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A central tenet of ecology and biogeography is that the broad outlines of species ranges are determined by climate, 
whereas the effects of biotic interactions are manifested at local scales. While the first proposition is supported by 
ample evidence, the second is still a matter of controversy. To address this question, we develop a mathematical model 
that predicts the spatial overlap, i.e. co-occurrence, between pairs of species subject to all possible types of interactions. 
We then identify the scale of resolution in which predicted range overlaps are lost. We found that co-occurrence arising 
from positive interactions, such as mutualism (/) and commensalism (/0), are manifested across scales. Negative 
interactions, such as competition (2/2) and amensalism (2/0), generate checkerboard patterns of co-occurrence 
that are discernible at finer resolutions but that are lost and increasing scales of resolution. Scale dependence in 
consumer–resource interactions (/2) depends on the strength of positive dependencies between species. If the net 
positive effect is greater than the net negative effect, then interactions scale up similarly to positive interactions. Our 
results challenge the widely held view that climate alone is sufficient to characterize species distributions at broad 
scales, but also demonstrate that the spatial signature of competition is unlikely to be discernible beyond local and 
regional scales.

The question of whether the geographical ranges of species 
are determined by their ecological requirements and the 
physical characteristics of individual sites, or by assembly 
rules reflecting interactions between species, has long been  
a central issue in ecology (Andrewartha and Birch  
1954, Diamond 1975, Gotelli and Graves 1996, Chase and 
Leibold 2003, Peterson et al. 2011). Evidence is compelling 
that the limits of species ranges often match combinations 
of climate variables, especially at high latitudes and altitudes 
(Grinnell 1917, Andrewartha and Birch 1954, Hutchinson 
1957, Woodward 1987, Root 1988), and that these  
limits shift through time in synchrony with changes in cli-
mate (Walther et  al. 2005, Hickling et  al. 2006, Lenoir  
et  al. 2008). However, recent evidence suggests that the 
thermal component of species climatic (fundamental) niches 
is more similar among terrestrial organisms than typically 
expected (Araújo et al. 2013), leading to the conclusion that 
spatial turnover among distributions of species might often 
result from non-climatic factors (see also for discussion 
Baselga et  al. 2012a). The degree to which non-climatic  
factors shape the distributions of species has been focus of 
discussion in community ecology and biogeography for 

over a century, with several authors proposing that climate 
exerts limited influence at lower latitudes and altitudes 
(Wallace 1878, Dobzhansky 1950, Loehle 1998, Svenning 
and Skov 2004, Colwell et al. 2008, Baselga et al. 2012b). 
Specifically, much interest exists regarding the extent to 
which occurrences of species are constrained by the distri-
butions of other species at broad scales of resolution and 
extent (Gravel et al. 2011). It has been argued that biotic 
interactions determine whether species thrives or withers in 
a given environment, but that the spatial effects associated 
with these interactions are lost at broad scales (Whittaker 
et  al. 2001, Pearson and Dawson 2003, McGill 2010).  
In contrast, modelling studies have hinted that biotic  
interactions could leave broad-scale imprints on coexistence 
and, therefore, on species distributions (Anderson et  al. 
2002, Araújo and Luoto 2007, Heikkinen et al. 2007, Meier 
et al. 2010, Bateman et al. 2012, Madon et al. 2013). But 
empirical evidence for broad scale effects of biotic inter
actions is limited. A study has shown that with scales of few 
hundred kilometres the effects of competition on geograph-
ical ranges can still be discernible (Gotelli et al. 2010), but 
at scales of biomes such effects are often diluted (Russell 
et al. 2006, Veech 2006). How general are these patterns?

Empirical studies of the effects of biotic interactions  
on species distributions have historically focused on  
competition (Gause 1934, Hardin 1960, MacArthur 1972, 
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Schoener 1982, Amarasekare 2003). However, several 
authors have pointed out that a greater variety of interactions 
can control for spatial patterns of overlap between species 
(Hairston et  al. 1960, Connell 1975, Ricklefs 1987,  
2010, Callaway et al. 2002, Bruno et al. 2003, Travis et al. 
2005). Competition is a specific case involving two species 
that are worse off interacting with one another (which we 
annotate as: 2/2). In its extreme form, competition leads to 
co-exclusion of the interacting species (MacArthur 1972). 
The reverse of competition is mutualism, whereby two  
species display mutual dependency (/). Different combi-
nations of positive, negative, and neutral relationships exist 
and they generate consumer–resource interactions such  
as predation, herbivory, parasitism and disease (/2), or 
amensalism (2/0) and commensalism (/0).

The spatial effects of the different biotic interactions have 
rarely, if ever, been investigated. Differences in co-occurrence 
arising from alternative biotic interactions are seldom stated 
and focus has been on identifying non-random patterns of 
co-occurrence between pairs of species (Gotelli and McCabe 
2002, Horner-Devine et  al. 2007, Gotelli et  al. 2010). 
Substantial controversy exists regarding the appropriate  
null models in such analyses (for review and discussion  
see Gotelli and Graves 1996), but the more fundamental 
question of whether departures from randomness in co- 
occurrence provide interpretable information regarding  
the underlying biotic interactions remains unanswered.

In practice, several biotic and abiotic factors can simulta-
neously affect the distributions of species (Soberón  
2010, Peterson et  al. 2011) and, therefore, co-occurrence 
(Cohen 1971, Leibold 1997, Amarasekare et  al. 2004, 
Ovaskainen et al. 2010, Araújo et al. 2011). One approach 
to disentangle the relative importance of factors causing 
changes in species co-occurrence is through simulations 
(Urban 2005). Here, we develop a new ‘point-process’  
model that infers co-occurrence of species at steady state 
across the full space of direct potential biotic interactions 
between pairs of species: i.e. given all biotic interaction types 
(/, /2, 2/2, /0, 2/0) and all possible combina-
tions of biotic interaction strength (0  Ix  1). Dynamic 
Lotka–Volterra-type models can also be used as they explic-
itly simulate the effects of different biotic interactions on 
population dynamics (e.g. predation, competition, mutual-
ism, see for review Kot 2001). However, Lotka–Volterra 
models require detailed parameterization of mortality and 
colonization rates that are highly contingent and are usually 
impossible to obtain. Furthermore, models predicting  
the spatial effects of repulsive and attractive interactions at 
steady state are particularly appropriate if the goal is to  
examine the effective spatial effects of interactions rather 
than the underlying population dynamics that generate them 
(see also Dieckmann et al. 2000, Law and Dieckmann 2000). 
The critical issue is whether a simple point-process model, 
such as ours, simulates spatial patterns of co-occurrence 
comparable with dynamic Lotka–Volterra models at equilib-
rium. Preliminary analysis comparing our model with  
Markov-chain formulation of Lotka–Volterra models by Cohen 
(1970) supports this view (Rozenfeld and Araújo unpubl.).

In the current implantation of our point-process  
model, and to control for the effects of species range  
sizes and environmental clustering on species distributions, 

simulations were replicated for species ranges with varying 
prevalence and spatial autocorrelation. Once co-occurrence 
between two species was estimated, we sampled ranges  
at increasingly coarser scales of resolution (i.e. by increasing 
grid-cell size) and identified the scale at which the original 
patterns of co-occurrences lost the spatial signature of  
the biotic interactions effects. When the effects of biotic 
interactions on patterns of co-occurrence of species were 
maintained across scales of resolution we interpreted the  
pattern as providing evidence for scale independence.  
In contrast, biotic interactions generating patterns of co- 
occurrence that were lost at increasing scales of resolutions 
were interpreted as being strongly dependent on the scale.

Material and methods

The model

The primary assumption of our point-process model is  
that the signal of biotic interactions drives spatial attraction 
(for ) or repulsion (for 2). It follows that if no interactions 
are present (0/0), co-occurrence between species ranges is 
dependent on their prevalence (r 5 fraction of the sites 
where the species is present). Formally, if species probabili-
ties of occurrence are equal to their respective prevalence,  
i.e. P(A)  rA and P(B)  rB, then the probability of co- 
occurrence between ranges of two non-interacting species is 
given by

P A BNull A B( )∩ ρ ρ 	 (1)

The probability of co-occurrence is the expected fraction  
of sites where species co-occur. If species A and B interact, 
then their overlap is a function of both their prevalence  
and the strength of their interactions IA and IB

P A B f I IA B A B( ) ( , , , )∩ ρ ρ 	 (2)

Interactions can be either attractive I x
 or repulsive I x

, with 
0   I A Bor

or 1. It follows that I A
  stands for the intensity 

with which species A is attracted by B, and IB
  is the  

intensity with which species B is attracted by A. Likewise, 
I A

  stands for the intensity with which species A repulses  
B, and IB

  is the intensity with which species B repulses A.
In the particular case of mutualism (/), positive  

interactions will cause species to co-occur more often than 
expected under the null model

P A B I IA B A B A B A B( / ) max min ( ) 
    ( ) ( , ) [ , ]∩ ρ ρ ρ ρ ρ ρ  (3)

Where the second term in Eq. 3 estimates the excess of co-
occurrence due to positive (/) interactions. The  
maximum fraction of sites where species co-occur is limited 
by the prevalence of the species with the most restricted 
range, i.e. min(rA, rB). So that [min (rA, rB )2 rA rB] refers 
to the maximum excess of co-occurrence over the null  
model. With interactions (/), the species with the  
greatest positive dependence is the one that constrains  
co-occurrence between the two interacting species. That is, 
the maximum excess of co-occurrence is modulated by the 
maximum attracting index max ,I IA B

 ( )( ) .
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So,

P A B
I I

I I
A B A B

A B A B
( / )

0 0

min( ) 1 1 

 

 


 

 
( )

,
∩

ρ ρ

ρ ρ

and

or







When both interaction strengths are 0 we recover the  
null expectation, and when one of the species is fully depen-
dent on the other the co-occurrence range is maximal.

In the case of competition (2/2), negative interactions 
will cause the species to co-occur less often than expected 
under the null model

P A B I IA B A B( / ) 1 max 
   ( ) ( , )∩ ρ ρ   	 (4)

Co-occurrence will tend to zero as the interaction  
strength of at least one of the interacting species  
approaches 1. With interactions (2/2), the species with  
the greatest negative (repulsive) interaction is the one that 
constrains co-occurrence between the two interacting  
species. That is, co-occurrence decreases below the null 
expectation proportionally to the maximum repulsion 
strength max ,I IA B

 ( )( ) .

So,

P A B
I I

I I
A B A B

A B
( / )

0 0

0 1 1 

 

 


 

 
( )∩

ρ ρ and

or







When both interaction strengths are 0 we recover the  
null expectation and, when one of the species is fully excluded 
by the other, co-occurrence is zero.

In the case of consumer–resource interactions (/2) 
with A being the consumer and B the resource, both positive 
and negative interactions will cause co-occurrence to devi-
ates from the null expectation

P A B I IA B A A B A B B( / ) min ( ) 
      ( ) ( , ) ( ]∩ ρ ρ ρ ρ ρ ρ  1  (5)

The Eq. 5 is a combination of Eq. 3 and 4. The first factor
[ ( ( , ) ]ρ ρ ρ ρ ρ ρA B A B A B AI  min )  corresponds to Eq. 3 
with IB

  5 0, and it shows how co-occurrence is increased 
due to the positive dependence of species A on B. The second 
factor (1 2 IB

) reduces co-occurrence proportionally to the 
repulsive strength IB

.
So,

P A B

I I

I I

I

A B A B

A B A B

B

( / )

0 0

min ( , ) 1 0

1
 

 

 





 

 



( )∩

ρ ρ

ρ ρ

and

and
0









When both interaction strengths are 0 we recover the null 
expectation. When species A is fully dependent on B  
and species B does not repulse A then the co-occurrence 
reaches its maximum. Finally, when species B repulses  
A with maximum intensity co-occurrence is forbidden.

Notice that commensalism is a special case of mutualism 
(with IB

  5 0) or predation, parasitism and disease (with 
IB

  5 0), while amensalism is a special case of competition 
(with IB

 5 0). By varying the sign (, 2) and the strength 
I xx ( )0 1  , our model predicts range overlaps across  
the full biotic interaction space.

Simulations

The general formulation of our point-process model defines 
rules of attraction and repulsion among species subject  
to different biotic interaction types and strengths, but these 
interactions take place in non-heterogeneous landscapes 
where multiple drivers, in addition to interactions, can  
affect species ranges and, therefore, co-occurrence. 
Constraints to the general model can be added to take  
these drivers into account, such as varying the ecological 
niches of species (both in the sense of species affecting  
and being affected by the environment, Chase and Leibold 
2003, Peterson et al. 2011), or dispersal (both in the sense of 
species having the ability to disperse and being prevented 
from it due to external barriers, Levin 1974, Pulliam 1988, 
Hanski 1998, Humphries and Parenti 1999). Here, we 
explore two features of species ranges that we deem relevant 
for studying the geographical scaling of biotic interactions. 
The first is prevalence (r). In one implementation of  
the model, the prevalence of species is relatively low: each 
species occupies 10% of the studied region (r  0.1). In  
the other implementation of the model species occupy  
30% (r  0.3) of the studied region.

The second feature explored is the placement of  
ranges. In one implementation of the model, species B is 
randomly located and species A is affected by species B. 
Under this model, environmental conditions are assumed to 
be homogenous across the studied area as it would  
be expected if range overlaps were measured within a  
given habitat type. In such a scenario, species B can be 
found anywhere in geographical space and range overlaps 
between species A and B are solely determined by  
prevalence and the attractive and repulsive effects of interac-
tions. In the modified model, the distribution of species B is 
spatially structured while species A is a function of species B. 
This implementation of the model simulates range overlaps 
when the distribution of one of the species is highly  
autocorrelated (Legendre 1993, Dormann et  al. 2007).  
Such autocorrelation can arise because strong environmen-
tal gradients exist and act to constrain species ranges (as 
might often occur at biogeographical extents) and/or when 
dispersal, demographic or behavioural factors cause indi-
viduals to aggregate in specific portions of geographical 
space (as might often occur at local and landscape extents). 
All simulations were performed in lattices of 100  100  
pixels. In order to account for stochastic differences in  
the placement of the ranges, simulations were repeated 1000 
times. Details on the generation of random and spatially 
autocorrelated distributions are provided in the supporting 
online material, together with the Mat Lab computer code 
written by AR and used to generate the species ranges 
(Supplementary material).

Measuring spatial dependencies in biotic 
interactions

To address the question of how co-occurrences emerging 
from different biotic interactions affect species distributions 
at different spatial resolutions we used a hierarchical frame-
work (Allen and Starr 1982). We compared co-occurrence 
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degrees of overlap were recorded for species exposed to  
different types of biotic interactions (Fig. 2). For example, 
the spatial patterns of range overlap for commensalism  
( I A

, IB
0) can be identical to range overlaps arising from 

mutualistic interactions ( I A
, IB

 ) (Fig. 1). Range overlaps 
from amensalism ( I A

, IB
0) can also mach range overlaps 

from competition ( I A
, IB

). Patterns of range overlap from 
consumer–resource interactions ( I A

, IB
 ) can be like that 

of any type of biotic interaction.
When data are sampled from the cell to progressively 

larger blocks, estimated co-occurrence between species 
increases until an asymptote of complete overlap is reached 
(Fig. 3). The difference between ‘sampled’ and ‘true’  
co-occurrence (our metric of scale independence, Fig. 1) 
varies with the spatial resolution, but also with the signal 
and the strength of the biotic interactions (Fig. 3). The 
stronger the negative interactions, the more scale depen-
dent local patterns of co-occurrence are; in contrast, the 
stronger the positive interactions the greater the scale 
independence. In the extreme case of obligate positive 
dependencies between species pairs, i.e. strong mutualism, 
no difference exists between ‘sampled’ and ‘true’  
co-occurrence across spatial scales.

Co-occurrence patterns generated by consumer– 
resource interactions are also discernible across spatial 
scales, when at least one of the interacting species has strong 
positive dependency on the other. The same qualitative 
trend is maintained when species prevalence and auto
correlation increases (Table 1). However, scale indepen-
dence tends to increase when interacting species have 
higher prevalence and ranges have weak spatial autocorrela-
tion structure (Table 1). Spatially autocorrelated ranges 
also generate higher variance in patterns of scale depen-
dence, chiefly across competitive interaction space  
(Table 1, Supplementary material Appendix 5, Fig. A1).

Discussion

Inferring process from pattern across scales is a critical 
challenge for ecology, biogeography, as well as for other 

scores (measured as the ratio of the number of geographical 
cells where species A and B co-occur to the total number  
of occupied cells) at the original resolution used to fit all  
of our models (the cell in our lattice landscape) with co- 
occurrences measured at progressively larger scales of  
resolution. This hierarchical framework for scaling was 
achieved by increasing the size of the blocks where individu-
als occur, and then quantifying the resulting co-occurrence. 
The quantification of co-occurrence was done using two 
approaches. The first seeks to preserve information about  
the ‘true’ co-occurrence of species that exists within geo-
graphical blocks and counts species as co-occurring if, and 
only if, they co-occur within one or more cells within  
the larger block. The second emulates the traditional 
approach of ‘sampling’ species occurrences’ data in  
biogeography and macroecology (Rahbek and Graves 2001, 
Araújo 2004, Whittaker et al. 2005, McPherson et al. 2006, 
Nogués-Bravo and Araújo 2006), and counts species as  
co-occurring if both species are present somewhere in the 
block regardless of whether they co-exist in the cells.

The ‘true’ and ‘sampled’ co-occurrence scores measured 
at the cell level are then plotted against progressively  
larger block sizes. The area between the curves representing 
the ‘true’ and ‘sampled’ co-occurrences between species  
A and B, across the range of block sizes, provides a measure 
of scale dependence of co-occurrence patterns (Fig. 1).  
The greater the area between the two curves the more the 
effects of given biotic interaction on species’ distributions 
depends on spatial resolution, and vice versa (Fig. 1). The 
area between the ‘true’ and the ‘sampled’ co-occurrences  
is calculated for the full set of possible biotic interactions 
that can arise from combining interactions of varying  
signs (, 2) and strengths I xx ( )0 1   and true co- 
occurrences are by definition more conservative than  
sampled ones.

Results

Although positive interactions generate range overlaps and 
negative interactions generate non-overlaps, equivalent 

Figure 1. Scale dependence of biotic interactions. Right (squared landscape): after the range of species A and B have been simulated,  
co-occurrence between the two species is calculated. Black squares indicate occurrence of species A but not species B, gray squares  
indicate occurrence of B but not A, and red squares indicate co-occurrence of A and B. Left (diagram): by progressively increasing  
the size of the squares, ‘sampling’ leads to classifying species has co-occurring if both occur somewhere in the square (black line indicates 
‘resampled’ co-occurrence), while true co-occurrence occurs when species overlap within the square (red line indicates ‘true’ co-occurrence). 
The greater the area between the red and black lines the greater the scale dependence of biotic interactions.
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Figure 2. Expected co-occurrence across biotic-interaction space. Colours on the top graph indicate the intensity of the predicted  
co-occurrence between species A (y axis) and B (x axis), where increasing gradients of red indicate increased co-occurrence and increasing 
gradients of blue indicate decreased co-occurrence. The light gray line indicates the portion of biotic-interaction space where co-occurrence 
between two species is no different than expected with the null model. The numbers on the y and x axes represent interactions (I) of varying 
signal (, 2, 0) and strength ( 0  1). The lower scatter diagrams provide examples of simulated distributions of species A (black) and  
B (gray), with their respective co-occurrence (red), for interactions of varying sign and strength. Both species have prevalence r 5 0.3.

branches of science (Levin 1992). Our point-process mod-
els offer a novel and general framework for studying the 
signature of any type of biotic interactions across scales. 
The results illustrate how relatively simple mathematical 
models can make testable predictions about species co-
occurrence across spatial scales, thus enhancing under-
standing of community patterns in ecology. Specifically, 
our findings shed light onto the long-standing controversy 
of whether the geographical signature of biotic interac-
tions is maintained across spatial scales (Wiens 1989, 
Schneider 2001). It is typically assumed that the geo-
graphical signature of biotic interactions is scale depen-
dent, with climate structuring the broad outlines of species 
ranges and biotic interactions affecting patterns of local 
abundances (Whittaker et al. 2001, Pearson and Dawson 
2003). Competition is often given as an example of the 
localized effects of biotic interactions (Connor and Bowers 
1987, Whittaker et al. 2001, Pearson and Dawson 2003). 
Our extensive model simulations support the view that the 
spatial signature of negative interactions is sensitive to 
scale, i.e. exclusion by competitors at local scales of resolu-
tion tends not manifest at coarser scales. In contrast, we 
also demonstrate that interactions involving positive 
dependencies between species, such as mutualism (/) 
and commensalism (/0), are more likely to be manifested 
across scales of resolution. Consumer–resource interactions, 

such as predation, herbivory, parasitism, or disease (/2) 
can also generate scale-independent patterns of coexistence 
providing that the dependency of the consumer on the 
resource is higher than the repulsion of the resource on the 
consumer; probably a common feature of consumer– 
resource interactions.

Previous studies have suggested that consumer–resource 
interactions could modify the regional composition of  
species pools (Ricklefs 1987) and control for species range 
limits (Hochberg and Ives 1999) and diversity (Jabot  
and Bascompte 2012). Recent findings also highlighted the 
disproportionate effects of consumers in shaping local 
responses of resources to climate change (Post 2012). Our 
results generalize and extend these inferences. Specifically, 
we identify circumstances in which biotic interactions are 
likely to generate scale-invariant patterns of co-occurrence 
among species. Based on these results we propose a new 
scaling law: the degree to which the signatures of biotic 
interactions on local co-occurrences scale up depends on the 
net effect of the positive dependencies between species. 
When the net effect of interactions is positive, the spatial 
effects of such interactions will tend to scale independence. 
When the net effect of interactions is negative, the spatial 
effects of interactions will tend to scale dependence.

Even though our simulations suggest that competitive 
interactions generate local patterns of co-occurrence that 



411

0 10 20 30 40 50 60 70 80 90 100
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 10 20 30 40 50 60 70 80 90 100
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 10 20 30 40 50 60 70 80 90 1000
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 10 20 30 40 50 60 70 80 90 100

0.4
0.5
0.6
0.7
0.8
0.9
1

0 10 20 30 40 50 60 70 80 90 100
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 10 20 30 40 50 60 70 80 90 100
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 10 20 30 40 50 60 70 80 90 1000
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 10 20 30 40 50 60 70 80 90 100

0.4
0.5
0.6
0.7
0.8
0.9
1

Random

Autocorrelated

Figure 3. Scale dependence of co-occurrence patterns across biotic interaction space. In the outer scatter plots, red lines indicates  
‘true’ co-occurrence (y axis) between species A and B at increased scales of resolution (x axis), while black lines represent estimated  
co-occurrence after sampling occurrence data at increased scales of resolution. The greater the area between the two curves, the greater the 
scale dependence in the geographical signatures of biotic interactions. Lattice diagrams are examples of the geographical distributions  
of species A (black) and B (grey) and their respective overlaps (red) for interactions of varying signal and strength. In the central column  
of the graphs, increasing gradients of red indicate increased scale dependence (i.e. increased area between red and black lines in outer  
scatter diagrams), while decreasing gradients of red indicate increased scale independence (i.e. decreased area between red and black lines 
in outer scatter diagrams): (a) when A and B have prevalence r 5 0.1 and both are randomly distributed; (b) when A and B have r 5 0.1 
and B is geographically structured. Colour scales are log transformed. Estimates of range overlap underlying measurements of scale depen-
dence were obtained with 1000 model runs and values provided are averages across all runs. Summary statistics are provided in Table 1.

do not scale up (for recent empirical evidence of the  
same pattern see also Segurado et al. 2012), there are cir-
cumstances in which the consequences of competition  
are expected to be manifested at broader scales. Such is the 
case when competitive exclusion leads to splitting of  
species ranges at biogeographical extents (Hardin 1960, 
Horn and MacArthur 1972, Connor and Bowers 1987). To 
explore this exceptional circumstance we repeated our  
simulations for the extreme case of repulsion I A

  5 1 and 
IB

  5 1 (i.e. competition being such that species never  
co-occur), with highly spatially autocorrelated ranges and 
subject to varying degrees of range exclusion (0  mexcl  1.5, 
Supplementary material). With the extremes: 0 represent-
ing no enforced range exclusion, potentially leading to 
checkerboard distributions when ranges are not spatially 
autocorrelated (the rule used in all previous simulations); 

and 1.5 representing fully enforced range exclusion leading 
to range splitting with not edge contact (see supplementary 
material for more details). We find, as expected, that  
the greater the degree of exclusion (mexcl) between the  
ranges of two competing species the greater the degree  
of scale independence of the resulting geographical pat-
terns (Fig. 4). For example, the area between the curves of 
the ‘sampled’ and ‘true’ co-occurrences when no range 
exclusion is enforced (mexcl   0) is 82, while when full  
range exclusion is enforced (mexcl   1.5) the area between 
the curves is 77. These areas between curves are, however, 
well above mean values across biotic interaction space 
(Table 1), thus supporting our conclusions regarding  
strong scale-dependence of the co-occurrence patterns  
with competition. Whether strong forms of range exclu-
sion have an impact in structuring of regional species pools 
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could lead to serious errors (Davis et  al. 1998). However, 
our results suggest that errors arising from discounting  
the effects of competition would unlikely scale up to  
biogeographical scales (see also Hodkinson 1999). In con-
trast, models failing to account for strong positive depen-
dencies between species would likely exclude mechanisms 
affecting species ranges across a range of scales. Consistent 
with our prediction, studies have shown that mutualism 
(Callaway et  al. 2002), commensalism (Heikkinen et  al. 
2007), predation (Wilmers and Getz 2005), herbivory  
(Post 2012) and parasitism (Araújo and Luoto 2007) could  
significantly affect species ranges and/or species responses to 
climate change. If predictions of our models are correct, the 
bad news is that accurate predictions of climate change 
effects on species distributions would require the develop-
ment of more complex models that include biotic interac-
tions (Fordham et al. 2013). The good news is that only a 
subset of all conceivable biotic interactions would likely 
matter. Since, most interactions between species are likely to 
be weak and non-obligate (Bascompte 2007, Araújo et al. 
2011), and species with strong positive interactions are a 
subset of a relatively small number of species with strong 
interactions, the critical question would then be to identify 
the species with properties that are capable of affecting  
distributions and coexistence across scales (see also Gilman 
et  al. 2010). The task of identifying such species is of 
daunting magnitude, but is less so than documenting and 
modelling the full web of interactions among species.

Outlook

We are aware that our models can raise scepticism among 
empirical and theoretical community ecologists. The  
standard practice is to predict spatial-population processes 
from models that explicitly and dynamically account for 

partly depends on the degree to which they are a common 
feature at biogeographical scales; this question is beyond 
the scope of our discussion (but see Connor and Bowers 
1987).

Our results have important implications for predictions 
of the effects of environmental changes on species distribu-
tions. For example, microcosms experiments have demon-
strated that models of species responses to climate change 
that ignore competition and parasitoid–host interactions 

Table 1. Mean and SD (after 1000 repetitions) of scale dependence 
values across biotic interaction space for mutualism (/), compe-
tition (2/2), consumer–resource interactions (/2), commensalism 
(/0), amensalism (2/0). The greater the mean values, the greater 
the scale dependence of co-occurrence patterns generated by  
biotic interactions (the larger SD the larger uncertainties). Results 
are provided for two different prevalence values (10 and 30%)  
and for two types of distributions (random and autocorrelated). See 
Supplementary material Appendix 5, Fig. A1 for a visual representa-
tion of these results.

Prevalence 
Distribution

10% 30%

random autocorrelated random autocorrelated

/
Mean 0.3414 1.0758 0.1000 0.1203
SD 0.5188 1.3736 0.1390 0.1627

2/2
Mean 29.5011 35.4663 21.7188 21.9117
SD 32.9402 29.0701 36.9765 36.9117

/2
Mean 12.5640 15.6700 11.0573 11.1537
SD 28.1500 26.6214 28.9997 28.7860

/0
Mean 0.8284 2.2766 0.2235 0.2634
SD 0.9412 2.2639 0.2295 0.2646

2/0
Mean 19.5134 26.1670 12.3791 12.5908
SD 26.2082 23.5428 28.5864 28.3371

Figure 4. Variation in scale dependence of co-occurrence patterns arising from varying levels of competitive exclusion. With extreme  
2/2 interactions involving I A


1  and IB


1 , populations of species A and B never co-occur. So, ‘true’ co-occurrence is zero  

(coincident with the x axis) independently of the size of blocks. By progressively increasing the size of the blocks, sampling leads to  
classifying species has co-occurring if both species occurred somewhere in the block (black lines). The greater the area between black  
lines and the horizontal x axis line the greater the scale dependence of distributional patterns arising from competition.
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Araújo, M. B. and Luoto, M. 2007. The importance of biotic 
interactions for modelling species distributions under climate 
change. – Global Ecol. Biogeogr. 16: 743–753.

Araújo, M. B. and Peterson, A. T. 2012. Uses and misuses of 
bioclimatic envelope modeling. – Ecology 93: 1527–1539.

Araújo, M. B. et  al. 2011. Using species co-occurrence networks 
to assess the impacts of climate change. – Ecography 34:  
897–908.

Araújo, M. B. et  al. 2013. Heat freezes niche evolution. – Ecol. 
Lett. 16: 1206–1219.

Bascompte, J. 2007. Plant–animal mutualistic networks: the 
arquitecture of biodiversity. – Annu. Rev. Ecol. Evol. Syst.  
38: 567–593.

Baselga, A. et  al. 2012a. Global patterns in the shape of species 
geographical ranges reveal range determinants. – J. Biogeogr. 
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Baselga, A. et al. 2012b. Dispersal ability modulates the strength 
of the latitudinal richness gradient in European beetles.  
– Global Ecol. Biogeogr. 11: 1106–1113.

Bateman, B. L. et  al. 2012. Biotic interactions influence the 
projected distribution of a specialist mammal under climate 
change. – Divers. Distrib. 18: 861–872.

Bruno, J. F. et  al. 2003. Inclusion of facilitation into ecological 
theory. – Trends Ecol. Evol. 18: 119–125.

Callaway, R. M. et  al. 2002. Positive interactions among alpine 
plants increase with stress. – Nature 417: 844–848.

Chase, J. M. and Leibold, M. A. 2003. Ecological niches – linking 
classical and contemporary approaches. – Univ. of Chicago 
Press.

Cohen, J. E. 1970. A Markov contingency-table model for 
replicated Lotka–Volterra systems near equilibrium. – Am. 
Nat. 104: 547–560.

Cohen, J. E. 1971. Estimation and interaction in censored  
2  2  2 contingency table. – Biometrics 27: 379–386.

Colwell, R. K. et al. 2008. Global warming, elevational range shifts, 
and lowland biotic attrition in the wet tropics. – Science 322: 
258–261.

Connell, J. H. 1975. Some mechanisms producing structure in 
natural communities: a model and evidence from field 
experiments. – In: Cody, M. L. and Diamond, J. M. (eds), 
Ecology and evolution of communities. Harvard Univ. Press, 
pp. 460–490.

Connor, E. F. and Bowers, M. A. 1987. The spatial consequences 
of interspecific competition. – Ann. Zool. Fenn. 24:  
213–226.

Davis, A. J. et al. 1998. Making mistakes when predicting shifts in 
species range in response to global warming. – Nature 391: 
783–786.

Diamond, J. M. 1975. Assembly of species communities. – In: 
Cody, M. L. and Diamond, J. M. (eds), Ecology and evolution 
of communities. Harvard Univ. Press, pp. 342–444.

Dieckmann, U. et  al. (eds) 2000. The geometry of ecological 
interactions: simplifying spatial complexity. – Cambridge  
Univ. Press.

Dobzhansky, T. 1950. Evolution in the tropics. – Am. Sci. 38: 
209–221.

Dormann, C. et  al. 2007. Methods to account for spatial 
autocorrelation in the analysis of species distributional data: a 
review. – Ecography 30: 609–628.

Fordham, D. A. et  al. 2013. Adapted conservation measures are 
required to save the Iberian lynx in a changing climate. – Nat. 
Clim. Change 3: 899–903.

Gause, G. F. 1934. The struggle for existence. – Willliams and 
Wilkins.

Gilman, S. E. et al. 2010. A framework for community interactions 
under climate change. – Trends Ecol. Evol. 25: 325–331.

consumer–resource interactions. Here, assumptions about 
these processes are implicit rather than explicit. Instead, we 
characterize the spatial effects on coexistence of biotic inter-
actions based on the expected attractive and repulsive con-
sequences of these processes. The next step is to test our 
model predictions through extensive model-model and 
model-data comparisons. By assuming distributions at 
steady-state the first comparison that becomes necessary is 
between expected co-occurrence of species achieved with 
dynamic Lotka–Volterra models and with static ‘point- 
process’ models like the ones proposed here. The problem 
with such comparisons is that consistency with predictions 
from alternative models lends to conditionally supporting 
them, but inconsistency leads to inconclusive results as we 
have no objective way to validate them unless we compare 
results with data (Oreskes et  al. 1994, Araújo and  
Guisan 2006, Araújo and Peterson 2012). Comparing 
model results with data is more powerful. However, such 
tests are difficult to undertake because fully-controlled and 
fully-replicated experiments at a variety of spatial scales are 
difficult to undertake and they are extremely costly 
(Marschall and Roche 1998). Furthermore, our predictions 
span a full spectrum of biotic interactions rather than  
focusing on specific types of interaction, thus adding an 
extra degree of difficulty to experimentation. A possible  
way forward is to compare predictions from models with 
microcosm experiments (Livingston et al. 2012). They too 
have their limitations (Lawton 1998), but a pluralistic 
approach for testing models is likely the only possible way 
forward (Kissling et al. 2012).
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