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Abstract. The aim of this paper is to study the variety of distributive nearlattices
with greatest element. We will define the class of N -spaces as sober-like topological
spaces with a basis of open, compact, and dually compact subsets satisfying an ad-
ditional condition. We will show that the category of distributive nearlattices with
greatest element whose morphisms are semi-homomorphisms is dually equivalent to
the category of N -spaces with certain relations, called N -relations. In particular,
we give a duality for the category of distributive nearlattices with homomorphisms.
Finally, we apply these results to characterize topologically the one-to-one and onto
homomorphisms, the subalgebras, and the lattice of the congruences of a distributive
nearlattice.

1. Introduction and preliminaries

Implication algebras, also called Tarski algebras, were introduced by J. C.
Abbott in [1]. It is well known that this class of algebras is the algebraic
semantic of the {→}-fragment of the classical propositional logic. Abbott [1]
established a bijective correspondence between the variety of Tarski algebras
and the class of all upper-bounded join-semilattices for which every principal
filter is a Boolean lattice. The implication algebras are an example of a more
general case, i.e., upper-bounded join-semilattices where each principal filter
is only a lattice. They are called nearlattices. These structures have been
investigated by W. H. Cornish and R. C. Hickman in [11] and [14], and recently
by I. Chajda, R. Halaš, J. Kühr and M. Kolař́ık in [7], [8], [9] and [10]. The
class of nearlattices is a variety. This fact was proved first by Hickman in [14],
and subsequently by Chajda and Kolař́ık in [10]. In this latter paper, they
show that the class of distributive nearlattices is a variety of a certain type.

Topological dualities are very useful in the study of various types of al-
gebras. In [12], G. Grätzer gave a topological representation for distributive
semilattices extending the known topological representation due to Stone for
bounded distributive lattices and Boolean algebras [15]. Grätzer’s represen-
tation was extended in [5] to a full duality. Similarly, a full duality between
Tarski algebras and certain topological spaces with a distinguished topological
basis of compact and open subsets was developed in [6]. In this paper, we will
present a Stone style duality for distributive nearlattices with greatest element
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that extends the ones developed in [6]. We will introduce the notion of N -
space and we will prove that there is a dual equivalence between the category
of distributive nearlattices with greatest element, whose morphisms are semi-
homomorphisms, and the category of N -spaces with certain relations, called
N -relations. As a particular case, if the distributive nearlattice has a least
element, we obtain a bounded distributive lattice and the well-known repre-
sentation of Stone. Later, this duality is a generalization of the Stone duality
for bounded distributive lattices. Moreover, if every prime ideal is maximal,
then the distributive nearlattice is a Tarski algebra. Thus, we obtain the
representation of Tarski algebras developed in [6].

The paper is organized as follows. In Section 2, we will recall the definitions
and some basic properties of distributive nearlattices. Also, we prove that ev-
ery prime ideal is maximal if and only if the distributive nearlattice is a Tarski
algebra. In Section 3, we will introduce N -spaces and we will prove that any
distributive nearlattice A is isomorphic to the dual distributive nearlattice of
some N -space, and conversely that for any N -space, there exists a distributive
nearlattice A that is homeomorphic to the dual space of A. In Section 4, we
shall define the category of N -spaces with N -relations and we will apply the
results of Section 3 to prove that there exists a correspondence between semi-
homomorphisms of distributive nearlattices and N -relations. Later, we will
extend these results to homomorphisms and N -functional relations. In Sec-
tion 5, we shall give several applications of duality developed in the previous
sections to describe some algebraic concepts. First, we give a dual description
of 1-1 and onto homomorphisms. We will show a topological representation of
lattices of subalgebras and congruences of distributive nearlattices.

Let us consider a poset 〈X,≤〉. A subset U ⊆ X is said to be increasing
(decreasing) if for all x, y ∈ X such that x ∈ U (y ∈ U) and x ≤ y, we
have y ∈ U (x ∈ U). The set of all decreasing subsets of X is denoted by
Pd(X). For each Y ⊆ X, the increasing (decreasing) set generated by Y is
[Y ) = {x ∈ X : ∃y ∈ Y y ≤ x} ((Y ] = {x ∈ X : ∃y ∈ Y x ≤ y}). If Y = {y},
then we will write [y) and (y] instead of [{y}) and ({y}], respectively. The set
complement of a subset Y ⊆ X will be denoted by Y c or X \ Y .

A join-semilattice with greatest element is an algebra 〈A,∨, 1〉 of type (2, 0)
such that the operation ∨ is idempotent, commutative, associative, and a∨1 =
1 for all a ∈ A. As usual, the binary relation ≤ defined by x ≤ y if and only if
x∨ y = y is a partial order. In what follows, we shall write simply semilattice.

A filter of a semilattice A is a non-empty subset F ⊆ A with 1 ∈ F , such
that if x ≤ y and x ∈ F , then y ∈ F , and if x, y ∈ F , then x∧ y ∈ F whenever
x∧ y exists. The set of all filters of A is denoted by Fi(A). The intersection of
any collection of filters is again a filter. For any non-empty subset X ⊆ A, the
set F (X) = {a ∈ A : ∃x1, . . . , xn ∈ X,∃x1∧· · ·∧xn and x1∧· · ·∧xn ≤ a} is the
filter generated by X. A filter F is said to be finitely generated if F = F (X)
for some finite non-empty subset X of A. The set of all finitely generated
filters of A will be denoted by Fif (A).
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A subset I of a semilattice A is called an ideal if for every x, y ∈ A, if x ≤ y

and y ∈ I, then x ∈ I, and if x, y ∈ I, then x∨y ∈ I. The set of all ideals of A

is denoted by Id(A). The least ideal containing X is called ideal generated by
X and will be denoted by I(X). We shall say that a non-empty proper ideal
P is prime if for all x, y ∈ A, if x ∧ y exists and is in P , then x ∈ P or y ∈ P .
The set of all prime ideals of A will be denoted by X(A).

2. Nearlattices

In this section, we will recall the definitions and basic properties of distribu-
tive nearlattices with greatest element.

Definition 2.1. A nearlattice is a semilattice A where for each a ∈ A, the
principal filter [a) = {x ∈ A : a ≤ x} is a bounded lattice with respect to the
induced order ≤ of A.

In [14], R. C. Hickman proves that the class of nearlattices forms a variety.
Since the operation meet is defined only in a corresponding principal filter, we
will indicate this fact by indices, i.e., ∧a denotes the meet in [a). Note that if
x, y ∈ [a) and b ≤ a, then x, y ∈ [b) and x ∧a y = x ∧b y. The operation ∧ is
not everywhere defined, and so nearlattices are partial algebras only. However,
they can be treated as total algebras via the ternary operation m on A defined
by

m(x, y, a) = (x ∨ a) ∧a (y ∨ a). (∗)

Lemma 2.2. Let A be a nearlattice, and let m be defined by (∗). The following
identities are satisfied:

(1) m(x, y, x) = x,
(2) m(x, x, y) = m(y, y, x),
(3) m(m(x, x, y), m(x, x, y), z) = m(x, x,m(y, y, z)),
(4) m(x, y, z) = m(y, x, z),
(5) m(m(x, y, z), w, z) = m(x, m(y, w, z), z),
(6) m(x, m(y, y, x), z) = m(x, x, z),
(7) m(m(x, x, z), m(x, x, z), m(x, y, z)) = m(x, x, z),
(8) m(m(x, x, z), m(y, y, z), z) = m(x, y, z),
(9) m(x, x, 1) = 1.

Let 〈A, m, 1〉 be an algebra of type (3, 0) satisfying the identities (1), (2),
and (3) of Lemma 2.2. If we define x ∨ y = m(x, x, y), then 〈A,∨, 1〉 is a
semilattice with greatest element. We can introduce the induced order ≤
by x ≤ y if and only if m(x, x, y) = y. It is clear that ≤ is an order on
the set A which coincides with the induced order of the assigned semilattice
〈A,∨, 1〉. The following theorem shows that nearlattices can be regarded as
pure algebras.
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Theorem 2.3. Let 〈A, m, 1〉 be an algebra of type (3, 0) satisfying the identities
(1)–(9) of Lemma 2.2. Then the assigned semilattice S(A) = 〈A,∨, 1〉 is a
nearlattice, where for every a ∈ A and x, y ∈ [a),

x ∧a y = m(x, y, a).

Let 〈S,∨, 1〉 be a nearlattice and A(S) = 〈S, m, 1〉 be an algebra with the
ternary operation m given by (∗). Then S(A(S)) = S. On the other hand, if
〈A, m, 1〉 is an algebra of type (3, 0) satisfying the identities (1)–(9) of Lemma
2.2, then A(S(A)) = A.

By Lemma 2.2 and Theorem 2.3, there is a one-to-one correspondence be-
tween nearlattices and ternary algebras satisfying the above conditions. So, we
shall alternate between these two faces of nearlattices and use that one which
will be more convenient. The class of all nearlattices, considered as ternary
algebras, is a variety. We denote by N the variety of nearlattices.

As in lattice theory, the class of distributive nearlattices play a special role.

Definition 2.4. Let A ∈ N . Then A is distributive if for each a ∈ A, the
principal filter [a) = {x ∈ A : a ≤ x} is a bounded distributive lattice.

Example 2.5. Let 〈X,≤〉 be a poset. Then 〈Pd(X),m,X〉 is a distributive
nearlattice where m(A, B,C) = (A∪C)∩ (B ∪C) for every A, B, C ∈ Pd(X).
The triple 〈Pd(X),m,X〉 is of great importance because any distributive near-
lattice can be embedded into a distributive nearlattice of this form, as we will
prove later (see also [8]).

The distributivity of a nearlattice A can be characterized in terms of the
ternary operation m or the set Fi(A). The following result can be found in [8],
[10] and [11].

Theorem 2.6. Let A ∈ N . Then A is distributive if and only if satisfies
either of the following identities:

(1) m(x, m(y, y, z), w) = m(m(x, y, w), m(x, y, w), m(x, z, w)),
(2) m(x, x,m(y, z, w)) = m(m(x, x, y), m(x, x, z), w).

We will denote by DN the variety of distributive nearlattices.

Theorem 2.7. Let A ∈ N . The following conditions are equivalent:

(1) A is distributive.
(2) 〈Fi(A) ∪ {∅},⊆〉 is a distributive lattice.
(3) 〈Fif (A),⊆〉 is a distributive lattice.

One of the most important results in the theory of distributive lattices is
Birkhoff’s Prime Ideal Theorem. We have a theorem analogous for the variety
of distributive nearlattices. See [13] or [8].

Theorem 2.8. Let A ∈ DN . Let I ∈ Id(A) and let F ∈ Fi(A) such that
I ∩ F = ∅. Then there exists P ∈ X(A) such that I ⊆ P and P ∩ F = ∅.
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Corollary 2.9. Let A ∈ DN . Then every proper ideal of A is the intersection
of prime ideals.

Proof. Let I be a proper ideal of A. For each a /∈ I, we have I ∩ [a) = ∅. Since
[a) ∈ Fi(A), by Theorem 2.8 there exists Pa ∈ X(A) such that I ⊆ Pa and
a /∈ Pa. Thus, I =

⋂
{Pa ∈ X(A) : a /∈ I}. �

Let A ∈ DN ; consider the poset 〈X(A),⊆〉 and ϕ : A → Pd(X(A)), defined
by ϕ(a) = {P ∈ X(A) : a /∈ P}. We have the following result.

Theorem 2.10 (Representation theorem). Let A ∈ DN . Then A is
isomorphic to the subalgebra ϕ(A) = {ϕ(a) : a ∈ A} of Pd(X(A)).

Proof. It is clear that ϕ(a) ∈ Pd(X(A)) for all a ∈ A. It is also easy to check
that ϕ(a ∨ b) = ϕ(a) ∪ ϕ(b), ϕ(1) = X(A), and if there exists a ∧ b, then
ϕ(a∧ b) = ϕ(a)∩ϕ(b). So, ϕ(m(a, b, c)) = m(ϕ(a), ϕ(b), ϕ(c)). It follows that
ϕ is 1-1 by Theorem 2.8. Thus, A ∼= ϕ(A). �

Definition 2.11. Let A ∈ DN and I a non-empty ideal of A.

(1) We say that I is irreducible if for every I1, I2 ∈ Id(A) such that I1∩I2 = I,
then I1 = I or I2 = I.

(2) We say that I is maximal if it is proper and for every J ∈ Id(A), if I ⊆ J ,
then J = I or J = A.

Similar to the theory of distributive lattices, we have the following result.

Lemma 2.12. Let A ∈ DN . Let P ∈ Id(A).

(1) If P is irreducible, then P is prime.
(2) If P is maximal, then P is prime.
(3) P is maximal if and only if for all a ∈ A, if a /∈ P , then I(P ∪ {a}) = A.

Proof. (1): Let P be a irreducible ideal. Let a, b ∈ A be such that a∧ b exists
and a∧b ∈ P . Then (a ∧ b] = (a]∩(b] ⊆ P . We prove that (P∨(a])∩(P∨(b]) ⊆
P∨((a]∩(b]). Let x ∈ (P∨(a])∩(P∨(b]). Then there exist p1, p2 ∈ P such that
x ≤ p1∨a and x ≤ p2∨b. Since P is a ideal, p = p1∨p2 ∈ P and p∨a, p∨b ∈ [x).
As [x) is a distributive lattice, x ≤ (p ∨ a) ∧x (p ∨ b) = p ∨ (a ∧ b). Hence,
x ∈ (P ∪ {a ∧ b}] = P ∨ ((a] ∩ (b]). The other inclusion it is immediate. So,
P = (P ∨ (a])∩ (P ∨ (b]) and consequently, a ∈ P or b ∈ P . Thus, P is prime.

(2): Clearly, every maximal ideal is irreducible, so (2) follows from (1).
(3): If P is maximal, then it is clear that I(P ∪ {a}) = A, for all a /∈ A.
Conversely. Suppose that there exists Q ∈ Id(A) such that P ⊂ Q, i.e.,

there exists a ∈ Q \ P . We prove that Q = A. Let b ∈ A. So, b ∈ I(P ∪ {a}),
i.e., there exists p ∈ P such that b ≤ p ∨ a. As p ∨ a ∈ Q and Q is an ideal,
b ∈ Q. Thus, Q = A. �

Let A ∈ DN and a, b ∈ A. Suppose that b ∈ [a). We define the sets

b� = {x ∈ A : x ∨ b = 1} and b⊥a = {x ∈ A : ∃ (x ∧ b) and x ∧ b = a},
where the set b⊥a depends of a.
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Lemma 2.13. Let A ∈ DN and a ∈ A.

(1) b� is a filter.
(2) b⊥a is closed under join.

Proof. (1): We prove that b� is a filter. Let x, y ∈ A such that x ≤ y and
x ∈ b�. Then x ∨ b ≤ y ∨ b and x ∨ b = 1. So, y ∨ b = 1 and y ∈ b�. Let
x, y ∈ b� such that x∧ y exists. Since [b) is a distributive lattice, (x∧ y)∨ b =
(x ∨ b) ∧b (y ∨ b) = 1. Thus, x ∧ y ∈ b� and b� is a filter.

(2): Let x, y ∈ b⊥a . Then there exist x ∧ b and y ∧ b such that x ∧ b = a

and y ∧ b = a. Thus, a ≤ x ∧ b and a ≤ y ∧ b. As [a) is a distributive lattice,
(x ∧ b) ∨ (y ∧ b) = (x ∨ y) ∧a b = a. So, x ∨ y ∈ b⊥a . �

If every prime ideal of a distributive nearlattice is maximal, then we have
a Tarski algebra or implication algebra introduced by Abbott [1].

Theorem 2.14. Let A ∈ DN . The following conditions are equivalent:

(1) For all a ∈ A, [a) is a Boolean lattice.
(2) Every prime ideal is maximal.

Proof. (1) ⇒ (2): Let P ∈ X(A) and a /∈ P . Let us consider I(P ∪ {a}); we
prove that I(P ∪ {a}) = A. Suppose that I(P ∪ {a}) ⊂ A. Then there exists
x ∈ A such that x /∈ I(P ∪ {a}). So, by Theorem 2.8, there exists Q ∈ X(A)
such that a ∈ Q, P ⊆ Q and x /∈ Q. Let p ∈ P . Since p ≤ p ∨ a and [p) is a
Boolean lattice, there exists z ∈ [p) such that (p∨a)∨z = 1 and (p∨a)∧z = p.
As (p ∨ a) ∧ z ∈ P and P is prime, we have p ∨ a ∈ P or z ∈ P . If p ∨ a ∈ P ,
then a ∈ P , which is a contradiction. If z ∈ P , then z ∈ Q. Thus, we have
a ∨ z = (p ∨ a) ∨ z = 1 ∈ Q, which is a contradiction because Q is prime.
Therefore, I(P ∪ {a}) = A and P is maximal.

(2) ⇒ (1): Let a ∈ A. We prove that [a) is a Boolean lattice, i.e., that every
b ∈ [a) has a complement. Let b ∈ [a) such that b �= 1 and b �= a. Suppose
that b has no complement. Let us consider the sets b� and b⊥a . It follows that
b /∈ b� and b /∈ b⊥a . We prove that I(b⊥a ∪ {b}) is a proper ideal of A. In effect,
if 1 ∈ I(b⊥a ∪ {b}), then there exists x ∈ b⊥a such that x ∨ b = 1. So, x ∧ b = a

exists, which is a contradiction because we assumed that b has no complement.
Then 1 /∈ I(b⊥a ∪{b}) and there exists P ∈ X(A) such that b ∈ P and b⊥a ⊆ P .
Now, we prove that a /∈ F (P c ∪ {b}). If a ∈ F (P c ∪ {b}), then there exists
p /∈ P such that p ∧ b exists and p ∧ b ≤ a. Since p ∨ a, b ∈ [a) and [a) is a
distributive lattice, we have

(p ∨ a) ∧a b = (p ∧ b) ∨ (a ∧ b) = (p ∧ b) ∨ a = a.

So, p∨a ∈ b⊥a and p∨a ∈ P . As P is an ideal, p ∈ P , which is a contradiction.
Then a /∈ F (P c ∪ {b}) and by Theorem 2.8, there exists Q ∈ X(A) such that
a ∈ Q, Q∩P c = ∅, and b /∈ Q. So, Q ⊆ P . Since every prime ideal is maximal,
we have P = Q. Therefore, b ∈ P and b /∈ P , which is a contradiction. Then
b has a complement and [a) is a Boolean lattice. �
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A filter P of a distributive nearlattice A is prime if for all x, y ∈ A, if
x ∨ y ∈ P , then x ∈ P or y ∈ P . It is easy to see that an ideal P is prime if
and only if P c is a prime filter. Moreover, in the case of Tarski algebras, the
concepts of filter and deductive system coincide.

3. Topological representation

In this section, we will define the dual topological space of a distributive
nearlattice, called N -space, and we will prove that any distributive nearlattice
can be represented by means of an N -space.

3.1. N-spaces. We recall some topological notions. A topological space
〈X, TK〉 with a base K will be denoted by 〈X,K〉. A subset Y ⊆ X is ba-
sic saturated if Y =

⋂
{Ui : Ui ∈ K and Y ⊆ Ui}, i.e., it is an intersection of

basic open sets. The basic saturation Sb(Y ) of a subset Y is the smallest basic
saturated set containing Y . If Y = {y}, we write Sb({y}) = Sb(y).

Given a topological space 〈X,K〉 we consider the following family of subsets
of P(X): DK(X) = {U : U c ∈ K}, i.e., DK(X) is the set of complements of
elements of K.

Definition 3.1. Let 〈X,K〉 be a topological space. Let Y be a non-empty
subset of X.

(1) We say that Y is irreducible if for every U, V ∈ DK(X), we have that
U ∩ V ∈ DK(X), and Y ∩ (U ∩ V ) = ∅ implies Y ∩ U = ∅ or Y ∩ V = ∅.

(2) We say that Y is dually compact if for every family F = {Ui : i ∈ I} ⊆ K
such that

⋂
{Ui : i ∈ I} ⊆ Y , there exists a finite family {U1, . . . , Un} of

F such that U1 ∩ · · · ∩ Un ⊆ Y .

It is easy to see that Sb(x) is irreducible for all x ∈ X. We will introduce
on X the following relation: x ≤ y iff y ∈ Sb(x).

We note that Sb(x) = [x). The relation ≤ is reflexive and transitive, but not
necessarily antisymmetric. The following result is well known, but we include
it for the reader’s convenience.

Lemma 3.2. Let 〈X,K〉 be a topological space.

(1) If each irreducible basic saturated subset is the saturation of a unique
single point, then ≤ is an order relation.

(2) The relation ≤ is an order if and only if 〈X,K〉 is T0.

Proof. (1): It is easy to check that ≤ is reflexive and transitive. Finally, to
show that is antisymmetric, suppose that x ≤ y and y ≤ x. Then Sb(x) =
Sb(y). By uniqueness, x = y holds.

(2): Let x, y ∈ X such that x �= y. Since ≤ is an order, x � y or y � x.
Suppose, for example, that x � y. Then y /∈ Sb(x), i.e., there exists U ∈ K
such that x ∈ U and y /∈ U . Thus, 〈X,K〉 is T0.
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Conversely, we prove that ≤ is antisymmetric. Let x, y ∈ X such that x ≤ y

and y ≤ x, i.e., y ∈ Sb(x) and x ∈ Sb(y). Suppose that x �= y. Since 〈X,K〉 is
T0, there exists U ∈ DK(X) such that x ∈ U c and y /∈ U c. But y ∈ Sb(x) and
y ∈ U c, which is a contradiction. �

Now, we define the topological spaces that are dual to distributive nearlat-
tices.

Definition 3.3. An N -space is a structure 〈X,K〉 such that

(1) K is a basis of open, compact, and dually compact subsets for a topology
TK on X.

(2) For every U, V, W ∈ K, we have (U ∩ W ) ∪ (V ∩ W ) ∈ K.
(3) For every irreducible basic saturated subset Y of X, there exists a unique

x ∈ X such that Sb(x) = Y .

Remark 3.4. (1) By Lemma 3.2, the relation ≤ is an order in an N -space.
(2) It is clear that an N -space is automatically T0 and every U ∈ DK(X) is

decreasing.
(3) By item (2) of the Definition 3.3, we have that for every U, V ∈ K,

(U∩V )∪(U∩V ) = U∩V ∈ K. Therefore, K is closed under finite intersections
and 〈DK(X),∪, X〉 is a semilattice.

(4) We note that N -spaces are a generalization of topological spaces asso-
ciated with Tarski algebras introduced in [6].

Let us prove that the triple 〈DK(X),∪, X〉 has the structure of a distributive
nearlattice.

Theorem 3.5. Let 〈X,K〉 be an N -space. Then 〈DK(X),∪, X〉 is a distribu-
tive nearlattice.

Proof. Let C ∈ DK(X). We consider [C) = {U ∈ DK(X) : C ⊆ U} and show
that 〈[C),∩C ,∪, C,X〉 is a bounded distributive lattice. Let A, B ∈ [C). Then
C ⊆ A and C ⊆ B. Since DK(X) is a semilattice, A ∪ B ∈ [C). On the other
hand, by condition (2) of the Definition 3.3, we have

(A ∪ C) ∩C (B ∪ C) = A ∩C B ∈ DK(X).

Then A ∩C B ∈ [C). Further, (A ∪ C) ∩C (B ∪ C) = (A ∩C B) ∪ C and
[C) is a bounded distributive lattice. Thus, 〈DK(X),∪, X〉 is a distributive
nearlattice. �

The structure 〈DK(X),∪, X〉 will be called the dual distributive nearlattice
of X.

We will give some equivalences of item (3) of Definition 3.3.

Proposition 3.6. Let 〈X,K〉 be a topological space where K is a basis of open
and compact subsets for a topology TK on X. Suppose (U ∩W )∪ (V ∩W ) ∈ K
for every U, V, W ∈ K. The following conditions are equivalent:
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(1) 〈X,K〉 is T0, and if {Ui : i ∈ I} and {Vj : j ∈ J} are non-empty families
of DK(X) such that

⋂
{Ui : i ∈ I} ⊆

⋃
{Vj : j ∈ J}, then there exist

U1, . . . , Un and V1, . . . , Vk such that U1 ∩ · · · ∩ Un ⊆ V1 ∪ · · · ∪ Vk and
U1 ∩ · · · ∩ Un ∈ DK(X).

(2) 〈X,K〉 is T0, every U ∈ K is dually compact, and H : X → X(DK(X))
defined by H(x) = {U ∈ DK(X) : x /∈ U} for each x ∈ X, is onto.

(3) Every U ∈ K is dually compact and for every irreducible basic saturated
subset Y of X, there exists a unique x ∈ X such that Sb(x) = Y .

Proof. (1) ⇒ (2): It is clear that every U ∈ K is dually compact and H is well
defined. Let P ∈ X(DK(X)). We prove that

F =
⋂
{Ui : Ui /∈ P} ∩

⋂ {
V c

j : Vj ∈ P
}
�= ∅.

If F = ∅, then
⋂
{Ui : Ui /∈ P} ⊆

⋃
{Vj : Vj ∈ P}. Thus, there are U1, . . . , Un

and V1, . . . , Vk such that U1∩· · ·∩Un ⊆ V1∪· · ·∪Vk and U1∩· · ·∩Un ∈ DK(X).
Since V1 ∪ · · ·∪Vk ∈ P and P is an ideal, U1 ∩ · · ·∩Un ∈ P . As P is prime, we
have that Ui ∈ P for some 1 ≤ i ≤ n, which is a contradiction. Then F �= ∅,
i.e., there exists x ∈

⋂
{Ui : Ui /∈ P} ∩

⋂ {
V c

j : Vj ∈ P
}
, which implies that

P = H(x).
(2) ⇒ (3): Let Y be an irreducible basic saturated subset of X. Let us

consider the set PY = {U ∈ DK(X) : Y ∩ U = ∅}. It is easy to see that PY

is an ideal of DK(X). We prove that PY is prime. Suppose that there exists
U1 ∩ U2 ∈ DK(X) such that U1 ∩ U2 ∈ PY . Then Y ∩ (U1 ∩ U2) = ∅. Since Y

is irreducible, Y ∩ U1 = ∅ or Y ∩ U2 = ∅, i.e., U1 ∈ PY or U2 ∈ PY . Thus, PY

is a prime ideal of DK(X). Since X is T0, the map H is injective, and as H

is onto, there exists a unique y ∈ X such that H(y) = PY . Now it is easy to
check that Y = Sb(y).

(3) ⇒ (1): By Lemma 3.2, X is T0. Let A = {Ui : i ∈ I} and B = {Vj : j ∈
J} be non-empty families of DK(X) such that

⋂
{Ui : i ∈ I} ⊆

⋃
{Vj : j ∈ J}.

If I(B)∩F (A) = ∅, then by Theorem 2.8 there exists P ∈ X(DK(X)) such that
I(B) ⊆ P and P ∩ F (A) = ∅. Let us consider the set Y =

⋂
{W c : W ∈ P}.

It follows that Y is a basic saturated. We see that Y is irreducible. Let
U, V ∈ DK(X) such that U ∩ V ∈ DK(X) and Y ∩ (U ∩ V ) = ∅. Then
Y ⊆ U c ∪ V c. Since U c ∪ V c is dually compact, there exist W1, . . . , Wn ∈ P

such that W c
1 ∩ · · · ∩ W c

n ⊆ U c ∪ V c, i.e., U ∩ V ⊆ W1 ∪ · · · ∪ Wn. Thus,
U ∩ V ∈ P and by the primality of P , U ∈ P or V ∈ P . It follows that
Y ∩ U = ∅ or Y ∩ V = ∅. So, Y is irreducible. By hypothesis, there exists a
unique y ∈ X such that Sb(y) = Y . It is easy to see that H(y) = P . Then
B ⊆ H(y) and H(y) ∩ A = ∅. Thus, y ∈

⋂
{Ui : i ∈ I} and y /∈

⋃
{Vj : j ∈ J},

which is a contradiction. So, there exists Q ∈ F (A) ∩ I(B), i.e., there exist
U1, . . . , Un ∈ A and V1, . . . , Vk ∈ B such that U1 ∩ · · · ∩ Un ∈ DK(X) and
U1 ∩ · · · ∩ Un ⊆ Q ⊆ V1 ∪ · · · ∪ Vk. Therefore, we have U1 ∩ · · · ∩ Un ⊆
V1 ∪ · · · ∪ Vk. �
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Following the definition given in [3], we recall that a Stone space (also called
spectral space) is a topological space 〈X,K〉 such that the following hold:

(1) 〈X,K〉 is T0.
(2) The family K of all compact and open subsets is a ring of sets and a basis

for a topology TK on 〈X,K〉.
(3) If {Ui : i ∈ I} and {Vj : j ∈ J} are non-empty families of non-empty

compact and open subsets and
⋂
{Ui : i ∈ I} ⊆

⋃
{Vj : j ∈ J}, then there

exist U1, . . . , Un and V1, . . . , Vk such that U1 ∩ · · · ∩ Un ⊆ V1 ∪ · · · ∪ Vk.

By Proposition 3.6, we see that Stone spaces are a particular class of N -
spaces.

Remark 3.7. We note that if 〈X,K〉 is an N -space, then X ∈ K iff DK(X)
is a bounded distributive lattice iff K is a ring of sets. Moreover, by item (2)
of the Definition 3.3, we have that K is a ring of sets iff K is the set of all
compact and open subsets of X. So, we obtain the well-known topological
representation for bounded distributive lattices given by M. H. Stone in [15].

3.2. The dual space of a distributive nearlattice. We will provide a
construction which shows that any distributive nearlattice A is isomorphic to
the dual distributive nearlattice of some N -space. In other words, we will
prove that for any distributive nearlattice A, there exists an N -space 〈X,K〉
such that A ∼= DK(X).

Let A ∈ DN . Let us consider the set X(A) and the family of sets

KA = {X(A) \ ϕ(a) = ϕ(a)c : a ∈ A},

where we recall that ϕ(a) = {P ∈ X(A) : a /∈ P} for a ∈ A. We note that
X(A) =

⋃
{ϕ(a)c : a ∈ A} because any prime ideal is non-empty. Moreover,

for any a, b ∈ A and P ∈ X(A) such that P ∈ ϕ(a)c ∩ ϕ(b)c, there exists
c = a ∨ b ∈ A such that P ∈ ϕ(c)c = ϕ(a)c ∩ ϕ(b)c. Thus, the family KA is a
basis for a topology TA on X(A). Let us denote by F(A) = 〈X(A),KA〉 the
topological space associated with A, called the dual space of A.

Remark 3.8. It is immediate to see that F(A) is T0.

Proposition 3.9. Let A ∈ DN and let F(A) be the dual space of A. If
{ϕ(bi) : bi ∈ B} and {ϕ(cj) : cj ∈ C} are non-empty families of DKA

(X(A))
such that ⋂

{ϕ(cj) : cj ∈ C} ⊆
⋃
{ϕ(bi) : bi ∈ B},

then there are b1, . . . , bn ∈ B and c1, . . . , ck ∈ C with

ϕ(c1) ∩ · · · ∩ ϕ(ck) ⊆ ϕ(b1) ∪ · · · ∪ ϕ(bn)

such that c1 ∧ · · · ∧ ck exists.

Proof. Let I(B) be the ideal generated by B, and let F (C) be the filter gener-
ated by C. If I(B) ∩ F (C) = ∅, then by Theorem 2.8, there exists P ∈ X(A)
such that I(B) ⊆ P and P ∩F (C) = ∅. Moreover, P /∈ ϕ(bi) for every bi ∈ B.
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So, P /∈
⋃
{ϕ(bi) : bi ∈ B}. On the other hand, P ∈ ϕ(cj) for every cj ∈ C,

i.e., P ∈
⋂
{ϕ(cj) : cj ∈ C}, which is a contradiction. Thus, I(B)∩ F (C) �= ∅.

Then there exist b1, . . . , bn ∈ B and c1, . . . , ck ∈ C such that c1∧· · ·∧ck exists
and c1∧· · ·∧ck ≤ b1∨· · ·∨bn. Therefore, we have ϕ(c1∧· · ·∧ck) ⊆ ϕ(b1∨· · ·∨bn)
and ϕ(c1) ∩ · · · ∩ ϕ(ck) ⊆ ϕ(b1) ∪ · · · ∪ ϕ(bn). �

For each I ∈ Id(A) and each F ∈ Fi(A), consider the sets

α(I) = {P ∈ X(A) : I � P} and β(F ) = {P ∈ X(A) : P ∩ F = ∅}.
It is easy to prove that α(I) =

⋃
{ϕ(a) : a ∈ I} and β(F ) =

⋂
{ϕ(b) : b ∈ F}

for each I ∈ Id(A) and F ∈ Fi(A), respectively. In particular, we have the
following result for finitely generated filters.

Lemma 3.10. Let A ∈ DN . Let F = F ({b1, . . . , bk}) be a finitely generated
filter. Then β(F ) = ϕ(b1) ∩ · · · ∩ ϕ(bk).

Proof. Let P ∈ β(F ). Then P ∩ F = ∅ and {b1, . . . , bk} ⊆ P c. Thus, bi /∈ P

for every bi. Therefore, P ∈ ϕ(b1) ∩ · · · ∩ ϕ(bk). Conversely, let P ∈ ϕ(b1) ∩
· · · ∩ ϕ(bk). Then {b1, . . . , bk} ⊆ P c. Since P is a prime ideal, P c is a filter
and F ({b1, . . . , bk}) ⊆ P c. Thus, P ∩ F = ∅ and P ∈ β(F ). �

In the following proposition, we characterize certain special subsets of the
dual space of a distributive nearlattice.

Proposition 3.11. Let A ∈ DN and let F(A) be the dual space of A.

(1) A subset Y ⊆ X(A) is basic saturated in F(A) if and only if there exists
an ideal I of A such that Y = α(I)c.

(2) A subset U ⊆ X(A) is open in F(A) if and only if there exists a filter F

of A such that U = β(F )c.
(3) A subset U ⊆ X(A) is open and compact in F(A) if and only if there exist

a1, . . . , an ∈ A such that U = β(F ({a1, . . . , an}))c.
(4) Every element of KA is an open, compact, and dually compact subset of

F(A).
(5) For every a, b, c ∈ A, [ϕ(a)c ∩ ϕ(c)c] ∪ [ϕ(b)c ∩ ϕ(c)c] ∈ KA.

Proof. (1): Let Y ⊆ F(A) be basic saturated. Then Y =
⋂
{ϕ(b)c : b ∈ B}

for some B ⊆ A. Let us consider the ideal I = I(B). So, we have α(I)c =⋂
{ϕ(a)c : a ∈ I}. We prove that Y = α(I)c. It is evident that α(I)c ⊆ Y .

On the other hand, let P ∈
⋂
{ϕ(b)c : b ∈ B} and let a ∈ I. Then there exist

b1, . . . , bn ∈ B such that a ≤ b1 ∨ · · · ∨ bn. Thus, ϕ(a) ⊆ ϕ(b1) ∪ · · · ∪ ϕ(bn),
or equivalently, ϕ(b1)c ∩ · · · ∩ ϕ(bn)c ⊆ ϕ(a)c. Since

⋂
{ϕ(b)c : b ∈ B} ⊆

ϕ(b1)c ∩ · · · ∩ ϕ(bn)c, we have P ∈ ϕ(a)c. As this holds for a ∈ I, then
P ∈

⋂
{ϕ(a)c : a ∈ I} = α(I)c.

(2): Let U be an open subset of F(A). Since KA is a base for a topology
TA on X(A), U =

⋃
{ϕ(b)c : b ∈ B} for some B ⊆ A. Let us consider the filter

F = F (B). We prove that U c = β(F ). Let P ∈ U c; then b /∈ P for every
b ∈ B. We prove that b /∈ P for every b ∈ F . In the contrary case, if b ∈ P for
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some b ∈ F , then there exist b1, . . . , bn ∈ B such that b1 ∧ · · · ∧ bn exists and
b1 ∧ · · · ∧ bn ≤ b. So, b1 ∧ · · · ∧ bn ∈ P and as P is prime, we have bi ∈ P for
some bi, which is a contradiction. Therefore , P ∩ F = ∅ and P ∈ β(F ).

(3): Let U be an open and compact subset of F(A). By item (2) above,
we have U = β(F )c =

⋃
{ϕ(a)c : a ∈ F} for some filter F on A. Since U is

compact, there exists {a1, . . . , an} ⊆ F such that

U = ϕ(a1)c ∪ · · · ∪ ϕ(an)c = [ϕ(a1) ∩ · · · ∩ ϕ(an)]c = β(F ({a1, . . . , an}))c.

The converse follows from Lemma 3.10.
(4): For every a ∈ A, ϕ(a)c = β([a))c. By (3), we have that ϕ(a)c is an

open and compact subset of F(A). It follows from Proposition 3.9 that each
ϕ(a)c is dually compact.

(5): Let a, b, c ∈ A. Then

[ϕ(a)c ∩ ϕ(c)c] ∪ [ϕ(b)c ∩ ϕ(c)c] = ϕ(a ∨ c)c ∪ ϕ(b ∨ c)c

= ϕ((a ∨ c) ∧c (b ∨ c))c,

where (a ∨ c) ∧c (b ∨ c) exists in [c) and ϕ((a ∨ c) ∧c (b ∨ c))c ∈ KA. �

Remark 3.12. In distributive semilattices (see [5]), the set of all open and
compact subsets forms a basis for a topology. In the case of distributive
nearlattices, not all open and compact subsets of the topology TA are of the
form ϕ(a)c. Indeed, if U ⊆ X(A) is open then U =

⋃
{ϕ(b)c : b ∈ B}, for

some subset B ⊆ A. If U is compact, there exist b1, . . . , bn ∈ B such that

U = ϕ(b1)c ∪ · · · ∪ ϕ(bn)c = [ϕ(b1) ∩ · · · ∩ ϕ(bn)]c.

But we have ϕ(b1) ∩ · · · ∩ ϕ(bn) = ϕ(b1 ∧ · · · ∧ bn) only in the case that the
infimum b1 ∧ · · · ∧ bn exists.

Theorem 3.13. Let A ∈ DN . Then F(A) is an N -space and the mapping
ϕ : A → DKA

(X(A)) is an isomorphism of distributive nearlattices.

Proof. By Propositions 3.6, 3.9, 3.11, and by definition of DKA
(X(A)), we

have A ∼= DKA
(X(A)), where ϕ is the isomorphism. �

Let 〈X, T 〉 be a topological space. We will denote by O(X) the set of all
open subsets of X. Let us denote by KO(X) the set of all compact and open
subsets of X. Note that O(X) is a lattice and KO(X) is a join-semilattice,
under set inclusion.

Remark 3.14. Let A ∈ DN . Then KO(X(A)) is a distributive lattice.

Lemma 3.15. Let A ∈ DN and let F(A) be the dual space of A.
(1) The lattices Fi(A) and O(X(A)) are isomorphic under the mapping

Ψ: Fi(A) → O(X(A)) defined by Ψ(F ) = β(F )c.
(2) The isomorphism Ψ induces an isomorphism between the lattices Fif (A)

and KO(X(A)).

Proof. This follows from Proposition 3.11 (2) and (3), respectively. �
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There is a natural question when an N -space is homeomorphic to the dual
space of a distributive nearlattice. Given an N -space, we will prove that
there exists a distributive nearlattice A such that the dual space F(A) is
homeomorphic to the initial N -space.

Theorem 3.16. Let 〈X,K〉 be an N -space. The mapping H : X → X(DK(X))
is a homeomorphism between the topological spaces X and X(DK(X)).

Proof. By condition (3) of the Definition 3.3 and by Proposition 3.6, it follows
that H is well defined, 1-1, and onto. Now we will prove that H is continuous.
By Proposition 3.11, given an open subset U of X(DK(X)), there exists a filter
F of DK(X) such that U = β(F )c. Let V =

⋂
{O : O ∈ F}. Then V is closed

in X. Let us prove that H−1(U) = V c. Let x ∈ X. Then

x /∈ V iff ∃O ∈ F (x /∈ O) iff ∃O ∈ F (O ∈ H(x))

iff H(x) ∩ F �= ∅ iff H(x) /∈ β(F )

iff H(x) ∈ U iff x ∈ H−1(U).

Thus, H is continuous.
Let us prove that for all U ∈ K, H(U) ∈ KDK(X). Let U ∈ K, then

x /∈ U iff x ∈ U c iff U c /∈ H(x)

iff H(x) ∈ ϕ(U c) iff H(x) /∈ ϕ(U c)c,

where ϕ(U c)c ∈ KDK(X). Therefore, H(U) = ϕ(U c)c. �

4. Topological duality

In the previous section, we have seen that distributive nearlattices are re-
lated to N -spaces. In this section, we will consider the algebraic category
whose objects are distributive nearlattices with semi-homomorphisms as ar-
rows, and we will prove that it is dually equivalent to the category whose
objects are N -spaces with certain binary relations as arrows.

Recall the definition of semi-homomorphism of distributive nearlattices.

Definition 4.1. Let A,B ∈ DN . We say that a map h : A → B is a semi-
homomorphism if for every a, b ∈ A,

(1) h(a ∨ b) = h(a) ∨ h(b),
(2) h(1) = 1.

Note that a semi-homomorphism h : A → B preserves the natural order,
i.e., if a ≤ b, then h(a) ≤ h(b). Moreover, if a∧b exists, then h(a)∧h(b) exists.
Indeed, as a ∧ b ≤ a, b, then h(a), h(b) ∈ [h(a ∧ b)). Since B is a nearlattice,
h(a) ∧ h(b) exists.

A homomorphism from the distributive nearlattice A into the distributive
nearlattice B is a semi-homomorphism h such that for all a, b ∈ A, if a ∧ b

exists, then h(a ∧ b) = h(a) ∧ h(b).
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Remarks 4.2. Let A, B ∈ DN and h : A → B a semi-homomorphism. Then
h is a homomorphism if and only if [b) ⊆ [a1) ∨ [a2) implies [h(b)) ⊆ [h(a1)) ∨
[h(a2)), for all a1, a2, b ∈ A. Indeed, suppose that h is a homomorphism. Let
a1, a2, b ∈ A such that [b) ⊆ [a1) ∨ [a2). Then, by the distributivity of Fi(A),
we have

[b) = [b) ∧ ([a1) ∨ [a2)) = ([b) ∧ [a1)) ∨ ([b) ∧ [a2)) = [b ∨ a1) ∨ [b ∨ a2).

Since (b ∨ a1) ∧ (b ∨ a2) exists, we have b = (b ∨ a1) ∧ (b ∨ a2). Then, as h is a
homomorphism and B is a distributive nearlattice, h(b) = h(b)∨(h(a1)∧h(a2))
and [h(b)) ⊆ [h(a1) ∧ h(a2)), i.e., [h(b)) ⊆ [h(a1)) ∨ [h(a2)).

Conversely, let a1, a2 ∈ A such that a1 ∧ a2 exists. Since h preserves the
natural order, h(a1 ∧ a2) ≤ h(a1) ∧ h(a2). Let z ∈ B such that z ≤ h(a1) and
z ≤ h(a2). Then [h(a1)) ∨ [h(a2)) ⊆ [z). Moreover, as a1 ∧ a2 exists, then
[a1 ∧ a2) = [a1) ∨ [a2). By hypothesis, [h(a1 ∧ a2)) ⊆ [h(a1)) ∨ [h(a2)) and
[h(a1 ∧ a2)) ⊆ [z), i.e., z ≤ h(a1 ∧ a2). Therefore, h(a1 ∧ a2) = h(a1) ∧ h(a2).

The following lemma gives a characterization of homomorphisms.

Lemma 4.3. Let A, B ∈ DN . The following conditions are equivalent:

(1) h is a homomorphism.
(2) h−1(P ) ∈ X(A) for every P ∈ X(B).

Proof. (1) ⇒ (2): Let P ∈ X(B). If h−1(P ) = A, then 1 ∈ h−1(P ) and
h(1) = 1 ∈ P , which is a contradiction because P is a proper ideal. Since h

preserves the natural order and it is a homomorphism, it follows that h−1(P )
is an ideal. Let a, b ∈ A be such that a ∧ b exists and a ∧ b ∈ h−1(P ). Then
h(a ∧ b) = h(a) ∧ h(b) ∈ P . Since P is prime, h(a) ∈ P or h(b) ∈ P , i.e.,
a ∈ h−1(P ) or b ∈ h−1(P ). Therefore, h−1(P ) ∈ X(A).

(2) ⇒ (1): We prove that h is monotone. Let a, b ∈ A such that a ≤ b.
Suppose that h(a) � h(b). Then there exists P ∈ X(B) such that h(b) ∈ P

and h(a) /∈ P ; thus, b ∈ h−1(P ) and a /∈ h−1(P ), which is in contradiction with
h−1(P ) being an ideal. Now we prove that h is a homomorphism. If h(1) < 1,
then there exists P ∈ X(B) such that h(1) ∈ P , that is, 1 ∈ h−1(P ), which
contradicts (2). Thus, h(1) = 1. Since h is monotone, h(a) ∨ h(b) ≤ h(a ∨ b)
for all a, b ∈ A. Suppose that h(a ∨ b) � h(a) ∨ h(b). Then there exists
Q ∈ X(B) such that h(a) ∨ h(b) ∈ Q and h(a ∨ b) /∈ Q. So, h(a), h(b) ∈ Q

and a, b ∈ h−1(Q). Since h−1(Q) ∈ X(A), we have a ∨ b ∈ h−1(Q). Thus,
h(a ∨ b) ∈ Q, which is a contradiction. Therefore, h(a ∨ b) = h(a) ∨ h(b). By
a similar argument, we obtain that if a ∧ b exists, then h(a ∧ b) = h(a) ∧ h(b).
So, h is a homomorphism. �

We will denote by SDN (A, B) the set of all semi-homomorphisms from A

into B. Let us consider the following algebraic categories whose objects are
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distributive nearlattices:

SDN = Distributive nearlattices + semi-homomorphisms,

HDN = Distributive nearlattices + homomorphisms.

We will prove that these categories are dually equivalent, respectively, to the
following categories, which will be defined later:

NR = N -spaces + N -relations,

NF = N -spaces + N -functional relations.

4.1. Duality for SDN . Let X1 and X2 be two sets and let R ⊆ X1 × X2

be a binary relation. For each x ∈ X1, let R(x) = {y ∈ X2 : (x, y) ∈ R}.
Recall that R is serial if for all x ∈ X1, we have that R(x) �= ∅.

Before studying the topological counterparts of semi-homomorphisms, we
consider the next example.

Example 4.4. Let 〈X1,K1〉 and 〈X2,K2〉 be two N -spaces. Let R ⊆ X1 × X2

be a binary relation. Suppose that R is serial. We define the mapping
hR : P(X2) → P(X1) by hR(U) = {x ∈ X1 : R(x) ∩ U �= ∅}. It is easy
to prove that hR ∈ SDN (P(X2),P(X1)).

Definition 4.5. Let 〈X1,K1〉 and 〈X2,K2〉 be two N -spaces. Let us consider
a binary relation R ⊆ X1 × X2. We say that R is an N -relation if it satisfies
the following properties:

(1) hR(U) ∈ DK1(X1), for every U ∈ DK2(X2).
(2) R(x) is a basic saturated subset of X2, for each x ∈ X1.
(3) R is serial.

We will denote by NR(X1, X2) the set of all N -relations between X1 and
X2. The following lemma characterizes condition (2) of Definition 4.5 by means
of the concepts developed in the previous section.

Lemma 4.6. Let 〈X1,K1〉 and 〈X2,K2〉 be two N -spaces. Let R ⊆ X1 × X2

be a binary relation. Suppose that hR(U) ∈ DK1(X1), for every U ∈ DK2(X2).
Then the following conditions are equivalent:

(1) R(x) is a basic saturated subset of X2, for all x ∈ X1.
(2) For any (x, y) ∈ X1 × X2,

(x, y) ∈ R iff h−1
R (HX1(x)) ⊆ HX2(y).

Proof. (1) ⇒ (2): Let x ∈ X1 and y ∈ X2. If (x, y) ∈ R, then it is easy to see
that h−1

R (HX1(x)) ⊆ HX2(y).
Suppose that (x, y) /∈ R. Since R(x) is basic saturated, we have R(x) =⋂
{V c : V ∈ DK2(X2) and R(x) ⊆ V c}. Then there exists V ∈ DK2(X2)

such that R(x) ⊆ V c and y /∈ V c. Thus, R(x) ∩ V = ∅ and y ∈ V , i.e.,
x /∈ hR(V ) ∈ DK1(X1) and V /∈ HX2(y). So, h−1

R (HX1(x)) � HX2(y).
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(2) ⇒ (1): Let x ∈ X1. We prove that

R(x) =
⋂
{V c : V ∈ DK2(X2) and R(x) ⊆ V c}.

Clearly, R(x) ⊆
⋂
{V c : V ∈ DK2(X2) and R(x) ⊆ V c}.

Let y ∈
⋂
{V c : V ∈ DK2(X2) and R(x) ⊆ V c}. Suppose that y /∈ R(x).

Then h−1
R (HX1(x)) � HX2(y), i.e., there exists V ∈ DK2(X2) such that

hR(V ) ∈ HX1(x) and V /∈ HX2(y). Thus, x /∈ hR(V ) and y ∈ V . It fol-
lows that R(x) ⊆ V c and y /∈ V c, which is a contradiction. �

Let 〈X1,K1〉 , 〈X2,K2〉, and 〈X3,K3〉 be three N -spaces, R ∈ NR(X1, X2),
and S ∈ NR(X2, X3). Similar to the case of distributive semilattices devel-
oped in [4], the usual set-theoretic composition of two N -relations may not
be an N -relation. This motivates us to define a new composition of two N -
relations. Define S ∗ R ⊆ X1 × X3 by

(x, z) ∈ (S ∗ R) iff (∀V ∈ DK3(X3))((S ◦ R)(x) ∩ V = ∅ ⇒ z /∈ V ),

where S ◦ R is the usual set-theoretic composition of R and S.

Remark 4.7. Note that S ◦ R ⊆ S ∗ R, and if S ◦ R is an N -relation, then
S ∗ R = S ◦ R.

We have the following result.

Lemma 4.8. Let 〈X1,K1〉 , 〈X2,K2〉, and 〈X3,K3〉 be three N -spaces. Let
R ∈ NR(X1, X2) and S ∈ NR(X2, X3). Then

(x, z) ∈ (S ∗ R) iff (hR ◦ hS)−1(HX1(x)) ⊆ HX3(z).

Proof. Let (x, z) ∈ (S ∗ R). For V ∈ DK3(X3), if (S ◦ R)(x) ∩ V = ∅, then
z /∈ V . So, x /∈ (hR ◦ hS)(V ). It follows that (hR ◦ hS)(V ) ∈ HX1(x), which
means that V ∈ (hR ◦ hS)−1(HX1(x)). Thus, for V ∈ DK3(X3), if V ∈
(hR ◦hS)−1(HX1(x)), then V ∈ HX3(z), i.e., (hR ◦hS)−1(HX1(x)) ⊆ HX3(z).
Conversely, we also obtain that if (hR◦hS)−1(HX1(x)) ⊆ HX3(z), then (x, z) ∈
(S ∗ R). �

Remark 4.9. By Lemma 4.8, it is easy to see that (S∗R)(x) = Sb((S◦R)(x))
for every x ∈ X1.

Corollary 4.10. Let 〈X1,K1〉 , 〈X2,K2〉, and 〈X3,K3〉 be three N -spaces. Let
R ∈ NR(X1, X2) and S ∈ NR(X2, X3). Then h(S∗R)(U) = (hR ◦ hS)(U).

Proof. Let U ∈ DK3(X3) and x ∈ (hR ◦ hS)(U); then (hR ◦ hS)(U) /∈ HX1(x),
and so U /∈ (hR ◦ hS)−1(HX1(x)). Since DK3(X3) is a distributive nearlattice,
by Theorem 2.8 there exists P ∈ X(DK3(X3)) with (hR ◦ hS)−1(HX1(x)) ⊆ P

and U /∈ P . By Proposition 3.6, there exists z ∈ X3 such that P = HX3(z). So,
(hR◦hS)−1(HX1(x)) ⊆ HX3(z) and U /∈ HX3(z). It follows by Lemma 4.8 that
(x, z) ∈ (S ∗R) and z ∈ U , i.e., (S ∗R)(x)∩U �= ∅. Therefore, x ∈ h(S∗R)(U).

Conversely, let x ∈ h(S∗R)(U). Then (S ∗ R)(x) ∩ U �= ∅, i.e., there ex-
ists z ∈ X3 such that (x, z) ∈ (S ∗ R) and z ∈ U . By Lemma 4.8, we



 Stone style duality for distributive nearlattices 143

have (hR ◦ hS)−1(HX1(x)) ⊆ HX3(z). Since U /∈ HX3(z), so U /∈ (hR ◦
hS)−1(HX1(x)). Thus, (hR ◦ hS)(U) /∈ HX1(x). Therefore, x ∈ (hR ◦ hS)(U).

�

The following technical result is needed to affirm that NR, the N -spaces
with N -relations as arrows, is a category.

Theorem 4.11. Let 〈X1,K1〉 , 〈X2,K2〉, and 〈X3,K3〉 be three N -spaces. Let
R ∈ NR(X1, X2) and S ∈ NR(X2, X3).

(1) ≤1 ∈ NR(X1, X1).
(2) R∗ ≤1 = R = ≤2 ∗R.
(3) S ∗ R ∈ NR(X1, X3).

Proof. (1): It is easy to see that ≤1 is serial and that ≤1 (x) is a basic
saturated subset of X2 for all x ∈ X1. We prove that h≤1(U) = U for all
U ∈ DK1(X1). By reflexivity of ≤1, we have U ⊆ h≤1(U). Conversely, suppose
that h≤1(U) � U . Thus, there exists x ∈ h≤1(U) such that x ∈ U c. So,
≤1 (x) ∩ U �= ∅, i.e., there is y ∈≤1 (x) and y ∈ U . Then x ≤1 y. By (2) of
Remark 3.4, U is decreasing and x ∈ U , which is a contradiction. Therefore,
h≤1(U) = U and ≤1 is an N -relation.

(2): By Lemmas 4.6, 4.8 and (1) above, we have

(x, z) ∈ (R∗ ≤1) iff (h≤1 ◦ hR)−1(HX1(x)) ⊆ HX3(z)

iff hR
−1(HX1(x)) ⊆ HX3(z) iff (x, z) ∈ R.

Analogously, ≤2 ∗R = R.
(3): Let U ∈ DK3(X3). By Corollary 4.10, it follows that

h(S∗R)(U) = (hR ◦ hS)(U) ∈ DK1(X1)

because S and R are N -relations. By Lemma 4.8, we have (S ∗ R)(x) =
Sb((S ◦R)(x)) for all x ∈ X1. Finally, since S ◦R is serial, we have that S ∗R

is serial. So, S ∗ R ⊆ X1 × X3 is an N -relation. �

In Section 3, we studied the relationship between distributive nearlattices
and N -spaces. We complete the duality by studying the correspondence be-
tween semi-homomorphisms and N -relations.

Let A, B ∈ DN and h ∈ SDN (A, B). Let us define the following binary
relation Rh ⊆ X(B) × X(A) by (P,Q) ∈ Rh iff h−1(P ) ⊆ Q.

The following Proposition is needed to show later that there exists a con-
travariant functor from the category SDN into NR.

Proposition 4.12. Let A, B ∈ DN and h ∈ SDN (A, B).

(1) For every P ∈ X(B) and for every a ∈ A, h(a) /∈ P if and only if there
exists Q ∈ X(A) such that (P,Q) ∈ Rh and a /∈ Q.

(2) Rh ∈ NR(X(B), X(A)).
(3) If C ∈ DN and k ∈ SDN (B, C), then Rk◦h = Rh ∗ Rk.
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(4) The mapping hRh
: DKA

(X(A)) → DKB
(X(B)) satisfies

ϕB ◦ h = hRh
◦ ϕA.

Proof. (1): Let P ∈ X(B) and a ∈ A. If h(a) /∈ P , then a /∈ h−1(P ). Since
h is a semi-homomorphism, it is easy to see that h−1(P ) is an ideal of A.
Thus, h−1(P ) ∩ [a) = ∅. By Theorem 2.8, there exists Q ∈ X(A) such that
h−1(P ) ⊆ Q and Q ∩ [a) = ∅. Therefore, (P,Q) ∈ Rh and a /∈ Q. Conversely,
by hypothesis, there exists Q ∈ X(A) such that (P,Q) ∈ Rh and a /∈ Q. Then
h−1(P ) ⊆ Q and a /∈ Q. It follows that h(a) /∈ P .

(2): Let P ∈ X(B). So, h−1(P ) is an ideal of A. We prove that 1 /∈ h−1(P ).
If 1 ∈ h−1(P ), then h(1) = 1 ∈ P , which is a contradiction because P is proper.
So, 1 /∈ h−1(P ). Then there exists Q ∈ X(A) such that h−1(P ) ⊆ Q. Hence,
(P,Q) ∈ Rh and Rh(P ) is serial. We prove Rh(P ) =

⋂
{ϕA(a)c : h(a) ∈ P}.

If Q ∈ Rh(P ), then h−1(P ) ⊆ Q. For each h(a) ∈ P , a ∈ h−1(P ) ⊆ Q. So,
a ∈ Q and Q ∈ ϕA(a)c. Therefore, Q ∈

⋂
{ϕA(a)c : h(a) ∈ P}. To see the

converse, suppose that Q ∈
⋂
{ϕA(a)c : h(a) ∈ P} and Q /∈ Rh(P ). Then

h−1(P ) � Q, i.e., there exists a ∈ h−1(P ) such that a /∈ Q. Thus, h(a) ∈ P

and Q /∈ ϕA(a)c, which is a contradiction. Finally, by (1), it follows that
ϕB(h(a)) = hRh

(ϕA(a)) for all a ∈ A. Thus, hRh
(ϕA(a)) ∈ ϕB(B) for each

ϕA(a) ∈ ϕA(A). Therefore, Rh is an N -relation.
(3): It suffices to prove that for all P ∈ X(C), we have

(Rk◦h)(P ) = Sb((Rh ◦ Rk)(P )) =
⋂
{ϕ(a)c ∈ KA : (Rh ◦ Rk)(P ) ⊆ ϕ(a)c} .

If Q ∈ (Rk◦h)(P ), then h−1(k−1(P )) ⊆ Q. Let ϕ(a)c ∈ KA be such that
(Rh ◦ Rk)(P ) ⊆ ϕ(a)c. We prove that Q ∈ ϕ(a)c, i.e., a ∈ Q. Suppose,
on the contrary, that a /∈ Q; then a /∈ h−1(k−1(P )). Since h(a) /∈ k−1(P ),
there exists R ∈ X(B) such that k−1(P ) ⊆ R and h(a) /∈ R. Again, since
a /∈ h−1(R), there exists S ∈ X(A) such that h−1(R) ⊆ S and a /∈ S. Thus,
(P,R) ∈ Rk and (R,S) ∈ Rh. So, (P, S) ∈ Rh ◦ Rk and S ∈ (Rh ◦ Rk)(P ).
Then S ∈ ϕ(a)c, or equivalently, a ∈ S, which is a contradiction. Therefore,
a ∈ Q and Q ∈ Sb((Rh ◦ Rk)(P )).

Conversely, let Q ∈ Sb((Rh ◦ Rk)(P )). We prove that h−1(k−1(P )) ⊆ Q.
Let a ∈ h−1(k−1(P )). It is easy to prove that (Rh ◦ Rk)(P ) ⊆ ϕ(a)c. So, by
hypothesis, Q ∈ ϕ(a)c and a ∈ Q.

(4): This is an immediate consequence of (1). �

Remark 4.13. Let A ∈ DN . If Id : A → A denotes the identity map, then

RId = {(P,Q) ∈ X(A) × X(A) : P ⊆ Q} = ⊆.

By Theorem 3.13, Proposition 4.12 and the previous remark we can define
a contravariant functor X : SDN → NR as follows: If A is a distributive
nearlattice, then X(A) = 〈X(A),KA〉 and if h is a semi-homomorphism, then
X(h) = Rh.

To complete the duality, we prove that there exists a contravariant functor
from NR into SDN . We have the following result.
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Theorem 4.14. Let 〈X1,K1〉 and 〈X2,K2〉 be N -spaces and let R belong to
NR(X1, X2).

(1) The map hR : DK2(X2) → DK1(X1) defined as in Example 4.4 is a semi-
homomorphism.

(2) The binary relation R ⊆ X1 × X2 satisfies RhR
◦ HX1 = HX2 ◦ R.

Proof. (1): Since R is an N -relation, we have that hR(U) ∈ DK1(X1) for all
U ∈ DK2(X2). Thus, hR is well defined. If U, V ∈ DK2(X2), then clearly
hR(U ∪ V ) = hR(U) ∪ hR(V ). On the other hand, since R is serial, we have
hR(X2) = X1. So, hR is a semi-homomorphism.

(2): Let (x, z) ∈ RhR
◦ HX1 . Then there exists y ∈ X(DK1(X1)) such that

(x, y) ∈ HX1 and (y, z) ∈ RhR
. By Theorem 3.16, HX1 and HX2 are bijections;

thus, HX1(x) = y and there exists t ∈ X2 such that HX2(t) = z. It follows
that (HX1(x), HX2(t)) ∈ RhR

and by Lemma 4.6, we have that (x, t) ∈ R. So,
(x, z) ∈ HX2 ◦ R. The converse is similar. �

Remark 4.15. Let 〈X,K〉 be an N -space and let ≤ ⊆ X×X be the N -relation
identity. By Theorem 4.11(1), we have h≤(U) = {x ∈ X : ≤(x)∩U �= ∅} = U .
Therefore, h≤ : DK(X) → DK(X) is the identity map.

By using Theorems 3.5 and 4.14, we can define a contravariant functor
D : NR → SDN as follows: If 〈X,K〉 is an N -space, then D(〈X,K〉) =
DK(X), and if R is an N -relation, then D(R) = hR.

So, by Theorems 3.16, 4.14, and Lemma 4.6, H is a natural equivalence
between the identity functor of NR and the composition functor X ◦ D.

Analogously, by Theorem 3.13 and Proposition 4.12, we have that ϕ is a
natural equivalence between the identity functor of SDN and the composition
functor D ◦ X.

We summarize the above results in the following theorem.

Theorem 4.16. The contravariant functors X and D define a dual equiv-
alence between the algebraic category of distributive nearlattices with semi-
homomorphisms and the category of N -spaces with N -relations.

4.2. Duality for HDN . We present a dual description of homomorphisms
between distributive nearlattices.

Lemma 4.17. Let A, B ∈ DN and h : A → B be a homomorphism. Then for
each P ∈ X(B) and Q ∈ X(A), we have Rh(P ) = Sb(Q) iff h−1(P ) = Q.

Proof. Let Rh(P ) = Sb(Q) and h−1(P ) �= Q. Since Q ∈ Sb(Q) = Rh(P ),
h−1(P ) ⊆ Q. If Q � h−1(P ), since h−1(P ) ∈ X(A) and h−1(P ) ⊆ h−1(P ),
then h−1(P ) ∈ Rh(P ) = Sb(Q), i.e., h−1(P ) ∈

⋂
{ϕA(a)c : Q ∈ ϕA(a)c}. So,

a ∈ h−1(P ) for all a ∈ Q, or equivalently, Q ⊆ h−1(P ), which is a contradic-
tion.
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Reciprocally, suppose that h−1(P ) = Q. Then

H ∈ Rh(P ) iff Q = h−1(P ) ⊆ H iff ∀a ∈ A(a ∈ Q ⇒ a ∈ H)

iff ∀ϕA(a)c ∈ KA (Q ∈ ϕA(a)c ⇒ H ∈ ϕA(a)c) iff H ∈ Sb(Q).

Therefore, Rh(P ) = Sb(Q). �

By Lemmas 4.3 and 4.17, we have a dual description of homomorphisms.
The above lemma leads to the following definition.

Definition 4.18. Let 〈X1,K1〉 and 〈X2,K2〉 be two N -spaces. Let us consider
a binary relation R ⊆ X1 × X2. We say that R is an N -functional relation if
R is an N -relation satisfying that for each x ∈ X1, there exists y ∈ X2 such
that R(x) = Sb(y).

Using Theorem 4.16, we obtain the following result.

Theorem 4.19. The contravariant functors X |HDN and D |NF define a dual
equivalence between the algebraic category of distributive nearlattices with ho-
momorphisms and the category of N -spaces with N -functional relations.

We will show that N -functional relations can be characterized by means
of special functions between N -spaces. Let 〈X1,K1〉 and 〈X2,K2〉 be Stone
spaces. We recall (see [3]) that a map f : X1 → X2 is a Stone morphism if
f−1(U) is compact and open set of X1 for each compact and open set U of X2.
Equivalently, if U ∈ DK2(X2) implies f−1(U) ∈ DK1(X1). In what follows, we
generalize Stone morphisms.

Definition 4.20. Let 〈X1,K1〉 and 〈X2,K2〉 be N -spaces. A map f : X1 → X2

is an N -morphism if f−1(U) ∈ DK1(X1) for every U ∈ DK2(X2).

As N -spaces are a generalization of Stone spaces, it follows that Stone
morphisms are a special case of N -morphisms. We will denote by NS the
category of N -spaces with N -morphisms.

Let 〈X1,K1〉 and 〈X2,K2〉 be N -spaces and R ⊆ X1 × X2 an N -functional
relation. We define fR : X1 → X2 by fR(x) = y iff R(x) = Sb(y).

Lemma 4.21. Let 〈X1,K1〉 and 〈X2,K2〉 be two N -spaces. Let R ⊆ X1 ×X2

be an N -functional relation. Then fR is an N -morphism.

Proof. We prove that f−1
R (U) = hR(U), for all U ∈ DK2(X2). Let x ∈ f−1

R (U).
Then fR(x) = y ∈ U and Sb(y) ∩ U �= ∅. So, R(x) ∩ U �= ∅, and therefore
x ∈ hR(U). Conversely, if x ∈ hR(U), then Sb(y) ∩ U �= ∅. Thus, there exists
z ∈ Sb(y) = [y) such that z ∈ U . Since y ≤ z and U is decreasing, we have
y = fR(x) ∈ U . So, x ∈ f−1

R (U). Finally, as hR(U) ∈ DK1(X1), it follows that
fR is an N -morphism. �

Conversely, let f : X1 → X2 be an N -morphism. Consider the relation
Rf ⊆ X1 × X2 defined as follows: (x, y) ∈ Rf iff f(x) ≤2 y.
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Lemma 4.22. Let 〈X1,K1〉 and 〈X2,K2〉 be two N -spaces. Let f : X1 → X2

an N -morphism. Then Rf is an N -functional relation.

Proof. Since f(x) ≤2 f(x) for all x ∈ X1, Rf is serial. Also, by definition, it
follows that Rf (x) = Sb(f(x)) = [f(x)). We prove that hRf

(U) = f−1(U),
for all U ∈ DK2(X2). Let x ∈ hRf

(U). Then Rf (x) ∩ U �= ∅, i.e., there exists
y ∈ [f(x)) and y ∈ U . Since U is decreasing, f(x) ∈ U . So, x ∈ f−1(U).
Conversely, let x ∈ f−1(U). Thus, f(x) ∈ U and since f(x) ∈ Rf (x), we
have Rf (x) ∩ U �= ∅. Then x ∈ hRf

(U). Therefore, Rf is an N -functional
relation. �

Finally, we have the following theorem.

Theorem 4.23. The categories NS and NF are isomorphic.

Proof. Let 〈X1,K1〉 and 〈X2,K2〉 be two N -spaces. Let f : X1 → X2 be
a Stone morphism and R ⊆ X1 × X2 an N -functional relation. We prove
that RfR

= R and fRf
= f . Indeed, we have (x, y) ∈ RfR

iff fR(x) ≤2 y

iff y ∈ [fR(x)) = R(x) iff (x, y) ∈ R. Similarly, we have fRf
(x) = y iff

Rf (x) = [y) iff f(x) = y. �

It is immediately seen that Theorem 4.23 is an extension of Stone duality.

5. Application of the duality

In this section, we present several applications of the above isomorphism
for a dual description of some algebraic concepts of the theory of distributive
nearlattices.

5.1. Description of 1-1 and onto homomorphisms. Our next aim is
to give a dual description of 1-1 and onto homomorphisms. We define the
notion of strong 1-1 homomorphisms, which is a special case of 1-1 homomor-
phisms, and show that strong 1-1 homomorphisms and onto homomorphisms
of distributive nearlattices correspond to onto N -functional relations and 1-1
N -functional relations, respectively.

Definition 5.1. Let A, B ∈ DN and h : A → B a homomorphism. We say
that h is strong 1-1 if for all n ≥ 0 and a, b1, . . . , bn ∈ A,

[h(a)) ⊆ [h(b1)) ∨ · · · ∨ [h(bn)) yields [a) ⊆ [b1) ∨ · · · ∨ [bn).

As an immediate consequence, we have the following result.

Remark 5.2. Let A, B ∈ DN and h : A → B a homomorphism. If h is strong
1-1, then h is 1-1.

Remark 5.3. Note that if A and B are distributive lattices, the notions of
strong 1-1 and 1-1 homomorphisms coincide.
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Definition 5.4. Let 〈X1,K1〉 and 〈X2,K2〉 be two N -spaces. Let R ⊆ X1×X2

be an N -functional relation.

(1) We say that R is onto if for each y ∈ X2, there exists x ∈ X1 such that
R(x) = Sb(y).

(2) We say that R is 1-1 if for each x ∈ X1 and U ∈ DK1(X1) with x /∈ U ,
there exists V ∈ DK2(X2) such that U ⊆ hR(V ) and x /∈ hR(V ).

Theorem 5.5. Let A, B ∈ DN and h : A → B a homomorphism. Then

(1) h is strong 1-1 iff Rh is onto,
(2) h is onto iff Rh is 1-1.

Proof. (1): Suppose that h is strong 1-1. Let P ∈ X(A). We prove that
I(h(P )) ∩ F (h(P c)) = ∅. Suppose the contrary. Then there are a ∈ P and
p1, . . . , pn ∈ P c such that h(p1)∧· · ·∧h(pn) exists and h(p1)∧· · ·∧h(pn) ≤ h(a).
Thus, [h(a)) ⊆ [h(p1)) ∨ · · · ∨ [h(pn)) and since h is strong 1-1, we have that
[a) ⊆ [p1) ∨ · · · ∨ [pn). As P c is a filter, [p1) ∨ · · · ∨ [pn) ⊆ P c. So, a ∈ P c,
which is a contradiction. Thus, I(h(P )) ∩ F (h(P c)) = ∅ and by Theorem 2.8,
there exists Q ∈ X(B) such that h(P ) ⊆ Q and Q ∩ h(P c) = ∅. Therefore,
h(P ) ⊆ Q and Q ⊆ h(P ), i.e., h(P ) = Q. By Lemma 4.17, Rh is onto.

Conversely, let a, b1, . . . , bn ∈ A be such that [h(a)) ⊆ [h(b1))∨· · ·∨ [h(bn)).
We prove that [a) ⊆ [b1) ∨ · · · ∨ [bn). Suppose that a /∈ [b1) ∨ · · · ∨ [bn) =
[{b1, . . . , bn}). Then by Theorem 2.8, there exists Q ∈ X(A) such that a ∈ Q

and Q ∩ [{b1, . . . , bn}) = ∅. By hypothesis, there exists P ∈ X(B) such that
Rh(P ) = Sb(Q) and by Lemma 4.17, we have h−1(P ) = Q. Thus, h(a) ∈ P

and h(b1), . . . , h(bn) /∈ P . But since [h(a)) ⊆ [h(b1)) ∨ · · · ∨ [h(bn)), there is a
subset {bk1 , . . . , bkm

} ⊆ {b1, . . . , bn} such that h(bk1) ∧ · · · ∧ h(bkm
) exists and

as P is prime, there is bkj ∈ {bk1 , . . . , bkm} such that h(bkj ) ∈ P , which is a
contradiction. Therefore, [a) ⊆ [b1) ∨ · · · ∨ [bn) and h is strong 1-1.

(2): Suppose that h is onto. Let P ∈ X(B) and ϕB(b) ∈ DKB
(X(B)) such

that P /∈ ϕB(b). Since h is onto, there exists a ∈ A such that h(a) = b.
So, by Proposition 4.12, ϕB(b) = ϕB(h(a)) = hRh

(ϕA(a)). Thus, ϕB(b) ⊆
hRh

(ϕA(a)) and P /∈ hRh
(ϕA(a)). We have proved that Rh is 1-1.

Now suppose that Rh is 1-1. Let b ∈ B. For each P ∈ X(B) such that
b ∈ P , we have P /∈ ϕB(b). As Rh is 1-1, there exists ϕA(aP ) ∈ DKA

(X(A))
such that ϕB(b) ⊆ hRh

(ϕA(aP )) and P /∈ hRh
(ϕA(aP )). Thus,

ϕB(b)c =
⋂
{hRh

(ϕA(aP ))c : P /∈ ϕB(b)}.

Since ϕB(b)c is dually compact, there are a1, . . . , an ∈ A such that ϕB(b)c =
hRh

(ϕA(a1))c ∩ · · · ∩ hRh
(ϕA(an))c. So, ϕB(b) = hRh

(ϕA(a1 ∨ · · · ∨ an)) and
by Proposition 4.12, we have ϕB(b) = hRh

(ϕA(a)) = ϕB(h(a)). Therefore,
ϕB(b) = ϕB(h(a)). By injectivity of ϕB , it follows that h is onto. �

Theorem 5.6. Let 〈X1,K1〉 and 〈X2,K2〉 be two N -spaces and R ⊆ X1 ×X2

be an N -functional relation. Then

(1) R is 1-1 iff hR is onto,
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(2) R is onto iff hR is strong 1-1.

Proof. This follows by Theorems 4.14 and 5.5. �

5.2. Congruences. Further, we focus on congruences of distributive nearlat-
tices. In [11], the authors have shown that congruence lattices of distributive
nearlattices are isomorphic to congruence lattices of certain lattices. Using the
representation from Section 3, we present a different characterization of these
lattices.

Clearly, by a congruence on a distributive nearlattice A is meant any equiv-
alence on A compatible with the ternary operation m. The corresponding
congruence lattice will be denoted by Con(A).

Recall that if 〈X, T 〉 is a topological space and Y is a subset of X, then the
family TY = {U ∩ Y : U ∈ T } of subsets of Y is a topology for Y called the
relative topology and the topological space 〈Y, TY 〉 is a subspace of 〈X, T 〉.

Lemma 5.7. Let 〈X, TK〉 be a topological space where K is a basis of the
topology TK and let Y ⊆ X. Then the family KY = {U ∩Y : U ∈ K} is a basis
for a topology TKY

on Y such that TY ⊆ TKY
.

Definition 5.8. Let 〈X, TK〉 be a topological space with a basis K of open
and compact subsets. Let Y ⊆ X. We shall say that Y is a K-subset of X if
U ∩ Y is a compact set in the topology TY on Y , for each U ∈ K.

Lemma 5.9. Let 〈X, TK〉 be a topological space with a basis K of open and
compact subsets. Let Y be a K-subset of X. Then KY = {U ∩ Y : U ∈ K}
is a basis of open and compact subsets for a topology TKY

on Y such that
TY = TKY

.

Proof. By Lemma 5.7, KY = {U ∩Y : U ∈ K} is a basis for a topology TKY
on

Y and TY ⊆ TKY
. We prove that TKY

⊆ TY . Let O′ ∈ TKY
. So, there exists

a family {Ui ∩ Y : Ui ∈ K} ⊆ KY such that O′ =
⋃
{Ui ∩ Y : Ui ∈ K}. Since

Y is a K-subset of X, we have that Ui ∩ Y is an open and compact subset in
the topology TY on Y . Thus, O′ ∈ TY . �

The following result gives necessary and sufficient conditions under which
the pair 〈Y,KY 〉 is an N -space.

Theorem 5.10. Let 〈X,K〉 be an N -space and let Y ⊆ X. The following
conditions are equivalent:

(1) 〈Y,KY 〉 is an N -space.
(2) Y is a K-subset and if {Ui∩Y : i ∈ I} and {Vj∩Y : j ∈ J} are non-empty

families of DKY
(Y ) such that

⋂
{Ui∩Y : i ∈ I} ⊆

⋃
{Vj∩Y : j ∈ J}, then

there exist U1, . . . , Un and V1, . . . , Vk such that (U1∩Y )∩· · ·∩ (Un ∩Y ) ∈
DKY

(Y ) and (U1 ∩ Y ) ∩ · · · ∩ (Un ∩ Y ) ⊆ (V1 ∩ Y ) ∪ · · · ∪ (Vk ∩ Y ).

Proof. (1) ⇒ (2): We prove that Y is a K-subset of X, i.e., W ∩Y is a compact
set in the topology TY on Y , for each W ∈ K. Since K is a basis of TK, it suffices



150 S. Celani and I. Calomino Algebra Univers.

to take a family {Vi : i ∈ I} ⊆ K such that W ∩ Y ⊆
⋃
{Vi ∩ Y : Vi ∈ K}.

Let D = {Vi ∩ Y : Vi ∈ K}. We denote D̄ = {V c
i ∩ Y : Vi ∈ K}. As

〈Y,KY 〉 is an N -space, we have that DKY
(Y ) = {U c ∩ Y : U ∈ K} is a

distributive nearlattice. We prove that I(W c∩Y )∩F (D̄) �= ∅. Assume on the
contrary, i.e., I(W c ∩Y )∩F (D̄) = ∅. Then there exists P ∈ X(DKY

(Y )) with
I(W c ∩Y ) ⊆ P and P ∩F (D̄) = ∅. On the other hand, by Proposition 3.6, we
have H : Y → X(DKY

(Y )) is onto. So, there exists y ∈ Y such that P = H(y).
Thus, W c∩Y ∈ H(y) and V c

i ∩Y /∈ H(y) for all V c
i ∩Y ∈ D̄. Then y ∈ W ∩Y

and y /∈
⋃
{Vi∩Y : Vi ∈ K}, which is a contradiction. So, I(W c∩Y )∩F (D̄) �= ∅

and there exist V c
1 , . . . , V c

n such that (V c
1 ∩ Y )∩ · · · ∩ (V c

n ∩ Y ) ∈ DKY
(Y ) and

(V c
1 ∩ Y ) ∩ · · · ∩ (V c

n ∩ Y ) ⊆ W c ∩ Y , i.e., W ∩ Y ⊆ (V1 ∩ Y ) ∪ · · · ∪ (Vn ∩ Y ).
Therefore, W ∩ Y is a compact set of TY and Y is a K-subset of X.

(2) ⇒ (1): Since Y is a K-subset, by Lemma 5.9, KY = {U ∩ Y : U ∈ K}
is a basis of open and compact subsets of TKY

. It is easy to see that for every
(U ∩ Y ), (V ∩ Y ), (W ∩ Y ) ∈ KY ,

[(U ∩ Y ) ∩ (W ∩ Y )] ∪ [(V ∩ Y ) ∩ (W ∩ Y )] ∈ KY .

So, by Proposition 3.6, 〈Y,KY 〉 is an N -space. �

Given A ∈ DN and θ ∈ Con(A), the natural homomorphism qθ : A → A/θ

assigns to a ∈ A the equivalence class qθ(a) = a/θ. Consider the set

Yθ = {q−1
θ (P ) : P ∈ X(A/θ)}.

By Lemma 4.3, q−1
θ (P ) ∈ X(A) for all P ∈ X(A/θ).

We are ready to prove the following results.

Proposition 5.11. Let A ∈ DN and let F(A) be the dual space of A. Let
θ ∈ Con(A). Then 〈Yθ,KYθ

〉 is an N -space.

Proof. We prove that ϕ(a)c ∩ Yθ is compact in the topology TYθ
, for each

ϕ(a)c ∈ KA. Since KA is a basis of TA, it suffices to take {ϕ(b)c : b ∈ B} ⊆ KA

such that ϕ(a)c ∩ Yθ ⊆
⋃
{ϕ(b)c ∩ Yθ : b ∈ B} for some B ⊆ A. We prove that

there exist b1, . . . , bn ∈ B with Yθ ∩ϕ(a)c ⊆ (ϕ(b1)c ∩Yθ)∪ · · · ∪ (ϕ(bn)c ∩Yθ).
Consider B/θ = {b/θ : b ∈ B}, so (a/θ] ∩ F (B/θ) �= ∅. Suppose the contrary;
then there exists Q ∈ X(A/θ) such that a/θ ∈ Q and Q∩ F (B/θ) = ∅.
Then q−1

θ (Q) ∈ X(A) and q−1
θ (Q) ∈ ϕ(a)c ∩ Yθ ⊆

⋃
{ϕ(b)c ∩ Yθ : b ∈ B}.

Therefore, there exists bi ∈ B such that q−1
θ (Q) ∈ ϕ(bi)c, i.e., bj ∈ q−1

θ (Q).
Thus, qθ(bj) = bj/θ ∈ Q, which is a contradiction because Q∩ F (B/θ) = ∅.
So, we have proved there are b1, . . . , bn ∈ B such that b1 ∧ · · · ∧ bn exists and
b1/θ∧· · ·∧bn/θ ≤ a/θ. We see that ϕ(a)c∩Yθ ⊆ (ϕ(b1)c∩Yθ)∪· · ·∪(ϕ(bn)c∩Yθ).
Let P ∈ Yθ∩ϕ(a)c. Then a ∈ P and P = q−1

θ (Q) for some Q ∈ X(A/θ). Thus,
qθ(a) = a/θ ∈ Q and (b1 ∧ · · · ∧ bn)/θ ∈ Q. Since Q is prime, there is bj for
some j, such that bj/θ ∈ Q, i.e., bi ∈ q−1

θ (Q) = P . So, we have P ∈ ϕ(bi)c for
some bi ∈ {b1, . . . , bn}. It follows that P ∈ (ϕ(b1)c∩Yθ)∪· · ·∪(ϕ(bn)c∩Yθ) and
that ϕ(a)c ∩ Yθ is compact in the topology TYθ

. Therefore, Yθ is a K-subset.
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To complete the proof, let {ϕ(bi) ∩ Yθ : bi ∈ B} and {ϕ(cj) ∩ Yθ : cj ∈ C}
be non-empty families of DKYθ

(Yθ) such that
⋂
{ϕ(cj) ∩ Yθ : cj ∈ C} ⊆

⋃
{ϕ(bi) ∩ Yθ : bi ∈ B}.

Let B/θ = {b/θ : b ∈ B} and C/θ = {c/θ : c ∈ C}. If I(B/θ) ∩ F (C/θ) = ∅,
then there exists Q ∈ X(A/θ) such that I(B/θ) ⊆ Q and Q∩F (C/θ) = ∅. Then
q−1
θ (Q) = P ∈ Yθ. As I(B/θ) ⊆ Q, so P /∈

⋃
{ϕ(bi) ∩ Yθ : bi ∈ B}. On the

other hand, since Q∩F (C/θ) = ∅, we have P ∈
⋂
{ϕ(cj)∩Yθ : cj ∈ C}, which

is a contradiction. Thus, I(B/θ)∩F (C/θ) �= ∅, so there are b1, . . . , bn ∈ B and
c1, . . . , ck ∈ C such that c1∧· · ·∧ck exists and c1/θ∧· · ·∧ck/θ ≤ b1/θ∨· · ·∨bn/θ.
Finally, it is easy to see that

k⋂

j=1
(ϕ(cj) ∩ Yθ) ⊆

n⋃

i=1
(ϕ(bi) ∩ Yθ).

So, by Theorem 5.10, 〈Yθ,KYθ
〉 is an N -space. �

The above results motivate the following definition.

Definition 5.12. Let 〈X,K〉 be an N -space and let Y ⊆ X. We shall say
that Y is an N -subspace if the pair 〈Y,KY 〉 is an N -space. The set of all
N -subspaces of X will be denoted by S(X).

Let A ∈ DN and let Y be a subset of A. Define the binary relation θ(Y ) ⊆
A × A by (a, b) ∈ θ(Y ) iff ϕ(a)c ∩ Y = ϕ(b)c ∩ Y .

Lemma 5.13. Let A ∈ DN . Then the binary relation θ(Y ) is a congruence
of A.

Theorem 5.14. Let A ∈ DN and let F(A) be the dual space of A. Then the
mapping F : S(X(A)) → Con(A) defined by F (Y ) = θ(Y ) is an dual isomor-
phism.

Proof. By Lemma 5.13, F is well defined. Let Y1, Y2 ∈ S(X(A)) such that
θ(Y1) = θ(Y2). Suppose that Y1 � Y2, i.e., that there exists P ∈ Y1 with
P /∈ Y2. Consider the set

F =
⋂
{ϕ(b) ∩ Y2 : ϕ(b) /∈ H(P )} ∩

⋂
{ϕ(a)c ∩ Y2 : ϕ(a) ∈ H(P )}.

If F �= ∅, then exists Q ∈ F and H(P ) = H(Q). Thus, since H is 1-1, we have
P = Q ∈ Y2, which is a contradiction. Therefore, F = ∅ and

⋂
{ϕ(b) ∩ Y2 : ϕ(b) /∈ H(P )} ⊆

⋃
{ϕ(a) ∩ Y2 : ϕ(a) ∈ H(P )}.

Since Y2 is an N -subspace, Proposition 3.9 implies there exist a1, . . . , an and
b1, . . . , bk such that b1 ∧ · · · ∧ bk exists and

(ϕ(b1) ∩ Y2) ∩ · · · ∩ (ϕ(bk) ∩ Y2) ⊆ (ϕ(a1) ∩ Y2) ∪ · · · ∪ (ϕ(an) ∩ Y2).

Let b = b1 ∧ · · · ∧ bk and a = a1 ∨ · · · ∨ an. So, ϕ(b) ∩ Y2 ⊆ ϕ(a) ∩ Y2.
Thus, ϕ(a)c ∩ Y2 ⊆ ϕ(b)c ∩ Y2 and the pair (a ∨ b, a) ∈ θ(Y2) = θ(Y1). Then
ϕ(a ∨ b)c ∩ Y1 = ϕ(a)c ∩ Y1. Since P ∈ ϕ(a)c ∩ Y1, we have P ∈ ϕ(a ∨ b)c,
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i.e., a ∨ b ∈ P . As P is an ideal, b ∈ P , which is a contradiction because
ϕ(b) /∈ H(P ). This shows that F is 1-1.

Now we prove F is onto. For θ ∈ Con(A), let Yθ = {q−1
θ (P ) : P ∈ X(A/θ)}.

By Proposition 5.11, Yθ is an N -subspace of X(A). We see that θ(Yθ) = θ. Let
(a, b) ∈ θ. If Q ∈ ϕ(a)∩Yθ, then a /∈ Q and there exists P ∈ X(A/θ) such that
Q = q−1

θ (P ). Thus, qθ(a) = a/θ /∈ P . Since a/θ = b/θ, we have qθ(b) /∈ P .
So, b /∈ q−1

θ (P ) = Q and Q ∈ ϕ(b) ∩ Yθ. Analogously, we obtain ϕ(b) ∩ Yθ ⊆
ϕ(a)∩Yθ, and therefore ϕ(a)∩Yθ = ϕ(b)∩Yθ. So, ϕ(a)c ∩Yθ = ϕ(b)c ∩Yθ and
(a, b) ∈ θ(Yθ). Conversely, let (a, b) ∈ θ(Yθ). Then ϕ(a)c ∩ Yθ = ϕ(b)c ∩ Yθ.
Let P ∈ X(A/θ). We have

qθ(a) /∈ P iff a /∈ q−1
θ (P ) iff q−1

θ (P ) /∈ ϕ(a)c

iff q−1
θ (P ) /∈ ϕ(a)c ∩ Yθ = ϕ(b)c ∩ Yθ iff q−1

θ (P ) /∈ ϕ(b)c

iff b /∈ q−1
θ (P ) iff qθ(b) /∈ P,

i.e., qθ(a) ∈ P iff qθ(b) ∈ P for all P ∈ X(A/θ). We prove qθ(a) = qθ(b).
Suppose that qθ(a) � qθ(b). Then (qθ(b)] ∩ [qθ(a)) = ∅ and by Theorem 2.8,
there exists Q ∈ X(A/θ) with (qθ(b)] ⊆ Q and Q ∩ [qθ(a)) = ∅. So, qθ(b) ∈ Q,
but qθ(a) ∈ Q, which is a contradiction. Thus, qθ(a) ≤ qθ(b). Analogously,
qθ(b) ≤ qθ(a) and qθ(a) = qθ(b). Then a/θ = b/θ and (a, b) ∈ θ. �

5.3. Subalgebras. As usual, by a subalgebra of a nearlattice A is meant a
subset of A closed under the ternary operation m. The lattice of subalgebras
of A will be denoted by Sub(A).

Definition 5.15. Let 〈X,K〉 be an N -space. A subset ∅ �= L ⊆ K will be
called an N -basic set if for any U, V, W ∈ L, (U ∩ W ) ∪ (V ∩ W ) ∈ L.

Given an N -space 〈X,K〉, let NB(X) denote {L ⊆ K : L is an N -basic set}.

Lemma 5.16. Let 〈X,K〉 be an N -space. Then 〈NB(X),⊆〉 is a lattice.

For A ∈ DN , let T (B) denote {ϕ(b)c : b ∈ B}, for each B ∈ Sub(A).

Proposition 5.17. Let A ∈ DN . The mapping T : Sub(A) → NB(X(A)) is
an order preserving function.

Proof. Let B ∈ Sub(A). It is clear that T (B) ⊆ KA. If U, V, W ∈ T (B), then
there are a, b, c ∈ B such that U = ϕ(a)c,V = ϕ(b)c, and W = ϕ(c)c. Thus,

(U ∩ W ) ∪ (V ∩ W ) = [ϕ(a)c ∩ ϕ(c)c] ∪ [ϕ(b)c ∩ ϕ(c)c] = ϕ(m(a, b, c))c.

Since B is a subalgebra of A, m(a, b, c) ∈ B and (U ∩ W ) ∪ (V ∩ W ) ∈ T (B).
So, T (B) is an N -basic set of X(A). It is easy to show that the function T

preserves the order. �

Let A ∈ DN and L ∈ NB(X(A)); consider S(L) = {a ∈ A : ϕ(a)c ∈ L}.
We have the following lemma.

Lemma 5.18. Let A ∈ DN and L ∈ NB(X(A)). Then S(L) ∈ Sub(A).
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Proof. We will prove that S(L) is closed under the ternary operation m. Let
a, b, c ∈ S(L). Since L is an N -basic set and ϕ(a)c, ϕ(b)c, ϕ(c)c ∈ L, we have
[ϕ(a)c ∩ ϕ(c)c] ∪ [ϕ(b)c ∩ ϕ(c)c] ∈ L. But

[ϕ(a)c ∩ ϕ(c)c] ∪ [ϕ(b)c ∩ ϕ(c)c] = ϕ(a ∨ c)c ∪ ϕ(b ∨ c)c

= ϕ((a ∨ c) ∧c (b ∨ c))c = ϕ(m(a, b, c))c.

So, m(a, b, c) ∈ S(L). �

Theorem 5.19. Let A ∈ DN . Then the lattice of subalgebras of A is isomor-
phic to the lattice of N -basic subsets of KA.

Proof. Let B ∈ Sub(A). Then a ∈ S(T (B)) iff ϕ(a)c ∈ T (B) iff there exists
b ∈ B such that ϕ(a)c = ϕ(b)c iff a = b. So, a ∈ B and S(T (B)) = B.

Conversely, let L ∈ TB(X(A)). Then U ∈ T (S(L)) iff there exists a ∈ S(L)
such that U = ϕ(a)c iff U ∈ L. Thus, T (S(L)) = L. �
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