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Abstract Over the last decades, human activities have
strongly affected ecosystems, with pervasive increases in
nutrient loadings, abiotic stress, and altered herbivore pres-
sure. The evaluation of how those environmental factors
interact to influence plant–pathogen interactions under nat-
ural conditions becomes essential to fully understand the
ecology of diseases and anticipate the possible effects of
global change on natural and agricultural systems. In a SW
Atlantic salt marsh, we performed a field factorial experi-
ment to evaluate the effect of herbivory, salinity, and nutri-
ent availability, three main limiting factors for salt marsh
plant growth, on the infection of the fungus Claviceps
purpurea (ergot) upon the cordgrass Spartina densiflora.
Results show that herbivory has no effect but both nutrients
and salinity increase fungal infection. The combined effect
of salinity and nutrients is not additive but interactive.
Salinity stress increases infection at ambient nutrient levels
but in combination with fertilizer it buffers the higher infec-
tion produced by increased nutrient availability. Since both,
nitrogen availability and salinity are factors predicted to
globally increase due to human impact on ecosystems, this
interaction between environmental factors and ergot infec-
tion can have strong effects on natural and productive agri-
cultural systems.
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Introduction

Environmental factors are widely recognized to affect plant–
pathogen interactions (Colhoun et al. 1972; Schoeneweiss
1975). Abiotic stress, nutrient availability, and herbivory, for
instance, can regulate the quantity and quality of food avail-
able for the pathogen, influence plant growth and develop-
ment, or even affect plant resistance mechanisms, thus
controlling (either positively or negatively) plant–pathogen
interactions in multiple and complex ways (e.g. Singh 2002;
Silliman et al. 2005; Walters and Bingham 2007). Natural
systems are usually subject to a combination of environ-
mental factors that can have separate and interactive effects
on plant disease, but most of the works evaluating the effect
of these factors on plant–pathogen interaction are usually
focused in the isolation study of one environmental variable
under agricultural or model systems (Coakley et al. 1999).
In light of the continuous increase in agricultural nitrogen
fertilization that runoff into natural systems, the increases of
abiotic (e.g., thermal, hydric and salinity) stress and the
human-induced changes in herbivory pressure, the evalua-
tion of how multiple environmental factors influence plant–
pathogen interactions under natural conditions becomes es-
sential to fully understand the ecology of diseases and
anticipate the possible effects of global change on natural
and agricultural systems (Garrett et al. 2006).

Salt marshes are vegetated intertidal areas that, although
very productive, are characterized by the presence of strong
limiting factors for plant growth, including salinity, anoxia,
nitrogen availability, and herbivory (Pennings and Bertness
2001; Jefferies et al. 2006). Those systems are also subject
to periodic disease outbreaks because of high horizontal
transmission rates favored in these dense, but relatively
low-diversity, communities (Fisher et al. 2007; Daleo et al.
2009). This renders marshes good model systems to evaluate
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the relative importance of nutrients, consumers, and abiotic
stress on plant–pathogen interactions.

The ergot Claviceps purpurea, an ascomycetous toxic
fungus, is a well-known pathogen of cereals and forage
grasses. The fungus infects plant ovary and replace the
tissue with a single sclerotium (known as ergot), making
infected flowers unable to produce seeds (Fisher et al.
2005a). Three distinct groups or lineages are recognized
within the species (Pazoutová et al. 2000). The largest
group, G1, infect land grasses, G2 infect wetland grasses
whereas G3 infect salt marsh grasses and is commonly
associated to plants of the genus Spartina (Fisher et al.
2005b). Due to the wide host range and the economic
damage it produces, the biology, genetics, and physiology
of the fungus have been extensively studied (Tudzynsky and
Shceffer 2004) but the ecology of its infectiousness in
natural systems is still poorly understood.

The salt marshes occurring between southern Brazil
(32° S) and northern Argentinean Patagonia (42° S) are
dominated by the perennial grasses Spartina densiflora
and Spartina alterniflora (Isacch et al. 2006) and by the
intertidal burrowing crab Neohelice granulata, which in-
habits the entire intertidal zone and can occur at densities
higher than 60 crabs m−2 (Iribarne et al. 1997). Through
grazing, crabs can exert strong control over marsh plant
production by directly removing plant tissue (Alberti et al.
2007) as well as by facilitating fungal infection in crab-
generated injuries (Daleo et al. 2009). In addition, abiotic
stress (salinity) can influence the outcome of top-down (crab
herbivory) and bottom-up (nutrient availability) control of
plant production (Alberti et al. 2010), thereby potentially
affecting resource availability for other species that use
Spartina plants as food source. Thus, salt, nutrients, and
herbivory can influence ergot–Spartina interactions. In this
context, the objective of this work was to evaluate the
separate and interactive effect of salinity, nutrient availabil-
ity, and crab herbivory on the incidence of C. purpurea
infection upon Spartina plants.

Methods

A fully factorial experiment was conducted in a S. densiflora
marsh at Mar Chiquita coastal lagoon (Argentina, 37° 32′ S;
57° 19′W). The factorial design (2×2×2) includes: herbivory
manipulation (with and without crabs), salinity (with and
without salt addition), and nutrients (with and without nutrient
addition). The experiment started on March 2010 and each
treatment combination was replicated six times (plots of
0.7×0.7 m separated by at least 1.5 m). Crab-exclusion plots
were surrounded by a plastic mesh (10-mm opening) fence
0.6 m high and supported by iron stakes. Crab exclosures have
been widely used in this system and the use of cage controls

revealed that there are no associated cage artifacts (e.g. Alberti
et al. 2007; Daleo et al. 2007; Daleo and Iribarne 2009; Daleo
et al. 2009; Alberti et al. 2010). Salt addition treatments
received 20 g (40 g m−2) of commercial pelletized salt spread
superficially every 2 weeks. Nutrient addition treatments re-
ceived 60 g (1,440 g m−2 year−1) of a slow-release pelletized
fertilizer (NPK, 29:5:5) monthly (see Alberti et al. 2010).
Fertilizer was spread into six artificial holes (5 cm deep,
1 cm diameter) evenly distributed in each plot that were then
filled with mud. In this system, crab herbivory decreases S.
densiflora biomass nearly 20 % and nutrients addition in-
crease it near 450 % (Alberti et al. 2010).

At the beginning of May 2011 (14 months after starting
the experiment), the total number of spikes (unbranched
inflorescences with flowers arranged along the axis) and
the number of spikes with infection per plot was recorded
(one control and one unfertilized exclosure were lost).
Presence of infection was defined as the presence of at least
one ergot (characteristic black sclerotium) per spike (Fisher
et al. 2007). Proportion of infected spikes was then used as
an estimation of infection incidence (Raybould et al. 1998).
The null hypotheses of no effect of herbivory, salt, and
nutrients on infection incidence were evaluated with a
three-way ANOVA considering herbivory, salt, and nutri-
ents as fixed factors. As plant-to-plant contact facilitates the
spread of C. purpurea, spike density may contribute to
infection incidence (Fisher et al. 2007), thus, spike density
was included as co-variable. Post hoc comparisons were
done with the Tukey’s pairwise multiple comparison test.
To evaluate the effectiveness of salt loading rates, sediment
salinity was measured in each plot by collecting sediment
samples (5 cm diameter, 8 cm deep), which were weighed,
dried to constant weight, mixed with a known volume of
distilled water, measured by refractometry after 48 h, and
then corrected by the initial sample water volume, to reflect
the original concentration of salt. Previous works in this
system have proven the effectiveness of nutrient loading
rates, which increased nitrates by more than an order of
magnitude (1.37±0.14 μM without nutrient addition vs.
85.24±24.28 μM with nutrient addition, see Daleo et al.
2008).

Results

Salt addition increased pore-water salinity by near 20 %
(0.015 g salt g sediment−1 without salt addition vs. 0.019 g
salt g sediment−1 with salt addition). During the experiment,
crab exclusion increased the number of live stems per plot
near 50% (i.e., from 32±1.3 (mean ± SE) to 51±1.6 stems per
plot), nutrient addition increased it near 460 % (from 32±1.3
to 147.5±4.7), and salt addition decreased it near 15 % (from
32±1.3 to 27.8±1.5). Results show that there was no effect of
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herbivory neither as a main factor (F1,38=0.54, P=0.5) nor in
combination with the other factors (herbivory × nutrients:
F1,38=0.06, P=0.8; herbivory × salt: F1,38=0.76, P=0.4;
herbivory × nutrients × salt: F1,38=0.01, P=0.9, Fig. 1).
Nutrients and salt, on the contrary, showed a significant inter-
action (nutrients × salt: F1,38=8.65, P<0.01, Fig. 1); while salt
addition increased infection at ambient nutrient levels, salt
addition decreased infection levels at enriched nutrient levels
(Fig. 1). Nutrient addition increased infection to a large extent
when additional salt was not added, and much less so when
additional salt was added (Fig. 1). Even though nutrients
increased spike production more than 6-fold (from 8.4 to 52
spikes m−2 on average), spike density showed no effect when
included as co-variate (F1,37=1.01, P>0.3).

Discussion

Plants in natural systems are under the continuous influence of
different biotic and abiotic stressors (Thaler and Bostock
2004). Plant response to one given stress can affect the prob-
ability of being affected by another stress (Rostás et al. 2003).
Herbivores, for example, can influence pathogen infection by
transporting disease between plants, inoculating disease prop-
agules (Silliman and Newell 2003) and physically damaging
plant protective barriers (Daleo et al. 2009) and even by
activating plant-induced defenses (Hatcher et al. 2004).
Although crabs can either directly decrease Spartina biomass
by more than 20% (Alberti et al. 2010), facilitate the infection
of the fungus Phaeosphaeria spartinicola in damaged
Spartina leaves (further reducing plant biomass; Daleo et al.
2009), and affect spike production (Canepuccia et al. 2008),
our results show that there was no effect of crab exclusion on
ergot incidence, suggesting that infection incidence is inde-
pendent of plant biomass and that crabs do not inoculate the
spores.

The effect of nutrients on plant predisposition to patho-
gens is variable (Walters and Bingham 2007), nitrogen
addition, for instance, is recognized to increase fungal dis-
ease severity in multiple ways, including increases in tissue
N available as a resource for the pathogen, decreases in the
production of defensive compounds, and increases in host
density (see Mitchell et al. 2003 and references therein).
Here we find that N fertilization can strongly increase
C. purpurea infection on S. densiflora, although our exper-
imental design does not allow us to discriminate the specific
process involved. This result suggests important implica-
tions since nitrogen availability is one widespread compo-
nent of global change (Vitousek et al. 1997). As C. purpurea
infection can severely reduce seed production of infected
plants (Fisher et al. 2005a, b) and produce alkaloids
that decrease herbivory (Lev-Yadun and Halpern 2007),
indirect effects of nutrient enrichment through increased
C. purpurea infection can potentially affect plant communi-
ty structure, as well as granivorous and herbivorous species
(including livestock poisoning), and impact considerably
natural and agricultural systems.

Salinity is also recognized to affect the vulnerability of
plants to pathogenic fungi, mainly because the physiological
response to dehydration stress involves a systemic increase
of abscisic acid which is a key phytohormone in the plant
response to phatogenic attacks and has been demonstrated
to increase susceptibility (Xiong and Yang 2003; Atkinson
and Urwin 2012). Results show that without nutrient
addition, salt addition increased infection, suggesting that
plants subject to salinity stress are prone to be infected by
C. purpurea. At high nutrient levels, in contrast, salinity
decreased infection. This may be because salinity negatively
affects nitrogen uptake by higher plants (Linthurst and
Seneca 1981; Esmaili et al. 2008). Thus, the positive effect
of nutrients on infection levels is partially canceled when
salinity increases. As soil salinity levels are also expected to
rise due to global warming (Lynch and St. Clair 2004),
especially on salt marshes (see Silliman et al. 2005), this
interactive effect may ameliorate the possible effects of
global change on ergot infection in natural communities.

Disease development has great between-year variability
and is influenced by specific weather or geographic condi-
tions; thus, experimental replication on other marshes or
over different years should allow us to evaluate if the ob-
served levels of infection are common. Our experimental
design and results show that both nutrients and salt stress
can affect C. purpurea infection on salt marshes and that
the combined effect of the two factors is not additive
but interactive given that salinity buffers the otherwise
higher infection produced by increased nutrient availability.
Understanding the outcome of host–pathogen interactions
on the complex ecosystem context is essential to anticipate
possible responses to global change (Dukes et al. 2009) and
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Fig. 1 The effect of crab herbivory, salinity, and nutrients on infection
incidense of the pathogenic fungus C. purpurea on the saltmarsh plant
S. densiflora. Bars are means and standard errors. Letters indicate
significant differences (P<0.05) between treatments of the interaction
between nutrients and salt (Tukey test)
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our work highlights the importance of taking into account
multiple environmental factors in order to predict human
impacts on environmental stress–plant–pathogen interac-
tions and their effects on ecosystems.
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