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1 Introduction
Osmotic dehydration (OD) is one of the commonly used 

methods for food preservation. It consists of water removal 
by soaking the food in a hypertonic solution with the aim 
of producing water flow from the product to the hypertonic 
solution. The driving force for mass transfer is the difference 
in osmotic pressure (OCHOA MARTINEZ; AYALA APONTE, 
2005). Since the cell membrane acts as a semi-permeable film, 
two main fluxes occur simultaneously and in opposite direction: 
the diffusion of water out of the tissue into the osmotic solution 
and the uptake of solute from osmotic solution to the product 
(CORZO; BRACHO, 2009; URIBE et al., 2011). Other flow is 
the leaching out of the food tissue’s own solutes (sugars, organic 
acids, minerals, and vitamins) into the solution. This last flow 
is unimportant due to the low solids loss, but it can modify 
some properties such as sensorial characteristics (CORZO; 
BRACHO, 2009). Different mathematical models have been 
applied for adjusting OD processes’ experimental results in 
order to predict the behavior of food products. Models based 
on solution of Fick’s second law have generally been used to 
describe OD process (CASALES; CAPACCIONI; YEANNES, 
2009; CORZO; BRACHO, 2007; GERLA; RUBIOLO, 2003; 
GOU; COMAPOSADA; ARNAU, 2003; GRAIVER  et  al., 
2006; RODGER et al., 1984; TELIS et al., 2003 among others). 
This model assumes that the solution concentration remained 
constant, the external resistance is negligible compared to the 
internal resistance, and the sample geometry is as simple as, for 
example, an infinite slab. Another alternative for modeling the 
osmotic dehydration process is the use of empirical models based 
on mathematical representations of the observed data, covering 
some of the Fick model inaccuracies. The use of the diffusive 
model depends on the estimation or experimental determination 

of equilibrium values. The estimation of these values can 
be performed with empirical models, but its experimental 
determination needs long immersion times that can lead to 
food tissue changes (SCHMIDT; CARCIOFI; LAURINDO, 
2009). Some of the empirical models were developed from 
polynomial adjustments, while others were developed from 
mass balances and relationships between process variables 
(OCHOA MARTINEZ; AYALA APONTE, 2005; CORZO; 
BRACHO, 2009). One of the most widely used empirical 
models to predict water loss/gain and salt gain in different foods 
is the equation  proposed by Peleg (SCHMIDT; CARCIOFI; 
LAURINDO, 2009; CORZO; BRACHO, 2006; CZERNER; 
YEANNES, 2010; TURHAN; SAYAR; GUNASEKARAN, 
2002). According to these authors, the Peleg model is able to 
represent satisfactorily the transfers of water and salt during 
osmotic treatments. Mass transfer kinetics in cherry tomato in 
different hypertonic NaCl solutions (with or without sucrose) 
was modeled according to Peleg, Fick, and Page equations 
(AZOUBEL; MURR, 2004). In addition, mathematical modeling 
of mass transfer during the osmotic dehydration of strawberries 
in a solution of sugar (40 °Brix) has been performed applying 
Newton, Henderson–Pabis, Page, and Weibull models (NUÑEZ-
MANCILLA et al., 2011). The diffusive model, Azuara’s model, 
Peleg’s model, and an exponential (Weibull-type) model were 
used in the mathematical modeling of water gain/loss and 
salt gain by chicken breast cuts immersed in saline solutions 
(SCHMIDT; CARCIOFI; LAURINDO, 2009). In fish products, 
water loss, and acid and salt gain have been modeled using Fick, 
Peleg, Weibull, and Zugarramurdi & Lupín models (CORZO; 
BRACHO, 2009; CASALES; CAPACCIONI; YEANNES, 2009; 
CORZO; BRACHO, 2007; RODGER et al., 1984; TELIS et al., 
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2.2 Infusion solution

The composition (w/w) of the infusion solution was as 
follows: 54% glycerol (Biopack, Zárate, Buenos Aires, Argentina, 
99.5 g/100 g of purity), 38.3% water, 7% sodium chloride 
(Biopack, 99 g/100 g of purity), and 0.7% potassium sorbate (DQI, 
Medellín, Colombia, 99 g/100 g of purity). The aw of cooking-
infusion solution was 0.64. The ratio fish:solution was 1:10 (w/w) 
in order to minimize significant changes in the concentration of 
the osmotic solution as a result of water loss and solute uptake.

2.3 Cooking-infusion

The osmotic dehydration of mackerel slices was carried 
out in the aforementioned infusion solution at the following 
temperatures: 50±1, 70±1 and 90±1 °C until equilibrium was 
reached (a maximum immersion time of 3 hours).

The slices were thawed under refrigeration until they 
reached 8 °C and placed in the infusion solution at the fixed 
temperatures. At specified time intervals (5, 10, 15, 20, 25, 40, 
60, 80, 120, 150, and 180 minutes), the samples were removed for 
physicochemical analysis. The slices were drained, superficially 
rinsed with distilled water, dried with absorbent paper, and 
weighed. Three slices were removed at each sampling time and 
each temperature tested.

Two runs were performed for the three temperatures tested.

2003; CORZO; BRACHO, 2006; CZERNER; YEANNES, 2010; 
CORZO; BRACHO, 2005; ZUGARRAMURDI; LUPÍN, 1977; 
ZUGARRAMURDI; LUPÍN, 1980).

Our research group has developed a new product with 
mackerel, with the aw reduction as the principal hurdle to 
microbial growth. A ternary solution with glycerol and salt 
was used to reduce the aw value. In the scientific literature, 
information available about the application of empirical 
models for the osmotic dehydration of different kinds of 
food in solutions with glycerol and salt is very scarce, and no 
information has yet been reported regarding fish products.

Therefore, the aim of this study was to determine the 
applicability of Peleg model to investigate the mass transfer 
during osmotic dehydration of mackerel (Scomber japonicus) 
slices at different temperatures in a hypertonic solution 
containing glycerol and salt.

2 Materials and methods

2.1 Raw materials

Mackerel (Scomber japonicus) caught in Mar del Plata, 
Argentine, in the months of October and November and stored 
at –18 °C was used in this study. The skin, head, tail, and viscera 
were removed from frozen samples. The trunk was cut into slices 
of 0.72±0.05 cm thick and 5.15±0.15 cm diameter.

Figure 1. Fitting of the Peleg model to water loss and solute gain during OD of mackerel slices at different temperatures: water experimental (♦), 
water calculated (− ∙ − ∙), glycerol experimental (■), glycerol calculated (▬▬), salt experimental (▲), salt calculated (——).
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software Origin Pro 8.0 (OriginLab, Northampton, MA). The 
determination coefficient (R2) and root mean square error 
(RMSE, Equation 4) were used to evaluate the goodness of fit 
of the model to the experimental data. 
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(4)

where Xi and Xip are the experimental data and the values 
predicted by the model, respectively, and n the number of data 
pairs.

3 Results and discussion
Peleg model parameters and equilibrium values for water, 

salt, and glycerol at the different temperatures tested are shown 
in Table 1.

Peleg rate constant (K1) decreased from 0.761 to 0.396 
h(g/gdm)–1 for water loss; from 5.526 to 2.947 h(g/gdm)–1 for 
salt gain; and from 0.944 to 0.566 h(g/gdm)–1 for glycerol gain, 
respectively, with increasing temperature from 50 to 90 °C. Since 
the inverse of K1 (Peleg rate constant) (Equation 2) is related 
to mass transfer rate, both water loss and solute gain increased 
with temperature. Similar behavior for water loss and salt gain 
was found by Corzo and Bracho (2006) in sardine sheets and 
by Turhan, Sayar and Gunasekaran (2002) in chickpea. There 
is no information available on glycerol gain in the literature. 
The increase in temperature promoted faster water loss and 
faster solute gain probably due to swelling and plasticizing of 
the cell membranes. It also led to faster water diffusion within 
the product and improved water transfer characteristics on the 
product surface due to lower viscosity of the osmotic solution 
(TORTOE, 2010). In addition, the higher solid gains at higher 
temperatures may be due to the destruction of cell membrane 
structure (CORZO; BRACHO, 2006).

Peleg capacity constant (K2) did not show a clear pattern 
with respect to the process temperature for salt and glycerol or 
water. Corzo and Bracho (2006) found similar results for OD 
of sardine sheets for water loss and salt gain.

The determination coefficient (R2) ranged from 0.90 to 
0.99 for water loss and glycerol and salt gain. RMSE values 
were <0.09 in all cases. According to the statistical parameters 

2.4 Physicochemical analysis

The water content was determined at 105 °C until constant 
weight (ASSOCIATION..., 1990) using a drying oven (Marne, 
644, Córdoba, Argentina); sodium chloride content was 
determined using the Mohr method adapted to food (KIRK; 
SAWYER; EGAN, 1996); glycerol was determined using an 
enzymatic UV method (BoehringerMannheim/R-Biopharm, 
Darmstadt, Germany); and aw was determined using an Aqualab 
hygrometer (Decagon, CX-2T, Pulman, WA, USA).

All analyses were performed in triplicate.

2.5 Peleg Model

Peleg (1988) proposed a two-parameter sorption equation:

= ±
+0

1 2
t

tX X
K K t  

(1)

where X0 and Xt are content of water, salt, and glycerol (expressed 
as g on a non-salt and non-glycerol dry matter basis, g/gdm) 
at time 0 and time t, respectively. K1 is the Peleg rate constant 
(h(g/gdm)–1), and K2 is the Peleg capacity constant ((g/gdm)–1). 
In Equation 1 “±” becomes “+” for salt and glycerol gain and 
“–” for water loss. K1 is related to the mass transfer rate at the 
beginning of the OD process (Equation 2). K2 is related to water, 
salt, or glycerol contents at time t → ∞ (Equation 3).

= ± 11tdX dt K  (2)

= ±0 21eqX X K  (3)

where Xeq is water, salt or glycerol contents in the equilibrium 
(t → ∞).

The major advantage of the Peleg model is to save time 
by predicting the kinetics sorption of osmotically dehydrated 
foods, including equilibrium values (Equation 3), using short-
time experimental data (TURHAN; SAYAR; GUNASEKARAN, 
2002; PELEG, 1988).

2.6 Statistical analysis

The fitting of the model to the experimental data was 
performed by nonlinear regression analysis using the 

Table 1. Peleg model parameters.

Solute Temp. (°C) K1 K2 R2 RMSE Xeq Peleg Xeq Experim Relative Error(E)*
Water

50
0.761 1.166 0.921 0.057 1.1545 1.2945 10.81

Salt 5.260 5.704 0.986 0.005 0.1753 0.1382 26.84
Glycerol 0.854 0.803 0.973 0.048 1.2453 0.9933 25.37

Water
70

0.428 1.022 0.968 0.052 1.0718 1.2506 14.34
Salt 3.436 5.775 0.990 0.004 0.1732 0.1500 15.33

Glycerol 0.639 0.909 0.982 0.037 1.1000 0.9255 18.85
Water

90
0.396 1.165 0.972 0.039 1.0562 1.1232 5,96

Salt 2.947 5.670 0.993 0.004 0.1764 0.1515 16.44
Glycerol 0.566 0.799 0.986 0.036 1.2516 1.0457 19.69

(*) 100i ip

i

X X
E

X
−

=  E: relative error, Xi experimental value and Xip predicted value.
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The plot of the logarithm of the Peleg rate constant vs. 1/T 
would result in a straight line with the negative of the slope 
equal Ea/R and intercept equal ln(K0). The linearity of the data 
(R2>0.86) indicated that the Peleg rate constants for water 
loss and salt and glycerol gain as a function of temperature 
represent an Arrhenius-type relationship (Table 2). Higher Ea 
value indicated greater temperature sensitivity of Peleg rate 
constant. The rate constant for water loss was found to be more 
temperature sensitive (Ea = 16.14 kJ/mol) than the rate constant 
for salt (Ea = 14.21 kJ/mol) and glycerol gain (Ea = 10.12 kJ/mol). 
Ea value was similar to the values obtained by other authors for 
osmotic dehydration processes of fishery products (CORZO; 
BRACHO, 2006; FAVETTO; CHIRIFE; BARTHOLOMAI, 
1981).

that qualify the goodness of fit (RMSE and R2), the Peleg model 
adequately described the kinetics of water loss and solute gain 
in the osmotic dehydration of mackerel slices.

The fitting of the model to the experimental data is shown 
in Figure 1 for water loss and glycerol and salt gain at 50, 70, 
and 90 °C.

The predicted and experimental data for water loss and salt 
and glycerol gain at the three temperatures tested are shown in 
Figure 2. It is observed that, for most of the conditions analyzed, 
the differences between the data and the values predicted by 
the model were small, which was verified by the statistical 
parameters R2 and RMSE (Table 1).

The predicted equilibrium values obtained from Equation 3 
are shown in Table  1. Peleg model underestimated the 
equilibrium water content and overestimated the equilibrium 
salt and glycerol content compared with the experimental 
equilibrium values.

The dependence of the Peleg rate constant on temperature is 
represented by the linearized Arrhenius equation (Equation 5): 

= −1 0ln( ) ln( ) aK K E RT  (5)

where K1 is the Peleg rate constant (h(g/gdm)–1), K0 is a constant 
(h(g/gdm)–1), Ea is the activation energy (kJ/mol), R the 
universal gas constant (8.314 J/mol K), and T is the absolute 
temperature (K).

Figure 2. Comparison between experimental and Peleg-estimated data A: Salt, B: Glycerol and C: Water: 50 °C (♦), 70 °C (■), 90 °C (▲).

Table 2. Activation energy for Peleg rate constant during osmotic 
dehydration of mackerel slices.

Parameter Water loss Salt gain Glycerol gain
Ea (kj/mol) 16.14 14.21 10.12

K0 (h(g/gdm)–1) 0.0017 0.025 0.019
R2 0.862 0.948 0.961
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during osmotic treatment of chicken breast cuts. Journal of Food 
Engineering, v. 91, p. 553-559, 2009. http://dx.doi.org/10.1016/j.
jfoodeng.2008.10.003

TELIS, V. et al. Salting kinetics and salt diffusivities in farmed pantanal 
caiman muscle. Pesquisa Agropecuaria Brasileira, v. 38, p. 529-
535, 2003. http://dx.doi.org/10.1590/S0100-204X2003000400012
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org/10.1016/S0260-8774(01)00152-2

URIBE, E. et al. Mass transfer modelling during osmothic dehydration 
of jumbo squid (Dosidicus jigas): influence of temperature on 
diffusion coefficients and kinetic parameters. Food Bioprocess 
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4 Conclusions
The Peleg model can be used to describe the OD process 

of mackerel slices in the range between 50 and 90 °C. It can be 
used for predicting equilibrium values. Temperature in the range 
between 50 and 90 °C influences the mass transfer phenomena 
during the OD process of mackerel slices immersed in a solution 
of glycerol (54% w/w ) and salt (7% w/w).
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