
1

Business Processes Refactoring to Improve
Usability in E-Commerce Applications
Damiano Distante1, Alejandra Garrido2,3, Julia Camelier-Carvajal2, Roxana Giandini2,

Gustavo Rossi2,3

1Unitelma Sapienza University, Rome, Italy

Tel. +39 06 69924142, Fax +39 06 6792048

damiano.distante@unitelma.it

2LIFIA, Fac. de Informática, Universidad Nacional de La Plata, La Plata, Argentina

Tel. +54 221 422 8252, Fax +54 221 423 6585

{garrido, giandini, gustavo}@lifia.info.unlp.edu.ar, juliacamelier@gmail.com

3Also CONICET, Argentina

Abstract

Refactoring is a technique that applies step-by-step transformations intended to improve the quality of

software while preserving its behavior. It represents an essential activity in today´s software lifecycle and a

powerful tool against software decay. Software decay, however, is not only about code becoming legacy, but

it is also about systems becoming less usable compared to competitor solutions adopting new designs and new

technologies. If we narrow the focus on e-commerce systems, the role of usability becomes essential: higher

usability is in fact a requirement to win the market competition and to retain customers from turning to other

choices. One reason why an e-commerce application can start suffering from poor usability is because of its

business processes becoming difficult to access, complicated to execute, and, overall, offering a poor user

experience. In this paper we argue that refactoring can be a key solution for this kind of usability issues. In

particular, we propose a catalog of refactorings as a means to systematically identify and address lack of

usability in the business processes of an e-commerce application, and to seize opportunities for usability

improvement. To make the presentation concrete and to provide evidence of the benefits that applying our

refactorings can bring, we present a number of examples with reference to well-known e-commerce websites.

Keywords: E-commerce websites; Business processes; Business Web applications,

Usability; Quality-in-use; Refactoring; Web model refactoring; Web business process

refactoring.

2

1. Introduction

Usability can be defined as "the degree to which a product or system can be used by

specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a

specified context of use" [24].

Several research works and market surveys have been conducted to measure the impact of

website quality on trust, intention to shop, and consumer's commitment to an e-commerce

website [20][8]. Other works have focused on identifying the usability factors which are

considered more crucial for the website of a specific industry [30]. In addition, several

studies have revealed the importance of usability for the success of an e-commerce website

[45][34][19][2]. All these works motivate and foster the research on approaches and

techniques for the evaluation and improvement of usability in e-commerce and business

Web applications1, including the research presented in this paper.

One possible cause for the lack of usability in e-commerce websites is related to their

business processes turning complicated to access and execute, because of some

maintenance activity, or for an improper initial design, which is the case when business

goals are not well aligned with business processes, as argued in [42]. On the other hand,

another critical reason to recommend usability improvements is the competitive pressure

from other e-commerce sites that keep getting better [33]. In this paper we present a

definition and a catalog of refactorings aimed at improving the usability of Business

Processes when implemented by a Web applications

Refactoring was originally conceived as a disciplined technique for restructuring a class

hierarchy of an object-oriented design [39]. Later, refactoring became popular and evolved

into “a change made to the internal structure of software to make it easier to understand and

cheaper to modify without changing its observable behavior” [14]. Refactoring has been

applied to different software artifacts, such as Unified Modeling Language [35] (UML)

1 Here and elsewhere not differently specified in the paper we use the terms "website" and

"Web application" interchangeably.

3

models [5], access control architectures [25], and HTML Web pages [22]. In all cases the

basic philosophy of refactoring has been retained, i.e., each refactoring is a small, behavior-

preserving transformation, aimed at improving some quality characteristic of a software

artifact. Conversely, the set of quality characteristics, originally limited to internal quality

attributes such as understandability and maintainability, has expanded to include external

quality and quality-in-use attributes such as performance, security, usability, and

accessibility.

In a recent work we have applied refactoring to the area of Web application design models

by introducing the concept of Web Model Refactoring (WMR): a small behavior-

preserving change applied to the design models of a Web application, aimed at improving

its usability [17]. We have also presented a catalogue of WMRs for the navigation and

presentation models of a Web application, aimed at improving its usability [15][16].

Business processes have been already the focus of refactoring [52][53], but mainly to

improve their internal quality features, and irrespective of their implementation in Web

applications.

In this work we extend our research on WMRs to the realm of business processes and

propose a catalogue of refactorings for the business processes implemented in e-business

and e-commerce applications, still with the intent of improving their usability. Similarly to

patterns catalogues, we illustrate refactorings with well-known uses, achieving with this a

sound validation of them. Additionally, we show how to apply refactorings by identifying

bad smells in these Web applications. Since our discussion is focused on the realization of

business processes in Web applications, specifically on their navigation and user interface

aspects, all references to business processes must be considered in that context, as many

times, for the sake of readability, we omit to re-emphasize this.

The rest of the paper is organized as follows: Section 2 provides the background for our

research work by identifying, on the one hand, similarities in a number of methods for

designing business processes in Web applications, and on the other hand, the works on

usability that inspired the refactoring catalog; Section 3 defines the concept of Web

Business Process Refactoring (WBPR) and provides a framework for their characterization;

Section 4 introduces a representative set of WBPRs in the form of a catalogue; Section 5

presents some case studies and discusses some strengths and limitations of our approach for

4

usability improvement; Section 6 surveys related work, and finally Section 7 concludes the

paper and announces future work we aim to conduct.

2. Background

We briefly introduce two topics which are the basis of our research; first we explain how

different Web engineering approaches deal with the problem of modeling business

processes which will be implemented by a Web application, particularly, the different

design concerns that are involved during the design activity. Next we reference seminal

work on usability in general and in the Web.

2.1 The Design of Business Processes in Web Applications

Web applications have rapidly evolved over the past ten years from content delivery and

information provisioning websites (information-centric Web applications) to complex

business Web applications supporting the realization of business processes (BPs), such as

e-commerce websites. Because of their complexity and diversity, the development of e-

business applications usually demands the use of a suitable Web engineering methodology

which targets, among other aspects, the design and integration of BPs in Web applications

[6][11][26][46][49]. In these methodologies, as a way to decouple different design concerns

as discussed in [1], the design of a BP is generally accomplished at three different layers:

Process layer, Navigation layer, and Presentation layer.

In particular:

• The Process layer specifies structural (or static) and behavioral (dynamic)

characteristics of the BP, such as the set of activities it includes, their classification

into user-driven and system-driven activities, their hierarchical composition in terms

of activities and sub-activities, their dependencies (e.g., in terms of data flow) and

semantic relations, the business rules which apply to their execution, the possible

workflows among them (usually defined by means of activity control-flows), and

the way different actors collaborate to the execution of the BP. Most Web

engineering methods address these design concerns by relying on approaches for

dealing with BPs in general software (see related work section).

5

• The Navigation layer defines how the execution of BP activities and the navigation

through the Web application contents influence each other, how navigation may

modify the state of an ongoing BP and the associated data, and which data is

presented and/or requested to the user when executing a given activity.

• The Presentation layer describes the interaction widgets that allow triggering each

BP activity, as well as the interface widgets that present/request data to/from the

user for a given activity.

2.2 Usability in E-Commerce Applications
When defining our catalog of refactorings to improve the usability of Web applications, we

were inspired by the work of giants who have researched on usability and web usability for

many years, like Shneiderman [47] and Nielsen [31][34][32]. They have laid down the

basis of what is “good” or “bad” in interface design, what “works” or “fails” to make the

user comfortable with software. Particularly in this work, they provided us with principles,

guidelines, and quality attributes that should be the targets of our refactorings, while also

pointing to bad practices that we convey as “bad smells”.

Some examples of how the works of experts have influenced the present work are:

• Shneiderman’s “eight golden rules of interaction design” [47] includes general

guidelines, applicable to any graphical interface, like “Permit easy reversal of

actions”. When adapted to the context of BPs in a Web application, a bad smell

inspired by this golden rule is when a process does not allow to be canceled. A

refactoring that solves this bad smell is “Make a process cancelable”.

• Nielsen’s books ([31], [32]) and websites ([33], [32]) provide several guidelines that

although not directly related to BPs, motivate presentation refactorings, like “Make

explicit the steps composing a process” motivated by Nielsen’s discussion on

navigation: “Where am I?” and “Where have I been?” [31].

• Lauesen work on virtual windows [28] advices us on the systematic design of

interfaces, paying attention to the psychological laws of how users perceive what

they see and do not see, under the basic idea that “important tasks need only a few

windows”. This basic but insightful idea motivates a number of our refactorings

6

including “Aggregate activities”, “Make input data in one activity visible to other

activities” (so to prevent repeatedly requesting input from the user), or “Remove

duplicate process links” (so to reduce the screen space needed).

Cataloging these principles and guidelines in terms of a refactoring means giving a

particular structure to the solution that has the following attributes: (i) can be performed in

a sequence of small and safe steps, (ii) those steps can be repeated similarly in different

applications and different contexts, (iii) the steps can be automated, and (iv) they can be

applied on a working application without interfering on its existent functionality. These are

all attributes of any refactoring, which are essential for today’s business on the Web, to be

able to create and maintain applications that are constantly changing in response to their

users’ requirements and needs [17].

3. Defining and Characterizing Web Business Process
Refactorings

The information stored in process definitions (e.g., task processing sequences and role

information) can be leveraged to improve the UI of an existing e-commerce application,

and thus its usability [54]. However, the fact that BPs exhibit themselves “just” as a

sequence of activities does not guarantee their usability. As an example, users might get

disoriented when navigating to pages outside a BP, or might get confused about how to

complete a given BP activity or proceed to the next one. In complex e-commerce

applications involving BPs, such as checking-out in an e-store or booking a flight or hotel

in a online reservation system, users spend a lot of time in process activities such as forms

filling and options selection (e.g., for user registration, order shipping and billing address

specification, etc.), data verifications (e.g., credit card verification), transactions execution

(e.g., credit card charge), and process completion confirmation. When these process

activities and/or their control-flow are not wisely designed and implemented, the usability

of the overall Web application may be seriously compromised. For instance, an improper

BP design or implementation might cause the user getting disoriented by a cluttered

interface, or uselessly repeating some step of the process (e.g., entering personal data), or

leaving a process for not receiving any feedback from a long lasting transaction.

7

As an example, we show in Figure 1 two different implementations of a process that

requests and verifies credit card data for online hotel reservations. The screenshot on the

top is from hotelbooking.com. Here the user enters the credit card data and, after clicking

the “Buy” button, data is verified. If the user misspells her credit card number, she has to

re-enter all her data again. The screenshot on the bottom is from booking.com. In this case,

verification occurs while the user fills each field, so she does not have to restart the process

if any of the fields is misspelled.

Fig. 1 Two different implementations of the credit card data input and verification activity in a hotel booking

process. The first screenshot is from hotelbooking.com, while the latter is from booking.com.

This is an example of the kind of usability enhancements that we seek. Other examples are:

attaining a better process workflow, a better allocation of content in the screen [31] or

among available pages, and a better support for the user while executing the BP.

We consider the kind of usability enhancement that we have just illustrated a refactoring, in

the sense that we have defined in [17]: a change applied on a Web application BP with the

intent of improving its usability and which preserves the expected functionality and result.

While there are other definitions of Business Process Refactorings [52], they focus mainly

8

on the organization of BP activities mainly to improve internal quality properties (e.g.

model readability, modularity, ease of maintenance, etc.). In this sense they have the same

intent of the original Fowler’s refactorings [14], and thus they do not have any impact over

the application’s usability. Though we comment these other approaches in detail in the

related work section, it is important to stress here that none of them overlaps our

refactorings, even partially. The reason is that in this paper we are interested in those

refactorings which a) are meaningful in the Web interface of a BP and b) are intended to

improve the application’s usability. Therefore our refactorings are novel not just in their

intent but also in their scope, structure, and mechanics.

To make our definitions more precise we assume that a business process P encompasses a

set of activities A; some of these activities are system-driven, i.e. they don’t need any user

intervention to be completed, while others are user-driven since they require some user

intervention, e.g. to fill a form, confirm some options, etc. In our research we are interested

in those activities A'⊆A which, being user-driven, have a Web interface. This interface

(usually a Web page) will exhibit contents related with the BP itself and with the

corresponding activity Ai∈A', links to other pages, activity-related forms, interface widgets

to control the flow of process P, etc. As expressed below, our refactorings are concerned

with this kind of activities and their Web interfaces.

More precisely, we define a Web Business Process Refactoring (WBPR) (or usability

refactoring for the business processes of a Web application) as a change applied to a BP

implemented by a Web application, which has the following properties:

• It is perceived by the final user of the application, i.e., it is applied to a user-driven

activity2;

• It is intended to improve the application user's experience in reaching the goals

underlying the BP itself;

2 But not necessarily, or not only, to the Web interface of such user activity.

9

• It preserves the set of use cases and requirements associated to the BP that the

application satisfies and that can be checked against acceptance tests, it does not

modify any business rule, nor add to the process any new system-driven behavior,

i.e., a behavior unrelated to the user interface and its enhancement. In other words, a

WBPR cannot break any user acceptance test that applies to the Web application.

Under the above conditions and specifically regarding user-driven activities, a WBPR may:

• Group or split activities and the associated Web interfaces.

• Modify the process control-flow (e.g., by moving or copying an activity in a

process, or by parallelizing two non-dependent activities).

• Make an activity be optional, suspendable, or cancelable.

• Add a support activity, i.e., an activity that clarifies a process or makes it more

effective, but does not change its functionality.

• Improve the navigation associated to the execution of a process (e.g., by extending

the available navigation structure or removing redundant links).

• Improve the presentation of a BP as a whole (e.g., by making explicit its execution

state), and that of its activities and their related data (e.g., by changing the widget

used to execute an activity, or to present/request data associated to it).

Regarding acceptance tests, we note that in the same way as with traditional refactoring, the

better the test suite that the application has, the more confidence it gives to designers and

developers to try refactorings without breaking the application's functionality. In the case of

automatic refactorings, a refactoring tool can compensate for missing tests by checking

preconditions [14] or checking the preservation of flow dependencies [44]. In particular,

WBPRs should preserve data flow dependencies between BP activities and, more generally,

the state of the workflow variables when these variables need to be used [29]. The approach

of Weber et al. [52] considers refactorings as model transformations that preserve

“execution trace equivalence” between process models. We believe that preserving a BP´s

execution trace or control flow is too restrictive and does not allow for substantial

improvements on usability and other quality in use characteristics of Web applications.

Notwithstanding, in this article we are not interested in providing a formal specification of

behavior preservation of WBPRs for two main reasons: (i) the specification would depend

10

on a particular programming language or Web design methodology while our purpose is to

present a high-level view that may apply at the model or code level in any language, and

(ii) we are interested in emphasizing the benefits of using WBPRs through an initial catalog

of refactorings and encourage practitioners and researchers to augment it, as opposed to

restrain them.

A WBPR may improve the user's experience concerning quality in use characteristics of the

application such as effectiveness, efficiency, and satisfaction. Moreover, since BPs are

designed in a Web application at three different layers (i.e., process, navigation, and

presentation), a WBPR may imply changes to any of the corresponding design layers of the

application. By naming Intent the set of quality characteristics a WBPR aims to improve

and Scope the BP design layers and artifacts the WBPR impacts, we developed a simple

characterization framework for WBPRs presented in Section 4.

To classify the Intent of a WBMR we refer to the quality-in-use characteristics defined by

the Quality in Use Model of the ISO/IEC 25010 standard for system and software [24],

which represents a broader view of the ergonomic concept of usability defined in the ISO

9241-11 standard [23]. The ISO/IEC 25010 standard defines Quality in Use as, “the degree

to which a product or system can be used by specific users to meet their needs to achieve

specific goals with effectiveness, efficiency, freedom from risk and satisfaction in specific

contexts of use”. A brief explanation of these keywords in usability follows:

• Effectiveness: accuracy and completeness with which users achieve specified goals.

• Efficiency: resources expended in relation to the accuracy and completeness with

which users achieve goals.

• Satisfaction: degree to which user needs are satisfied in a specified context of use,

including: Usefulness, Trust, Pleasure, and Comfort.

• Freedom from risk: degree to which a product or system mitigates the potential risk

to economic status, human life, health, or the environment.

• Context coverage: degree to which a product or system can be used with

effectiveness, efficiency, freedom from risk and satisfaction in both specified

contexts of use and in contexts beyond those initially explicitly identified.

11

4. A Catalogue of Business Process Refactorings for
E-Commerce Applications

Following the definition provided in Section 3, we have developed a catalogue of WBPRs

aimed at improving e-commerce applications' quality-in-use characteristics associated to

the execution of their BPs. In this section we describe each of the refactorings in the catalog

by motivating them with practical examples and describing them with a pattern-like

template which comprises Intent, Bad smell, Motivation, and Example. As described in

Section 3, the Intent is defined according to the Quality in Use Model of the ISO/IEC

25010 standard for system and software [24]; Bad smell is the indicator of the lack of

usability or of the usability improvement opportunity that may suggest applying the

refactoring; Motivation describes the problem that causes the bad smell; Example describes

the application of the refactoring on a concrete example. The Scope of a refactoring, i.e.,

the design concern in which it applies, is implicit in our organization in categories (see the

following of this Section).

To emphasize that our WBPRs may be applied on different models (UML activity

diagrams, BPMN [36]), or could even be realized on Ambler's storyboards [3], we include

the Mechanics (i.e., the steps to apply the refactoring), though, for the sake of conciseness,

we do so only in the first refactoring of each category.

While each refactoring is in principle applicable to any Web application independently of

the design methodology and implementation technologies adopted to develop the

application, it is a task of the designers or developers of the specific BP and Web

application to check that applying the specific refactoring not only preserves data flow

dependencies, but also does not break any of the business requirements available for the

application.

The list of refactorings that follows is organized into subsections depending on the Web

design layer each refactoring mainly impacts. In turn, refactorings on the process design

layer are divided into structural changes and behavioral changes. It is worth noting that

refactorings introduced at the Process layer usually require changes also at the Navigation

12

and Presentation layers, while the opposite usually does not happen, i.e., presentation

WBPRs do not require changes in the Navigation and Process layers.

A summary of our catalogue of WBPRs with their characterization in terms of intent, scope

and quality attributes they aim to improve is presented in Table 1.

4.1 Refactorings for the Process Design Layer

Structural WBPRs (changes to the hierarchical and semantic relations between BP

activities)

S1) Aggregate activities

Intent: Effectiveness and Efficiency.

Bad Smell: Long time to complete a simple task.

Motivation: Simple activities may be aggregated into a single one with the purpose

of: reducing the interaction between client (the browser) and server, making it less

cumbersome for the user to enter just a few data items in different pages or at

different stages, and also to expedite a process by aggregating the underlying

activities.

Example: In order to access the home banking system of “Banco de la Nacion

Argentina” (www.bna.com.ar) as well that of “Banca Monte dei Paschi di Siena”

(www.mps.it), the login page requests only the username first, and, after a

validation in the server, the password input field is requested. Both activities are

very simple (with a single input field in each one) and being separated requires an

interaction between the server and the client that increases the time to complete the

task. Instead, both input fields may appear at the same time reducing the steps and

accelerating the process completion. This happens for “Banca Intesa”

(www.bancaintesa.it) as well for “BNL - Group BNP Paribas” (www.bnl.it).

Mechanics: In Figure 2 we use the notation of the UWE methodology [26] to

describe the process flow for the login operation in the BNA website. With the

username and password displayed as separated activities, the user has to wait the

system to process and validate both in two different times, as shown in Figure 2 on

the left. As suggested in this refactoring, grouping both activities in one, as shown

13

in Figure 2 (right), makes the system also to group its validations, thus causing less

effort and waiting time to the user, that only has to press one button and wait once

for the validation.

Fig. 2 UWE’s model showing the process flow for the user login operation.

S2) Split activity

Intent: Effectiveness, Satisfaction, Freedom from Risk and Context Coverage.

Bad Smell: Activity too long; premature abandonment of the application.

Motivation: A complex activity may be split into smaller ones for different reasons:

to emphasize some portion of the original activity; to enable the user suspending

and resuming it in/from an intermediate completion state; to adapt the application

user interface to mobile devices, etc.

Example: Companies that allow prospective employees to enter their curriculum

vitæ on their websites should have the activities split into different pages, as

Personal Information, Work Experience, etc. Since this is a complex task that

requires some time to be completed, splitting it makes the activity more organized

to the user and allows applying a subsequent refactoring to make it suspendable.

S3) Change an activity from mandatory to optional and vice versa

Intent: Efficiency and Satisfaction.

Bad Smell: Unnecessary activities in the main process.

14

Motivation: An activity may be changed from “required” to “optional” in order to

offer a shorter process workflow.

Example: The activity of choosing a seat or specifying the desired type of meal on a

flight could be changed from mandatory to optional in order to expedite the

reservation process.

S4) Change dependencies between two activities

Intent: Satisfaction.

Bad Smell: Bad hierarchy in the process: Business rules not respected.

Motivation: The completion of an activity may be changed from optional to

required in order for another activity to be started, or for an enclosing activity to be

completed, when this increases safety, enforces business rules, or when it improves

the organization and understandability of the steps of a process.

Example: For example, in an e-learning system, the completion of a learning unit

may be defined as "required" in order for the following one to be started, or passing

an assessment may be changed into required in order for the learning unit to be

considered completed.

S5) Make input data in one activity visible to other activities/processes

Intent: Effectiveness and Efficiency.

Bad Smell: Duplication of steps within the process.

Motivation: Instead of requesting users to enter the same information in more than

one place, transfer the information directly to the processes/activities that require it

after it has been entered once.

Example: At Amazon.com, the sign-in activity required for a user to access her

personal data or previous orders information is not visible to the checkout process,

so that the user is requested to login again to complete an order.

S6) Make an activity suspendable

Intent: Efficiency and Satisfaction.

Bad Smell: Premature abandonment of the application; long time to conclude a

process.

15

Motivation: Making an activity suspendable enables the user to pause the process

during the execution of that activity and restart it afterwards, from the same point,

possibly using a different device. This may result in an improved efficiency and a

better user satisfaction, especially when a given activity is particularly complex and

requires time to be completed.

Example: The option to save a post in a blog server (i.e., Blogger, Wordpress, etc.)

allows the user to start an activity, suspend it and resume it later, providing the

possibility to review the post as many times as necessary before publishing it.

Behavioral WBPRs (changes to the BP control flow)

B1) Change the order of execution of two or more activities

B1.a) Anticipate a validation activity

Intent: Effectiveness, Efficiency, Satisfaction and Context Coverage.

Bad Smell: Users repeatedly filling a form because of subsequent failed validation.

Motivation: The system activity that verifies all data in an input form after it has

been submitted could be anticipated and triggered as the user fills each of the form

fields, thus to improve efficiency and effectiveness, since the user will not wait to

receive feedback when entering erroneous or incomplete data.

Example: An example of the above bad smell appeared back in Figure 1 at the top,

which shows the process of requesting and verifying credit card data for

reservations at hotelbooking.com.

Mechanics: We show this refactoring on a BPMN model. Figure 3-top shows the

BPMN model of a “Credit Card Data Input and Verification” process in

hotelbooking.com. The activity “Validate Credit Card Data” runs after the “Fill Out

Credit Card Data Form” activity is completed and the “Buy” button is clicked. If the

validation fails, the systems requests the user to re-enter the data and the sequence is

repeated. The activity node "Validate Credit Card Data" can be anticipated by

inserting a parallel gateway to access either the selected activity or the previous one.

In the model of Figure 3-bottom, obtained after applying the Anticipate Activity

refactoring, the parallel gateway specifies that “Fill Out Credit Card Data Form”

16

and “Validate Credit Card Data” will run in parallel. Then, if the validation is

successful, the flows are joined together to continue the process execution.

Fig. 3 The process of Credit Card Data Input and Verification (top) and its refactored version (bottom)

obtained by anticipating the Validate Credit Card Data system activity.

B1.b) Postpone the execution of an activity

Intent: Effectiveness, Efficiency, Satisfaction and Context Coverage.

Bad Smell: Premature abandonment of the application.

Motivation: An activity that is not required to complete a portion of a process in

which there is a loop should be postponed after the loop, in order to avoid uselessly

repeating its execution. This would avoid user discontentment to go through a non-

essential activity several times.

Example: In the process of booking a flight, the activity of choosing a seat should

be postponed with regard to the sub-process of searching for a flight, which is

usually repeated several times until the user finds a suitable flight. This was a

problem present in a previous version of the Alitalia.com website (and documented

in [48]) that has been corrected.

17

B1.c) Make two activities executable in parallel and/or without a specific order

Intent: Effectiveness, Efficiency, Satisfaction and Context Coverage.

Bad Smell: Process Inflexibility.

Motivation: Enabling two or more activities of a process to be executed in parallel

when no dependency exists between them may provide the opportunity for two

users to collaborate in a process and speed-up its execution.

Example: As an example, in an e-procurement system, some of the activities of

preparing a competitive tender can be parallelized and executed by more

administrative officers in parallel. At the same time, a given user may execute some

activities which are of support to a given activity in parallel with it. Under the same

conditions of data and control flow independence, enabling two or more activities to

be executed with no predetermined order makes the process more flexible and

efficient. In this case, in fact, the user may choose the activity to execute depending,

for example, on the currently available business data or for opportunity reasons, and

proceed with the others as data they require are made ready. Conversely, a strictly

sequential workflow, when not required might reduce process flexibility and user

freedom.

B2) Add a support activity

B2.a) Add an "assistance" activity

Intent: Effectiveness, Efficiency, Satisfaction and Freedom from Risk.

Bad Smell: Frequent empty results because of erroneous data in search fields; many

backward-link activation to correct form data.

Motivation: When the user can enter free (and possibly erroneous) data in an input

form, and the set of possible (and correct) input data is limited, it is possible to

reduce the errors in input data to increase efficiency and satisfaction in using the

application.

Example: An example of such activity is the autocomplete feature that helps the

user in filling in the fields of a form faster and free of errors. This decreases the

chances to have empty results or repetition in the process due to incorrect data

entered by the user. In Section 5 we show the screenshots of lastminute.com

18

showing this bad smell while entering data to search for a flight. Figure 4 shows the

Italian version of the site, which thanks to the use of the autocomplete feature, the

user is smoothly prompted with a list of airports corresponding to the initials she has

inserted. This speeds up the form filling process and reduces the chances for

erroneous input.

Mechanics: We show this refactoring over a UML Activity Diagram. In this case,

every user activity to enter data is parallelized with a new activity that auto-

completes form fields, either filtering the possible answer set or recovering from

saved customer data.

Figure 5 shows on the left the UML activity diagram of the process of searching for

a flight at lastminute.com and on the right its refactored version obtained by adding

the autocomplete support activity “Provide Data Input Support by Form Fields

Autocomplete", which is already available in the Italian version of the site.

Fig. 4 Autocomplete support activity in the page for searching for flights at Lastminute.it

19

Fig. 5 The process of searching for a flight at lastminute.com (left) and at lastminute.it (right), with the latter

featuring the "Provide Data Input Suggestions" support activity.

B2.b) Add a verification activity

Intent: Effectiveness, Efficiency, Satisfaction and Freedom from Risk.

Bad Smell: Users feeling uneasy to enter personal data. Repeated phishing or bot

automated attacks.

Motivation: Phishing and security threats are rising every day. Users need to feel

secure to enter personal data or credit card information, otherwise they will abandon

the application [31]. A small verification activity (like replying to an email) can

make a difference to build trust in those users aware of security threats, and at the

same time can ensure website security in the case of users unconscious of security

warnings.

Example: A CAPTCHA test is a short activity to which users are getting accustom,

intended to verify that a request to a website originates from humans, and also as

anti-phishing. It may be introduced just before the starting activity of a public

accessible process, or before the last activity completing it.

B2.c) Add a summary activity

Intent: Effectiveness, Efficiency, Satisfaction and Freedom from Risk.

20

Bad Smell: Risk of errors.

Motivation: In the context of a purchase process, for example, it is very useful to

add an activity to enable the user verifying the content of her shopping cart and

modify the quantity of each product before proceeding with the checkout.

Example: In Amazon.com, the user is able to review the order before actually

paying for it. He can check the quantity and items purchased, address that it's going

to be delivery, details of the payment. This way he can be that everything is correct

before committing to buy the items.

B2.d) Add a "confirm and commit” activity

Intent: Effectiveness, Efficiency, Satisfaction, and Freedom from Risk.

Bad Smell: Hesitation to move forward in the process execution towards its

completion.

Motivation: Adding a "confirm and commit" activity as the last step before

completing a process and committing the associated transaction may increase

system trustability. Advertising the availability of such an activity at the end of a

process may help the user trusting the system and executing the process activities

without worries.

Example: In well designed check-out processes, such as in Amazon.com, after the

user has provided all needed data, there is a final confirmation activity (sometimes

blended with the refactoring "Add a summary activity" described in B2.c).

B3) Make a process cancelable

Intent: Efficiency, Satisfaction, and Freedom from Risk.

Bad Smell: Reduced process flexibility; inconsistency generated by the use of the

browser forward and back buttons.

Motivation: Making a process cancelable whenever possible during its execution by

explicitly offering a “Cancel” activity may increase trust and improve user

satisfaction.

Example: The current design of the checkout process at Amazon.com misses

offering such a feature to the user and the only way for her to cancel a started

process is to go back in the browser history or to directly type a new URL in the

21

browser address bar, or even closing the browser. The first behavior may originate

an incoherent state in the ongoing process, while the second and third ones are very

frustrating for the user.

4.2 Refactoring for the Navigation Layer

N1) Reduce the number of navigation links provided to the user while executing a

process

Intent: Effectiveness, Efficiency, Satisfaction, and Freedom from Risk.

Bed Smell: Possible inconsistencies in the ongoing process; user distraction.

Motivation: Having too many navigation links displayed while executing a BP

which are not necessary to accomplish the BP or which do not observe any specific

grouping and layout criteria, may be confusing and distracting to the user. This

refactoring is intended to reduce or remove such links, so that the user may focus on

the activities required to be executed to complete the process. It also avoids an

inconsistency of the process in case the user decides to click in a link that doesn't

belong to the BP.

Example: In the UFV online bookshop (www.editoraufv.com.br) during the

checkout process, the user has access to many navigation links that might obscure

the process, breaking the process flow with navigation operations.

Mechanics: The UWE navigation diagram [26] in Figure 6-top has been simplified

in Figure 6-bottom, by eliminating most links, except those pertaining to the

checkout BP.

It is important to remark that designers might choose intermediate solutions to

similar examples; for instance we could maintain the link to the Products navigation

class, therefore allowing the user to check for similar products (or even the ones he

chose during the buying process).

22

Fig. 6 Navigation Links showed with the BP page (top) and its refactored version (bottom).

N2) Keep the user up to date on the ongoing process

Intent: Effectiveness, Efficiency, Satisfaction, Freedom from Risk, and Context

Coverage.

Bad Smell: Lack of information about the current process; unnecessary repetition of

steps.

Motivation: Keeping the user informed of the current status of an ongoing process is

another way to increment trust and satisfaction.

Example: In an online store, in order to keep the user informed of the ongoing

shopping process, the current status of her shopping cart (i.e., the list of products it

includes and their total cost) can be shown in a sidebar presented in every page of

the site while browsing it for products to buy and until the checkout process is

started. Figure 7 shows, the demo store of the Magento e-commerce software

23

platform (www.magento.com). Differently from Amazon, the Magento e-commerce

solution features a shopping cart sidebar showing the list of products currently

included in the shopping cart and their total cost. Having the status of the shopping

cart at hand also reduces the need for the user to navigate to the shopping cart page

in order to check its content and makes the shopping process more smooth and

efficient. We show these differences in Section 5.

Fig. 7 The page presenting a product in the Magento demo store (demo.magentocommerce.com) featuring a

sidebar (highlighted in red) showing the current status of the shopping cart, with included items and total cost.

N3) Improve the information provided to the user while executing an activity

N3.a) Improve the description of process links

Intent: Effectiveness, Satisfaction, and Freedom from Risk.

Bad Smell: User confusion.

Motivation: Process links well described can communicate their intent and avoid the

user to erroneously click on them.

Example: In the Amazon.com website, the hyperlink “Not <username>?” shown on

top of each page and that has the effect to log off the current user, could be changed

into something more explicit such as the text “Sign out”.

24

N3.b) Clearly describe errors in executed activities

Intent: Effectiveness, Satisfaction, and Freedom from Risk.

Bad Smell: Lack of information about the process; user confusion; unnecessary

repetition of steps.

Motivation: Precisely describing errors in input data is very important to avoid

customer frustration. It can also refrain the user to repeat a step due to incorrect data

entering.

Example: For example, when the user fills out a form with wrong data, the

application should clearly indicate which data item is wrong and why.

4.3 Refactoring for the Presentation Layer

P1) Make explicit the steps composing a process and the current step being executed

Intent: Effectiveness and Satisfaction.

Bad Smell: Lack of information about the ongoing process; premature abandonment

of the application.

Motivation: Users requesting to execute a process in a website find valuable to

know in advance the set of activities composing the process, how long the process

will take and, during the process execution, which is the current activity being

executed. For example, when filling out online surveys, which are usually requested

to customers or to selected crowds without reward, it is important to describe the

different sections of the survey and the average time needed to complete it, as a

means of showing care for participants' precious time. This can be accomplished by

showing a process status bar which: (i) lists the set of activities composing the

process, (ii) highlights the current activity, and (iii) distinguishes already completed

activities from those yet to be executed.

Example: Figure 8-bottom reports a page from Amazon.com that presents on top of

it the status bar for the process of checkout. The bar clearly indicates that the

process is structured into 4 steps, “Login”, “Shipping & Payment”, “Gift-Wrap”,

“Place Order”, and that “Login” is the current activity being executed. Such process

status bar is instead missing in the Cuspide.com e-bookstore (Figure 8-top).

25

Mechanics: In this case we use the presentation model of the UWE methodology.

Figure 9 shows the UWE presentation model representing the Cuspide.com

checkout page before (left) and after (right) applying the refactoring. The model on

the left represents the current version of the page (screenshot reported in Figure 8-

top). In the model on the right, the process status bar was added as a Presentation

Group that will contain the widgets that will inform the user about the step she is at,

the steps already passed, and the ones to come until the process ends.

Fig. 8 The page for starting a checkout process at Cuspide.com (top) and at Amazon.com (bottom), with the

latter featuring a process status bar on the top of the page.

26

Fig. 9 The UWE presentation model representing the checkout page at Cuspide.com, before (left) and after

(right) applying the Add a Process Status Bar refactoring.

P2) Change the widget used to execute an activity

Intent: Efficiency, Satisfaction and Freedom from Risk.

Bad Smell: Risk of error.

Motivation: An appropriated widget can make the user execute faster simple

activities of the process and prevent possible errors. Simple text anchors may be

replaced by buttons for better clarity; cursors are better than free textbox to specify

values in a range; JavaScript calendar widgets are better than dropdown-lists to

specify dates, etc.

Example: Figure 10 compares the pages for searching for a flight in the American

and Italian versions of the lastminute.com website: additionally to dropdown-lists,

the latter also offers a JavaScript calendar widget which makes specifying the flight

departure and return dates fast and error free.

27

Fig. 10 The page of searching for a flight at lastminute.com (left) and lastminute.it (right), with the latter

featuring a JavaScript calendar widget for selecting the departure and return dates.

P3) Remove duplicated process links

Intent: Effectiveness, Satisfaction, and Freedom from Risk.

Bad Smell: User confusion; redundancy within the BP.

Motivation: Sometimes a process link that leads the user to a given action appears in

a Web page more than once, creating a redundancy that might confuse the user by

giving the idea that they represent different things.

Example: In Figure 12-c we can see two “Print” buttons that print exactly the same

information: the bank account selected to receive the money transfer. Using this

refactoring, the duplicated “Print” button should be removed to make the Web

application more consistent and easier to understand.

P4) Group process links that operate on the same domain entity

Intent: Effectiveness, Efficiency, Satisfaction, and Freedom from Risk.

Bad Smell: User confusion.

Motivation: The way process links are distributed along a Web page as well as their

look-and-feel help the user understand and identify groups of actions operating on

the same domain entity. When process links are not grouped and have a different

look-and-feel, it is hard to tell on which entity each one applies, thus generating

28

confusion.

Example: In the Banco Nacion Argentina website, process links shown in the page

for money transfer are much disorganized as shown in Figure 12-c. Links such as

“Quitar” (Delete) and “Agregar” (Add), which appear on opposite corners, refer to

the same domain entity: a transfer. Moreover, “Confirmar y realizar transferencia/s”

(Confirm transfer) has a different look-and-feel but also operates on the transfer. On

the contrary, in the Gmail application (www.gmail.com) (Figure 11), when the user

selects an email in the Inbox, some buttons/links such as, “Delete”, “Reply”, “Reply

All”, “Move”, etc., appear all together and with the same look-and-feel. This

indicates to the user that these buttons are process links that apply to the selected

email message.

Fig. 11 Example of process links that apply on a selected e-mail message in Gmail. All process links (red

marked) are grouped and have the same look and feel.

In Table 1 we summarize all the refactorings we have presented in this section, and classify

them by the Intent, Scope and Quality Attributes they address.

29

Table 1. A characterization framework for WBPRs and a summary of our catalogue of WBPRs.

 Web Business Process Refactorings Characterization

Characterization Aspects S1 S2 S3 S4 S5 S6 B1 B2 B3 N1 N2 N3 P1 P2 P3 P4

Intent

Quality in
use
characteristic
s (ISO/IEC
25010) [24]

Effectiveness1 X X X X X X X X X X X

Efficiency2 X X X X X X X X X X X

Satisfaction3 X X X X X X X X X X X X X X
Freedom from
Risk4 X X X X X X X X X

Context
Coverage5 X X X

Scope

Impacted
Web design
layers

Process
(structural) X X X X X X X X

Process
(behavioral) X X X X X X X X

Navigation X X X X X X X
Presentation X X X X X X X X X X

Modified
software
artifacts

Class diagram X X X X X X X
Activity diagram /
BPMN models X X X X X X X X

Navigation model X X X X X X X
Presentation
model X X X X X X X X X X

5. Case Studies and Evaluation

We have conducted an evaluation on some websites with the purpose of illustrating the task

of finding bad smells and linking them directly to the refactorings in our catalog that bring

a cure to the identified bad smells. In the same spirit as Nielsen’s book on “Homepage

Usability” [32], we do not intend to point incompetent site designers but rather to show

indicators of the poor state in which web usability still is today, in particular when it comes

to how users carry on processes on the Web. We also go a step further and suggest a

solution in terms of a specific and cataloged refactoring that corrects each problem. In the

second section we evaluate our approach in terms of strengths and limitations.

5.1 Bad Smells of Six E-commerce Websites and a Refactoring Proposal

We have analyzed six websites, namely, Nationwide.co.uk, Amazon.com, Bna.com.ar,

Lastminute.com, Tematika.com, and Amazon.co.uk. The analysis we performed had the

30

purpose of finding opportunities for refactoring, i.e., bad smells related to the quality in use

of the BP of each website. Note that this analysis may be formalized by measuring quality

attributes of interest to final users in the context of a formal framework like that proposed

by the Web Quality Evaluation Method (WebQEM) [37]. We have elsewhere proposed an

integrated approach that uses WebQEM to find bad smells, then applies refactoring to fix

the bad smells, and finally uses WebQEM again to measure the improvement gain [38]. For

example, a quality indicator like “Operation grouping cohesiveness” may signal the

presence of the bad smell “Poor/Confusing organization of process links” (highlight #8 in

Figure 12), thus indicating the need for a refactoring like “P3) Group process links”.

Figure 12 shows a page from each of the considered websites that exhibits some bad smells

associated to the execution of activities inside a BP. In the order of the figure, those

activities/BPs are: a) logging in, b) buying, c) making a bank transfer, d) searching for a

flight, e) registering, and f) checking out. The orange circles on each page point to the bad

smells that are listed by number in the second column of Table 2.

Table 2 describes, for each webpage in Figure 12, the bad smells we found and the

refactoring that we can apply to solve each of them. To better illustrate the application of

our approach, both the bad smells and the refactorings are not described in general terms as

in the previous section but instantiated for the specific example. Moreover, for each

refactoring we list a website that shows the solution, as a reference for desirable quality

attributes and good practices that users appreciate, and that the refactoring is able to gain,

thus improving usability.

31

a)	
 Nationwide.co.uk	

	

b)	
 Amazon.com

	

	

c)	
 Bna.com.ar	

	

d)	
 Lastminute.com

e)	
 Tematika.com

	

f)	
 Amazon.co.uk

Fig. 12 Screenshots of our case studies showing with orange circles the bad smells that are described in

Table 2.

3
4

5

6

7

8

9

10

11 12

2

1

32

Table 2. Summary of bad smells and refactorings in our case studies

Website Bad	
 smell Refactoring Correct	
 solution

a)
1) A single input field per page;
Excessive time to complete login

S2) Aggregate activities bancofrances.com.ar

a)
2) Unknown number/description of
steps in the login process

P4) Make explicit the steps (or
number) composing a process

Santander.co.uk (login
has 2 numbered steps)

b)
3) Although already logged in, it
will request to login again when
going to checkout

S5) Make login data in shopping
activity visible to the checkout
activity

Mercadolibre.com.ar

b) 4) No apparent “Sign out”
N3.a) Improve the description of
process links

Mercadolibre.com.ar

b)

5) No view of current content of
shopping cart or total price of
items in the cart, unless
navigating

N1) Keep the user up to date of
an ongoing process

Mediashopping.com

c)
6) Too many links available
without a specific order

N2) Reduce the number of
navigation links provided to the
user while executing a process

Bancofrances.com.ar

c)
7) Confusing duplicate links to
Print (“Imprimir”) and Download
(“Descargar”)

P2) Remove duplicate process
links

Bancofrances.com.ar

c)

8) Confusing organization of links
to Add (“Agregar”) and Remove
(“Quitar”) in different places of the
page

P3) Group process links that
operate on the transfer

Gmail.com (Figure 5)

d)
9) Need to write the whole airport
or city name. Need to write it
again when making a typo

B2.d) Add autocomplete in both
airport fields

Lastminute.it (Figure
4)

d)
10) Two fields instead of a single
selection to complete the dates

P1) Change day and month
widgets by a single calendar
widget.

Lastminute.it (Figure
4)

e)
11) Premature abandonment of
page

B1.b) Postpone execution of
activity

Saraiva.com.br

f)
12) Inflexibility of the business
process to be cancelled.

B3) Make process cancellable Tesco.co.uk

5.2 Strengths and Limitations of our Usability Improvement Approach

We believe that our approach to improve the quality-in-use properties associated to the

access and execution of BPs in e-commerce applications has the following strengths:

• Each refactoring is simple and behavior preserving; therefore applying refactoring is

a safe process regarding application functionality.

33

• It is independent of the method and models adopted to design the BPs; it is also

independent of the technologies adopted to realize the application as it works at the

conceptual user-centered design level. On this regard, we have purposely presented

different refactoring examples using different models for BP representation.

• It provides practical guidance on identifying usability issues and/or opportunities

for usability improvements in the business processes as we showed in the examples.

This is inherent to the concepts of refactoring, bad smell, and mechanics on which

the approach is based.

• Our catalogue of refactorings is extensible. As new bad usability smells are

identified and possible refactoring solutions are defined, these can be added to

extend the current catalogue. Furthermore, current refactorings can be composed to

generate more complex ones.

On the other hand, we are aware of some limitations that we aim to overcome with future

work we are pursuing:

• Our catalogue of refactorings is not exhaustive. As a consequence, our approach to

usability improvement might fail to identify a number of usability issues in the

analyzed BPs. At the same time, while our refactorings are meant and meaningful

for "traditional" e-commerce websites, they might need some adaptation when used

in mobile e-commerce applications (M-commerce), as user's usability concerns for

the two domains are subtly different [40].

• Our approach has currently limited tool support. At the moment, tool support is

provided for the refactoring of the navigation and presentation models of the UWE

methodology using the MagicUWE tool [7]. Thus, it requires manual application of

refactorings for the process model. However, we are currently developing a tool that

will enable to seamlessly introduce any of the refactoring of the subset of navigation

and presentation WBPRs by using client-side scripting technologies on the front-

end of the application.

• We have not yet performed a fully analytical and quantitative evaluation of the

approach. In this regard it is important to state that the improvements in usability

become evident from the successful examples that show recurrent and well-known

34

practices in the e-commerce field. However, we have not measured the development

effort for realizing each change and we leave this analysis for a further work.

6. Related Work

In the context of BPs, several works related to refactoring techniques have been proposed.

However, to the best of our knowledge, all of them have a different objective compared to

that of our proposal.

The closest work we could find in the literature is that of Zou et al. [54]. The authors claim

and verify with an empirical study that the information stored in business process

definitions (e.g., task processing sequences and role information) can be leveraged to

improve the UI of an existing e-commerce application, and thus its usability. While our

work has the same intent (improving usability) and same scope (business processes in e-

commerce applications) of that of Zou et al., we propose a completely different approach to

reach the intent, i.e. a catalogue of refactorings for the BPs of the application, which can be

beneficial for the usability of the application.

The approach described in [27] enables a business architect to establish correspondences

between two process models in a systematic way and shows how these correspondences

define concrete refactoring operations that serve to improve the “as-is” model. Weber et al.

propose a catalog of process model “smells” for identifying refactoring opportunities [52].

In addition, they introduce a set of behavior-preserving techniques for refactoring large

process repositories. The refactorings are purely focused on the control-flow perspective in

order to improve the internal quality of the process model, but they do not affect the

model’s semantics or external behavior. In [10], Dijkman et al. propose a technique that can

be used to identify four process model refactoring opportunities. The technique is based on

metrics that can be used to measure the consistency of activity labels as well as the extent

to which processes overlap and the type of overlap that they have. Authors evaluated their

technique by applying it to two large process model repositories. Recently, the work of

Fernández-Ropero et al. [12] aims to choose the most appropriate set of business process

refactoring operators through the quality assessment concerning understandability and

modifiability. These quality features are assessed through well-proven measures proposed

35

in the literature. In these four mentioned approaches, refactoring has been applied in order

to improve internal qualities of complex BP models: readability, understandability and

maintainability. In this sense, we could say that they propose “BP Refactoring” unlike our

work that is focused to improve usability of BPs in e-commerce Web applications. The

work of Ferrari et al. promotes a formal approach to refactoring of Long Running

Transactions [18], (LRT) [13] represented in Signal Calculus (SC) so that distributed LRT

designed in BPMN can be faithfully represented. On top of SC, the authors define a few

refactoring transformations for distributed LRT. Finally, they prove that the given

refactoring rules are sound by showing that they preserve (weak) bisimilarity. Workflow

graphs are used to model the control flow of BPs in various languages, e.g., BPMN, EPCs

and UML (a comparison of BPMN and UML AD is presented in [41]). The approach

presented in [51] proposes techniques for automatic workflow graph refactoring and

completion. These techniques enable various use cases in modeling and runtime

optimization. For example, they allow completing a partial workflow graph, detecting local

termination for workflow graphs with multiple ends, and executing models containing OR-

joins faster. Some of these techniques are based on workflow graph parsing and Refined

Process Structure Tree. This mechanism provides a decomposition of a workflow graph

into a hierarchy of sub-workflows that are subgraphs with a single entry and a single exit of

control. Such a decomposition is the crucial step, for example, to translate a process

modeled in a graph-based language such as BPMN into a process modeled in a block-based

language such as BPEL. It is desirable that the decomposition be unique, modular and fine,

where modular means that a local change of the workflow graph can only cause a local

change of the decomposition [50].

On the other hand, without specifically addressing the refactoring concept, a number of

approaches deal with the critical issue of improving BP quality. Among others, Grigori et

al. [21] pursue this goal through an approach that analyzes, predicts and prevents the

occurrences of exceptions in the BP, i.e., derivations from the desired or acceptable

behavior. They characterize the problem and propose a solution, based on data warehousing

and mining techniques. Tilley et al. present in [48] a process to reengineer Web application

transactions (i.e., BPs implemented by a Web application) that consists of recovering the

“as-is” design model of the transaction, analyzing it to determine opportunities for

36

restructuring, and redesign the transaction accordingly. Similar to our work, the goal of the

proposed reengineering process is to emerge with a transaction design that better reflects

the user experience and also facilitates disciplined evolution of the Web-based application.

The authors, however, do not propose any catalogue of possible restructuring actions as

they focus on the description of the steps composing the reengineering process. In [53], a

set of eighteen change patterns and seven change support features are suggested in order to

enhance flexibility in Process-Aware Information Systems (PAISs). Based on the proposed

change patterns and features, authors provide a detailed analysis and evaluation of selected

approaches from both academia and industry. The work facilitates the selection of

technologies for realizing flexible PAISs. Finally, the PAISs usually support BP design by

means of graphical graph-oriented BPMLs in conjunction with textual executable

specifications. In [9] authors discuss the flexibility of different BPMLs which are the main

interface for users that need to change the behavior of PAISs. In particular, they show how

common BPMLs features, that seem good when considered alone, have a negative impact

on flexibility when they are combined together for providing a complete executable

specification. A model has to be understood before being changed and a change is made

only when the benefits outweigh the effort. Two main factors have a great impact on

comprehensibility and ease of change: concurrency and modularity. They show why

BPMLs usually offer a limited concurrency model and lack of modularity and, finally, they

discuss how to overcome these problems.

Unlike the works mentioned above, our approach is focused on improving quality-in-use

characteristics -such as satisfaction, efficiency and efficacy- and, overall, usability, related

to the execution of BPs in e-commerce Web applications. To reach this goal we propose

and describe the application of a set of refactorings for the different layers in which a BP is

designed in a business Web application.

7. Conclusions and Future Work

Since its introduction in the 1990's, refactoring has demonstrated to be a powerful

technique for dealing with software decay and to improve internal and external quality

attributes of a software system. Originally conceived to make a codebase easy to

37

understand and maintain, during the years, refactoring has in fact been extended in intent

and scope and today it is applied with success to refactor a variety of software artifacts at

various levels of abstraction and with different intents.

After having introduced refactoring in the realm of Web application design models

[15][16][17], in this article we concentrated on business processes in e-commerce

applications, and proposed a definition and a catalogue of refactorings that can be applied

to improve quality-in-use characteristics, such as effectiveness, efficacy, user satisfaction,

and, overall, usability, related to the execution of business processes (BPs) in Web

applications.

To make presentation concrete and provide evidence of the benefits that applying our Web

Business Process Refactorings (WBPRs) can bring, we provided examples for each of them

with reference to well-known e-commerce websites. To make the presentation systematic,

we presented and proposed a framework for characterizing WBPRs based on their intent

and scope.

For a representative subset of WBPRs, we illustrated in detail how the need and/or

opportunity for refactoring can be identified (bad smell) and how the refactorings can be

applied (mechanics), by showing the “as-is” and “to-be” versions of the associated software

artifacts using different design notations for BP design. The whole refactoring approach

and each WBPR, however, are applicable no matter what the notation and the design

method used to model the BP are.

Though conceived for Web applications, we believe that our WBPRs, particularly those

classified as structural and behavioral WBPRs, can be profitably applied also to traditional,

i.e. not Web-based, business applications, as they represent changes for the process

organization and control-flow, independently of the process implementation. Moreover,

they can be applied to the more general field of process workflows involving not only

software, though in this paper we have concentrated in the software part of these systems.

Future work we aim to develop will be devoted to extending our catalogue of WBPRs,

which now includes eighteen refactorings, and to developing tools and extended guidelines,

including a checklist, to support and partially automate the whole refactoring process. We

are also analyzing those refactorings that involve transformations using the kind of

interactions popular in rich internet applications (RIAs) as in the example of Figure 1, since

38

even some of the refactorings in our catalogue may have different realizations in the

running application, such as those commonly found in RIA. Our guidelines and checklist

will also support these implementation “variants” and suggestions on when to use them

(e.g., according to the application nature). Finally, we are researching on how our

refactorings affect automatic interaction tests by enriching our approach for test-driven

development of Web applications [43] with the catalogue of refactorings, which are

expressed as transformations in the interface and in the interaction requirements of the

application.

8. References

1. Aberer, K., Datta,A., Despotovic, Z. and Wombacher, A. (2003). Separating Business Process from User

Interaction in Web-Based Information Commerce. Electronic Commerce Research, Volume 3, No 1 pp.

83-111, Springer Netherlands.

2. AGConsult (2009), 48% of visitors on e-commerce websites don’t buy due to lack of usability.

http://webusability-blog.com/48-of-visitors-on-e-commerce-websites-dont-buy-due-to-lack-of-usability/

3. Ambler, S. (2012) User Interface Flow Diagrams (Storyboards).

http://www.agilemodeling.com/artifacts/uiFlowDiagram.htm

4. Bevan, N., Quality in use: Meeting user needs for quality, Journal of Systems and Software, Volume 49,

Issue 1, pp. 89-96, Elsevier (1999).

5. Boger, M., Sturm T., and Fragemann P. (2003). Refactoring Browser for UML. Objects, Components,

Architectures, Services, and Applications for a Networked World, Lecture Notes in Computer Science

2591, pp. 366–377, Springer-Verlag Berlin, Heidelberg.

6. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I. (2006). Process Modeling in Web Applications.

ACM Transactions on Software Engineering and Methodology (TOSEM), ACM Press.

7. Busch, M., Koch, N. (2009). MagicUWE --- A CASE Tool Plugin for Modeling Web Applications. In

Proceedings of the 9th International Conference on Web Engineering (ICWE 2009), pp. 505-508,

Springer-Verlag Berlin, Heidelberg.

8. Casalo, L., Flavian, C., Guinaliu, M. (2008). The role of usability and satisfaction in the consumer's

commitment to a financial services website. International Journal of Electronic Finance, Volume 2 Issue

1, January 2008, pp. 31-49.

9. Combi, C., Gambini, M. (2009). Flaws in the flow: The weakness of unstructured business process

modeling languages dealing with data. In Proceeding of the Confederated International Conferences,

39

CoopIS, DOA, IS, and ODBASE 2009 (OTM '09) On the Move to Meaningful Internet Systems: Part I,

Lecture Notes in Computer Science, 5870 LNCS (Part 1), pp. 42-59 Springer-Verlag, Berlin Heidelberg.

10. Dijkman, R., Gfeller, B., Küster, J., Völzer, H. (2011). Identifying refactoring opportunities in process

model repositories. Information and Software Technology 53 pp. 937–948, Elsevier.

11. Distante, D., Rossi, G., Canfora, G., Tilley, S. (2007). A Comprehensive Design Model for Integrating

Business Processes in Web Applications. International Journal of web Engineering and Technology

(IJWET), Volume 3, Issue 1., Interscience Publishers.

12. Fernández-Ropero, M., Pérez-Castillo, R., Caballero, I., Piattini, M. (2012). Quality-Driven Business

Process Refactoring. World Academy of Science, Engineering and Technology, Issue 66, pp. 960-966.

13. Ferrari, G.L., Guanciale, R., Strollo, D., Tuosto, E. (2009). Refactoring long running transactions. In

Proceedings of the 6th International Workshop on Web Services and Formal Methods (WS-FM 2008),

Lecture Notes in Computer Science, 5387, pp. 207-223, Springer, Heidelberg.

14. Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley.

15. Garrido, A., Rossi, G., Distante, D. (2007) Model refactoring in web applications. Proceedings of the 9th

IEEE International Symposium on Web Site Evolution (WSE 2007). IEEE Computer Society.

16. Garrido, A., Rossi, G., Distante, D. (2009). Systematic Improvement of Web Applications Design.

Journal of Web Engineering, Special Issue on Web Applications Evolutions, Volume 8, Issue 4, 371-404.

Rinton Press.

17. Garrido, A., Rossi, G., Distante, D. (2011). Refactoring for Usability in Web Applications. IEEE

Software, May/June 2011, pp. 31-38, IEEE Computer Society.

18. Grayand, J., Reuter. A. (1993). Transaction Processing: Concepts and Techniques. Morgan Kaufmann.

19. Green, D.T., Pearson, J.M. (2011). Integrating website usability with the electronic commerce acceptance

model, Behaviour & Information Technology, Volume 30, Issue 2, March-April 2011, pp. 181-199.

Taylor & Francis.

20. Gregg, D.G. and Walczak, S. (2010). The relationship between website quality, trust and price premiums

at online auctions. Electronic Commerce Research, Volume 10, Issue 1, pp. 1-25, Springer Netherlands.

21. Grigori, D., Casati, F., Dayal, U., Shan, M.-C. (2001). Improving Business Process Quality through

Exception Understanding, Prediction, and Prevention. In Proceedings of the 27th Very Large Data Base

Conference (VLDB '01), Morgan Kaufmann Publishers Inc. San Francisco, CA, USA.

22. Harold, E. R. (2008), Refactoring HTML: Improving the Design of Existing Web Applications. Addison-

Wesley.

40

23. ISO 9241-11:1998 Ergonomic requirements for office work with visual display terminals (VDTs) -- Part

11: Guidance on usability. ISO Copyright Office, Geneva, 1998.

24. ISO/IEC 25010:2011 - Systems and software engineering -- Systems and software Quality Requirements

and Evaluation (SQuaRE) -- System and software quality models, ISO Copyright Office, Geneva, March

2011.

25. Kateb, D. E., Mouelhi, T., Le Traon, Y., Hwang, J.H., Xie, T. (2012). Refactoring Access Control

Policies for Performance Improvement. Proceedings of The 3rd ACM/SPEC International Conference on

Performance Engineering (ICPE’12), pp. 323-334. ACM Press.

26. Koch, N., Kraus, A., Cachero C., Meliá, S. (2004). Integration of Business Processes in Web

Applications. Journal of Web Engineering, Volume 3, Issue 1, 022-049. Rinton Press.

27. Küster, J. M., Koehler J., Ryndina, K. (2006). Improving Business Process Models with Reference

Models in Business-Driven Development. In Proceedings of the International Business Process

Management Workshops 2006, Lecture Notes in Computer Science, Volume 4103/2006, pp. 35-44,

Springer-Verlag Berlin Heidelberg.

28. Lauesen, S. (2005).User interface design - a software engineering perspective - the Virtual Windows

method. Addison-Wesley.

29. Liu, C.-H., Kung, D. C., Hsia, P., Hsu, C.-T. (2000). Object-Based Data Flow Testing of Web

Applications. In Proceedings of the First Asia-Pacific Conference on Quality Software (APAQS '00)

IEEE Computer Society Washington, DC, USA.

30. Nathan, R. J. and Yeow, P.H.P. (2010). Crucial web usability factors of 36 industries for students: a

large-scale empirical study. Electronic Commerce Research, Volume 11, Issue 2, pp. 151-180. Springer

Netherlands.

31. Nielsen, J. (1999). Designing Web Usability. New Riders Publishing.

32. Nielsen, J. (2001). Homepage Usability: 50 Websites Deconstructed. New Riders Publishing.

33. Nielsen, J. (2011). E-Commerce Usability http://www.useit.com/alertbox/ecommerce.html, October 24,

2011.

34. Nielsen, J., Did Poor Usability Kill E-Commerce? http://www.useit.com/alertbox/20010819.html, August

19, 2001.

35. Object Management Group (2010). Unified Modeling Language Version 2.3.

http://www.omg.org/spec/UML/2.3/.

36. Object Management Group (2011). Business Process Modeling and Notation (BPMN) Version 2.0

http://www.omg.org/spec/BPMN/2.0/PDF.

41

37. Olsina, L. and Rossi, G. (2002). Measuring web application quality with WebQEM. IEEE Multimedia, 9,

20–29.

38. Olsina, L., Garrido, A., G. Rossi, Distante, D. and Canfora, G. (2008) “Web Application Evaluation And

Refactoring: A Quality-Oriented Improvement Approach”, Journal of Web Engineering, 7 (4), pp. 258-

280. Rinton Press.

39. Opdyke, W., Johnson, R. (1993). Creating Abstract Superclasses by Refactoring. In Proceedings of the

1993 ACM Conference on Computer Science (CSC 93), ACM Press, pp. 66–73.

40. Ozok, A. and Wei, J. (2010). An empirical comparison of consumer usability preferences in online

shopping using stationary and mobile devices: results from a college student population. Electronic

Commerce Research, Volume 10, Issue 2, pp. 111-137. Springer Netherlands.

41. Peixoto, D. C. C., Batista, V. A., Atayde, A. P., Borges, E. P., Resende, R. F., Isaías, C., Pádua, P. S.

(2008). A Comparison of BPMN and UML 2.0 Activity Diagrams. VII Simpósio Brasileiro de Qualidade

de Software (SBQS 2008). Florianópolis, SC, Brasil.

42. Pourshahid, A., Amyot, D., Peyton, L., Ghanavati, S., Chen, P., Weiss, M. and Forster, A.J. (2009).

Business process management with the user requirements notation. Electronic Commerce Research,

Volume 9, No 4 pp. 269-316, Springer Netherlands.

43. Robles Luna E., Grigera J., Rossi G. (2009). Bridging Test and Model-Driven Approaches in Web

Engineering. In Proceeding of the 9th International Conference in Web Engineering (ICWE 2009).

Lecture Notes in Computer Science 5648 Springer 2009, pp. 136-150, Springer, Heidelberg.

44. Schäfer, M., de Moor, O. (2010). Specifying and Implementing Refactorings. In Proceedings of the 25th

ACM International Conference on Object Oriented Programming Systems Languages and Applications

(OOPSLA '10), pp. 286-301. ACM Press.

45. Schaffer, E., Sorflaten, J. (1998). Web Usability Illustrated: Breathing Easier with your Useable E-

Commerce Site, EDI Forum: The Journal of Electronic Commerce, Volume 11, Part 4 pp. 50-52, 57-64.

46. Schmid, H., Rossi, G. (2004). Modeling and Designing Processes in E-Commerce Applications. IEEE

Internet Computing, Volume 8 Issue 1, IEEE Computer Society.

47. Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S. (2009). Designing the User Interface: Strategies for

Effective Human-Computer Interaction. Prentice Hall; 5th edition,

48. Tilley, S., Distante, D., Huang, S. (2004). Web Site Evolution via Transaction Reengineering. In

Proceedings of the 6th International Workshop on Web Site Evolution (WSE 2004). IEEE Computer

Society Press, Los Alamitos, CA.

49. Torres, V., Pelechano, V. (2006). Building Business Process Driven Web Applications. In Proceedings of

Business Process Management 2006, pp. 322-337, Springer Berlin / Heidelberg.

42

50. Vanhatalo, J., Völzer, H., Koehler, J. (2008). The Refined Process Structure Tree. In Proceedings of the

6th International Conference on Business Process Management (BPM '08), Lecture Notes in Computer

Science 5240, pp. 100-115, Springer, Heidelberg.

51. Vanhatalo, J., Völzer, H., Leymann, F., Moser, S. (2008). Automatic workflow graph refactoring and

completion. In Proceedings of the 6th International Conference on Service-Oriented Computing (ICSOC

'08), Lecture Notes in Computer Science, 5364 LNCS, pp. 100-115, Springer, Heidelberg.

52. Weber, B., Reichert, M., Mendling, J., Reijers, H. A. (2011). Refactoring large process model

repositories. Computers in Industry, Volume 62, Issue 5, June 2011, pp. 467-486. Elsevier.

53. Weber, B., Reichert, M., Rinderle-Ma, S. (2008). Change Patterns and Change Support Features -

Enhancing Flexibility in Process-Aware Information Systems. Data & Knowledge Engineering Volume

66, pp. 438–466, Elsevier.

54. Zou, Y., Zhang, Q., Zhao, X. (2007). Improving the Usability of E-Commerce Applications using

Business Processes. IEEE Trans. Software Engineering, Volume 33, Issue 12. IEEE Computer Society

Press.

