall the formula for the local cross section of the unitary action on systems of selfadjoint projections [9], which serves as the local cross sections for action on Λ_{*}. Fix $T_{0} \in \Lambda_{*}$, and let $T \in \Lambda_{*}$ such that $\left\|p_{k}\left(T_{0}\right)-p_{k}(T)\right\|<1$ (for instance, if $\left\|T_{0}-T\right\|<\frac{1}{\kappa(n)}$). Then

$$
G=\sum_{j=0}^{n} p_{j}(T) p_{j}\left(T_{0}\right)
$$

is invertible. Indeed, put $P_{j}=p_{j}\left(T_{0}\right)$ and $Q_{j}=p_{j}(T)$. Then $G^{*} G=\sum_{j=0}^{n} P_{j} Q_{j} P_{j}$. Note that each $P_{j} Q_{j} P_{j}$ is an invertible operator acting in $R\left(P_{j}\right)$, beacause $\left\|P_{j} Q_{j} P_{j}-P_{j}\right\| \leq\left\|P_{j}-Q_{j}\right\|<1$. Therefore $G^{*} G$ is invertible in \mathcal{H}, which is the direct sum of the ranges $R\left(P_{j}\right)$. Analogously $G G^{*}$ is invertible, and thus G is invertible.

Let $G=U|G|$ be the polar decomposition of G, i.e. $U_{T_{0}}(T)=U=G|G|^{-1}$. Then this unitary operator $U_{T_{0}}(T)$ verifies

$$
U_{T_{0}}(T) T_{0} U_{T_{0}}^{*}(T)=T
$$

We shall need the following elementary estimate:
Lemma 6.2. Let $T, Z \in \mathcal{B}(\mathcal{H})$. Then

$$
\left\|\left[T, e^{Z}\right]\right\| \geq\|[T, Z]\|\left(1-\|Z\| e^{\|Z\|}\right)
$$

Proof. Note that

$$
\left[T, e^{Z}\right]=[T, Z]+\frac{1}{2}\left[T, Z^{2}\right]+\frac{1}{6}\left[T, Z^{3}\right]+\ldots
$$

On the other hand

$$
\left[T, Z^{k}\right]=T Z^{k}-Z T Z^{k-1}+Z T Z^{k-1}-Z^{2} T Z^{k-2}+\ldots+Z^{k-1} T Z-Z^{k} T=\sum_{j=1}^{k} Z^{k-j}[T, Z] Z^{j}
$$

and thus

$$
\left\|\left[T, Z^{k}\right]\right\| \leq k\|Z\|^{k}\|[T, Z]\|
$$

Therefore

$$
\left\|\left[T, e^{Z}\right]\right\| \geq\|[T, Z]\|-\|[T, Z]\| \sum_{k=1}^{\infty} \frac{1}{k!} k\|Z\|^{k}=\|[T, Z]\|\left(1-\|Z\| e^{\|Z\|}\right)
$$

Let T, T_{0} in Λ_{*} as above. We estimate now $\|U-1\|$, where $U=U_{T_{0}}(T)$.
Lemma 6.3. With the current notations,

$$
\|U-1\|<\frac{2 r}{1-r}
$$

where $r=\max _{0 \leq j \leq n}\left\|p_{j}\left(T_{0}\right)-p_{j}(T)\right\|$.
Proof. Denote by $P_{j}=p_{j}\left(T_{0}\right)$ and $Q_{j}=p_{j}(T)$. Then $U=G\left(G^{*} G\right)^{-1 / 2}$, where $G=\sum_{j=0}^{n} Q_{j} P_{j}$. Thus

$$
U=\left(\sum_{j=0}^{n} Q_{j} P_{j}\right)\left(\sum_{l=0}^{n} P_{l} Q_{l} P_{l}\right)^{-1 / 2} .
$$

Note that since $\left\|P_{l}-Q_{l}\right\|<1, P_{l} Q_{l} P_{l}$ is a positive invertible operator in $\mathcal{B}\left(R\left(P_{l}\right)\right)$ (we shall denote by $\left(P_{l} Q_{l} P_{l}\right)^{-1}$ its inverse there, note that also the square root is computed there). In particular, note that $Q_{l} P_{l}\left(P_{l} Q_{l} P_{l}\right)^{-1 / 2}=Q_{l}\left(P_{l} Q_{l} P_{l}\right)^{-1 / 2}$. Thus

$$
U-1=\left(G-\left(G^{*} G\right)^{1 / 2}\right)\left(G^{*} G\right)^{-1 / 2}
$$

Then

$$
\|U-1\| \leq\left\|G-\left(G^{*} G\right)^{1 / 2}\right\|\left\|\left(G^{*} G\right)^{-1 / 2}\right\|
$$

Note that

$$
\left\|G-\left(G^{*} G\right)^{1 / 2}\right\|=\left\|\sum_{j=0}^{n} Q_{j} P_{j}-\left(P_{j} Q_{j} P_{j}\right)^{1 / 2}\right\| \leq\left\|\sum_{j=0} Q_{j} P_{j}-P_{j}\right\|+\left\|\sum_{j=0}^{n} P_{j}-\left(P_{j} Q_{j} P_{j}\right)^{1 / 2}\right\| .
$$

The first term is bounded by r. The second term is bounded by $\max _{0 \leq j \leq n}\left\|P_{j}-\left(P_{j} Q_{j} P_{j}\right)^{1 / 2}\right\|$. Note that if an operator A verifies $0 \leq A \leq 1$, then $\left\|1-A^{1 / 2}\right\| \leq\|1-A\|$. Using this fact with $P_{j} Q_{j} P_{j}$ in $\mathcal{B}\left(R\left(P_{j}\right)\right)$, one has that the second term is also bounded by r.

It remains to consider

$$
\left\|\left(G^{*} G\right)^{-1 / 2}\right\|=\left\|\left(G^{*} G\right)^{-1}\right\|^{1 / 2}=\left\|\sum_{j=0}^{n}\left(P_{j} Q_{j} P_{j}\right)^{-1}\right\|^{1 / 2}=\max _{0 \leq j \leq n}\left\|\left(P_{j} Q_{j} P_{j}\right)^{-1}\right\|^{1 / 2}
$$

Since $\left\|P_{j} Q_{j} P_{j}-P_{j}\right\| \leq\left\|Q_{j}-P_{j}\right\|<1$, it follows that $\left(P_{j} Q_{j} P_{j}\right)^{-1}=\sum_{l \geq 0}\left(P_{j}-P_{j} Q_{j} P_{j}\right)^{l}$. Thus

$$
\left\|\left(P_{j} Q_{j} P_{j}\right)^{-1}\right\| \leq \sum_{l \geq 0}\left\|P_{j}-P_{j} Q_{j} P_{j}\right\|^{l} \leq \sum_{l \geq 0}\left\|P_{j}-Q_{j}\right\|^{l} \leq \frac{1}{1-r} .
$$

If $U=e^{Z}$, with $Z^{*}=-Z$, and U is close to 1 in order that Z can be chosen (unique) with $\|Z\|<\pi$, then it is a straightforward fact that

$$
\|U-1\|=2 \sin \left(\frac{\|Z\|}{2}\right) .
$$

Putting these facts together, we have the following

Lemma 6.4. Let $T_{0}, T \in \Lambda_{*}$ such that $\left\|p_{j}\left(T_{0}\right)-p_{j}(T)\right\|<r<1$. Put $U_{T_{0}}(T)=e^{Z}$, with $Z^{*}=-Z$ and $\|Z\|<\pi$. Then

$$
\left\|\left[T_{0}, U_{T_{0}}(T)\right]\right\| \geq\left\|\left[T_{0}, Z\right]\right\|\left(1-2 \arcsin \left(\frac{r}{1-r}\right) e^{2 \arcsin \left(\frac{r}{1-r}\right)}\right)
$$

With the above notations, note that

$$
\left\|T-T_{0}\right\|=\left\|e^{Z} T_{0} e^{-Z}-T_{0}\right\|=\left\|\left[T_{0}, e^{Z}\right]\right\| \geq\left\|\left[T_{0}, Z\right]\right\| C(r)
$$

where $C(r)=1-2 \arcsin \left(\frac{r}{1-r}\right) e^{2 \arcsin \left(\frac{r}{1-r}\right)}$. On the other hand, the curve $\gamma(t)=e^{t Z} T_{0} e^{-t Z}$ is a smooth curve in Λ_{*} joining $\gamma(0)=T_{0}$ and $\gamma(1)=T$. Therefore

$$
d\left(T, T_{0}\right) \leq \ell(\gamma)=\int_{0}^{1}\|\dot{\gamma}(t)\| d t=\int_{0}^{1}\left\|e^{t Z} Z T_{0} e^{-t Z}-e^{t Z} T_{0} Z e^{-t Z}\right\|=\left\|\left[T_{0}, Z\right]\right\|
$$

Thus we have proved the following corollary:
Corollary 6.5. Let $T, T_{0} \in \Lambda_{*}$ such that $\left\|T-T_{0}\right\|<\frac{r}{\kappa(n)}$. Then

$$
d\left(T, T_{0}\right) \leq C(r)\left\|T-T_{0}\right\|
$$

References

[1] E. Andruchow, G. Corach, D. Stojanoff, Projective spaces of a C^{*}-algebra. Integral Equations Operator Theory 37 (2000), no. 2, 143-168.
[2] E. Andruchow, D. Stojanoff, Nilpotent operators and systems of projections. J. Operator Theory 20 (1988), no. 2, 359-374.
[3] E. Andruchow, D. Stojanoff, Differentiable structure of similarity orbits. J. Operator Theory 21 (1989), no. 2, 349-366.
[4] J.K. Baksalary, X. Liu, Xiaoji, An alternative characterization of generalized projectors. Linear Algebra Appl. 388 (2004), 61-65.
[5] J.K. Baksalary, O.M. Baksalary, X. Liu, Further properties of generalized and hypergeneralized projectors. Linear Algebra Appl. 389 (2004), 295-303.
[6] J.K. Baksalary, O.M. Baksalary, X. Liu, G. Trenkler, Further results on generalized And hypergeneralized projectors. Linear Algebra Appl. 429 (2008), no. 5-6, 10381050.
[7] J. Benítez, N. Thome, Characterizations and Linear combinations of k generalized projectors. Linear Algebra Appl. 410 (2005), 150-159.
[8] G. Corach, H. Porta, L. Recht, Differential geometry of systems of projections in Banach algebras. Pacific J. Math. 143 (1990), no. 2, 209-228.
[9] G. Corach, H. Porta, L. Recht, The geometry of spaces of projections in C^{*} algebras, Adv. Math. 101 (1993), 59-77.
[10] C. Davis, W.M. Kahan, H.F. Weinberger, Norm preserving dilations and their applications to optimal error bounds. SIAM J. Numer. Anal. 19 (1982), 445-469.
[11] H.-K. Du, Y. Li, Yuan, The spectral characterization of generalized projections. Linear Algebra Appl. 400 (2005), 313-318.
[12] H.-K. Du, W.-F. Wang, Y.-T. Duan, Ying-Tao, Path connectivity of k-Generalized projectors. Linear Algebra Appl. 422 (2007), no. 2-3, 712-720.
[13] J. Gross, G. Trenkler, Gtz Generalized and hypergeneralized projectors. Linear Algebra Appl. 264 (1997), 463-474.
[14] D.A. Herrero. Approximation of Hilbert space operators. Vol. 1. Second edition. Pitman Research Notes in Mathematics Series, 224. Longman Scientific \& Technical, Harlow; copublished in the United States with John Wiley \& Sons, Inc., New York, 1989. xii+332 pp.
[15] Z.V. Kovárik, Manifolds of frames of projectors. Linear Algebra Appl. 31 (1980), 151-158
[16] Z.V. Kovárik, N. Sherif, Characterization of similarities between two n-frames of projectors. Linear Algebra Appl. 57 (1984), 57-69.
[17] Z.V. Kovárk, N. Sherif, Geodesics and near-Geodesics in the manifolds of proJECTOR FRAMES. Linear Algebra Appl. 99 (1988), 259-277.
[18] L. Lebtahi, N.A. Thome, A note on k-Generalized projections. Linear Algebra Appl. 420 (2007), no. 2-3, 572-575.
[19] H. Porta, L. Recht, Minimality of geodesics in Grassmann manifolds, Proc. Amer. Math. Soc. 100 (1987), 464-466.
[20] G. W. Stewart, A note on generalized and hypergeneralized projectors. Linear Algebra Appl. 412 (2006), no. 2-3, 408-411.
E. Andruchow

Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento
J.M. Gutierrez 1150, (1613) Los Polvorines, Argentina
and
Instituto Argentino de Matemática
Saavedra 15, 3er. piso, (1083) Buenos Aires, Argentina.
e-mail: eandruch@ungs.edu.ar
G. Corach

Instituto Argentino de Matemática
Saavedra 15, 3er. piso, (1083) Buenos Aires, Argentina.
e-mail: gcorach@fi.uba.ar
M. Mbekhta

UFR de Mathematiques, F-59655 Villeneuve d'Ascq, France
e-mail: mostafa.mbekhta@math.univ-lille1.fr

